1
|
Aggarwal SD, Toussaint J, Lees JA, Weiser JN. Colonization dynamics of Streptococcus pneumoniae are determined by polymorphisms in the BlpAB transporter. Infect Immun 2025:e0006125. [PMID: 40387421 DOI: 10.1128/iai.00061-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/31/2025] [Indexed: 05/20/2025] Open
Abstract
Colonization of the human airways, the first step in the pathogenesis of Streptococcus pneumoniae (Spn), is the determining factor in the ecological spread of the bacterium. Since co-colonization by multiple strains is common, within-host bacterial competition contributes to the success of Spn strains. Competition both between and within strains is mediated by bacteriocin gene clusters, notably the quorum sensing-regulated bacteriocin-like peptide (blp) locus. A key component of this system is the BlpAB transporter that exports pheromones and bacteriocins expressed by the blp locus. However, ~75% of Spn strains lack a functional BlpAB transporter and instead rely on the paralogous ComAB transporter for this export, raising questions about the evolutionary persistence of BlpAB(+) strains. Using molecular barcoding, we demonstrate that BlpAB(+) and BlpAB(-) strains show major differences in population dynamics during colonization modeled in mice. The BlpAB(+) strains exhibit slower loss of clonal diversity as a consequence of intrastrain competition relative to their isogenic BlpAB(-). The contribution of a functional BlpAB transporter was then examined in an association study of >2,000 human carriage isolates from a highly colonized population. The median carriage duration was ~177 days longer for BlpAB(+) relative to BlpAB(-) strains. This increased duration of natural carriage correlates with a competitive advantage for BlpAB(+) strains when tested in the murine model. Thus, our work provides insight into how differences in the population dynamics of Spn mediated by bacterial competition impact host colonization.IMPORTANCESpn is a frequent colonizer of the human upper respiratory tract. Success during colonization is dictated by the arsenal of weapons these bacteria possess, which provides them with an advantage over their competitors. A key example includes the blp bacteriocins that are exported by the cell through both BlpAB and ComAB transporters. While most Spn strains lack a functional BlpAB, a subset of the strains retains it. Given this redundancy in export systems, our study questioned the evolutionary advantage of retaining BlpAB. Herein, we show that a functional BlpAB transporter causes a slower loss of clonal diversity in vivo. This correlates with longer Spn carriage duration in the human population and a competitive advantage during experimental co-colonization. Our work highlights the reasons behind the persistence of Spn with a functional BlpAB. These findings reveal how genetic variability in the blp locus shapes Spn colonization and evolutionary success.
Collapse
Affiliation(s)
- Surya D Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Jacqueline Toussaint
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - John A Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Sun M, Li Q, Zhang F, Yao D, Huang W, Lv Q, Jiang H, Kong D, Ren Y, Chen S, Jiang Y, Liu P. The Genomic Characteristics of Potential Probiotics: Two Streptococcus salivarius Isolates from a Healthy Individual in China. Microorganisms 2025; 13:694. [PMID: 40142586 PMCID: PMC11945364 DOI: 10.3390/microorganisms13030694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The isolation and characterization of novel probiotics from dairy products, fermented foods, and the gut have gained significant attention. In particular, Streptococcus salivarius shows promise for use in oral probiotic preparations. In this study, we isolated two strains of S. salivarius-S.82.15 and S.82.20-from the oral cavity of a healthy individual. These strains exhibited distinct antimicrobial profiles. We thoroughly assessed the morphology and growth patterns of both strains and confirmed auto-aggregation and hemolytic activity. Through comprehensive genomic analysis, we found notable strain differences within the same bacterial species isolated from the same individual. Notably, the presence or absence of plasmids varied between the two strains. The genome of S.82.15 spans 2,175,688 bps and contains 1994 coding DNA sequences (CDSs), while S.82.20 has a genome size of 2,414,610 bps, a GC content of 40.62%, and 2276 annotated CDSs. Both strains demonstrated antibacterial activity against Group A Streptococcus (GAS), Micrococcus. luteus, and Porphyromonas gingivalis. To investigate the antibacterial properties further, we identified a gene cluster of salivaricin 9 on the plasmid of S.82.20 and a blp gene family on the chromosomes of both S.82.15 and S.82.20. Moreover, the gene expression of the blp family was upregulated when the isolated strains were co-cultured with GAS.
Collapse
Affiliation(s)
- Mingyue Sun
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Qian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Feiran Zhang
- Division of Fifth, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China;
| | - Ding Yao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Hua Jiang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Yuhao Ren
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Yongqiang Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| | - Peng Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (M.S.); (D.Y.)
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100072, China; (Q.L.); (W.H.); (Q.L.); (H.J.); (D.K.); (Y.R.); (S.C.)
| |
Collapse
|
3
|
Borralho J, Handem S, Lança J, Ferreira B, Candeias C, Henriques AO, Hiller NL, Valente C, Sá-Leão R. Inhibition of pneumococcal growth and biofilm formation by human isolates of Streptococcus mitis and Streptococcus oralis. Appl Environ Microbiol 2025; 91:e0133624. [PMID: 40008876 PMCID: PMC11921387 DOI: 10.1128/aem.01336-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
In a world facing the unprecedented threat of antibiotic-resistant bacteria, targeted approaches to control colonization and prevent disease caused by common pathobionts offer a promising solution. Streptococcus pneumoniae (pneumococcus) is a leading cause of infections worldwide, affecting both children and adults despite available antimicrobials and vaccines. Colonization, which occurs in the form of a biofilm in the upper respiratory tract, is frequent and a prerequisite for disease and transmission. The use of live bacterial strains as biotherapeutics for infectious diseases is actively being explored. Here, we investigated the potential of commensal streptococci to control S. pneumoniae. Screening of over 300 human isolates led to the identification of seven strains (one Streptococcus oralis and six Streptococcus mitis, designated A22 to G22) with inhibitory activity against S. pneumoniae of multiple serotypes and genotypes. Characterization of A22 to G22 cell-free supernatants indicated the involvement of secreted proteins or peptides in the inhibitory effect of all S. mitis isolates. Genome analyses revealed the presence of 64 bacteriocin loci, encoding 70 putative bacteriocins, several of which are novel and absent or rare in over 7,000 publicly available pneumococcal genomes. Deletion mutants indicated that bacteriocins partially or completely explained the anti-pneumococcal activity of the commensal strains. Importantly, strains A22 to G22 were further able to prevent and disrupt pneumococcal biofilms, a proxy for nasopharyngeal colonization. These results highlight the intricacy of the interactions among nasopharyngeal colonizers and support the potential of strains A22 to G22 to be used as live biotherapeutics, alone or in combination, to control S. pneumoniae colonization. IMPORTANCE Streptococcus pneumoniae (pneumococcus) infections remain a major public health issue despite the use of vaccines and antibiotics. Pneumococci asymptomatically colonize the human upper respiratory tract, a niche shared with several commensal Streptococcus species. Competition for space and nutrients among species sharing the same niche is well documented and tends to be more intense among closely related species. Based on this rationale, a screening of several commensal streptococci isolated from the human upper respiratory tract led to the identification of strains of Streptococcus mitis and Streptococcus oralis capable of inhibiting most pneumococcal strains, across diverse serotypes and genotypes. This inhibition was partially or wholly linked to the expression of novel bacteriocins. The selected S. mitis and S. oralis strains significantly disrupted pneumococcal biofilms, indicating a potential for using commensals as biotherapeutics to control pneumococcal colonization, a key step in preventing disease and transmission.
Collapse
Affiliation(s)
- João Borralho
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sara Handem
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João Lança
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bárbara Ferreira
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Candeias
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O. Henriques
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carina Valente
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Polytechnic Institute of Castelo Branco, Castelo Branco, Portugal
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
4
|
Díaz-Formoso L, Contente D, Feito J, Hernández PE, Borrero J, Muñoz-Atienza E, Cintas LM. Genomic Sequence of Streptococcus salivarius MDI13 and Latilactobacillus sakei MEI5: Two Promising Probiotic Strains Isolated from European Hakes ( Merluccius merluccius, L.). Vet Sci 2024; 11:365. [PMID: 39195819 PMCID: PMC11359882 DOI: 10.3390/vetsci11080365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Frequently, diseases in aquaculture have been fought indiscriminately with the use of antibiotics, which has led to the development and dissemination of (multiple) antibiotic resistances in bacteria. Consequently, it is necessary to look for alternative and complementary approaches to chemotheraphy that are safe for humans, animals, and the environment, such as the use of probiotics in fish farming. The objective of this work was the Whole-Genome Sequencing (WGS) and bioinformatic and functional analyses of S. salivarius MDI13 and L. sakei MEI5, two LAB strains isolated from the gut of commercial European hakes (M. merluccius, L.) caught in the Northeast Atlantic Ocean. The WGS and bioinformatic and functional analyses confirmed the lack of transferable antibiotic resistance genes, the lack of virulence and pathogenicity issues, and their potentially probiotic characteristics. Specifically, genes involved in adhesion and aggregation, vitamin biosynthesis, and amino acid metabolism were detected in both strains. In addition, genes related to lactic acid production, active metabolism, and/or adaptation to stress and adverse conditions in the host gastrointestinal tract were detected in L. sakei MEI5. Moreover, a gene cluster encoding three bacteriocins (SlvV, BlpK, and BlpE) was identified in the genome of S. salivarius MDI13. The in vitro-synthesized bacteriocin BlpK showed antimicrobial activity against the ichthyopathogens Lc. garvieae and S. parauberis. Altogether, our results suggest that S. salivarius MDI13 and L. sakei MEI5 have a strong potential as probiotics to prevent fish diseases in aquaculture as an appropriate alternative/complementary strategy to the use of antibiotics.
Collapse
Affiliation(s)
| | | | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | | | | | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | | |
Collapse
|
5
|
Aggarwal SD, Lees JA, Jacobs NT, Bee GCW, Abruzzo AR, Weiser JN. BlpC-mediated selfish program leads to rapid loss of Streptococcus pneumoniae clonal diversity during infection. Cell Host Microbe 2023; 31:124-134.e5. [PMID: 36395758 PMCID: PMC9839470 DOI: 10.1016/j.chom.2022.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
Successful colonization of a host requires bacterial adaptation through genetic and population changes that are incompletely defined. Using chromosomal barcoding and high-throughput sequencing, we investigate the population dynamics of Streptococcus pneumoniae during infant mouse colonization. Within 1 day post inoculation, diversity was reduced >35-fold with expansion of a single clonal lineage. This loss of diversity was not due to immune factors, microbiota, or exclusive genetic drift. Rather, bacteriocins induced by the BlpC-quorum sensing pheromone resulted in predation of kin cells. In this intra-strain competition, the subpopulation reaching a quorum likely eliminates others that have yet to activate the blp locus. Additionally, this reduced diversity restricts the number of unique clones that establish colonization during transmission between hosts. Genetic variation in the blp locus was also associated with altered transmissibility in a human population, further underscoring the importance of BlpC in clonal selection and its role as a selfish element.
Collapse
Affiliation(s)
- Surya D Aggarwal
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - John A Lees
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA; European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton CB10 1SD, UK; MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W12 7TA, UK
| | - Nathan T Jacobs
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gavyn Chern Wei Bee
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Annie R Abruzzo
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jeffrey N Weiser
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
6
|
Lehtinen S, Croucher NJ, Blanquart F, Fraser C. Epidemiological dynamics of bacteriocin competition and antibiotic resistance. Proc Biol Sci 2022; 289:20221197. [PMID: 36196547 PMCID: PMC9532987 DOI: 10.1098/rspb.2022.1197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteriocins, toxic peptides involved in the competition between bacterial strains, are extremely diverse. Previous work on bacteriocin dynamics has highlighted the role of non-transitive 'rock-paper-scissors' competition in maintaining the coexistence of different bacteriocin profiles. The focus to date has primarily been on bacteriocin interactions at the within-host scale (i.e. within a single bacterial population). Yet in species such as Streptococcus pneumoniae, with relatively short periods of colonization and limited within-host diversity, ecological outcomes are also shaped by processes at the epidemiological (between-host) scale. Here, we first investigate bacteriocin dynamics and diversity in epidemiological models. We find that in these models, bacteriocin diversity is more readily maintained than in within-host models, and with more possible combinations of coexisting bacteriocin profiles. Indeed, maintenance of diversity in epidemiological models does not require rock-paper-scissors dynamics; it can also occur through a competition-colonization trade-off. Second, we investigate the link between bacteriocin diversity and diversity at antibiotic resistance loci. Previous work has proposed that bacterial duration of colonization modulates the fitness of antibiotic resistance. Due to their inhibitory effects, bacteriocins are a plausible candidate for playing a role in the duration of colonization episodes. We extend the epidemiological model of bacteriocin dynamics to incorporate an antibiotic resistance locus and demonstrate that bacteriocin diversity can indeed maintain the coexistence of antibiotic-sensitive and -resistant strains.
Collapse
Affiliation(s)
- Sonja Lehtinen
- Department of Environmental System Science, Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Epidemiology, Imperial College London, London, UK
| | - François Blanquart
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Infection Antimicrobials Modelling Evolution, UMR, 1137, INSERM, Université de Paris, Paris, France
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Chaguza C, Yang M, Jacques LC, Bentley SD, Kadioglu A. Serotype 1 pneumococcus: epidemiology, genomics, and disease mechanisms. Trends Microbiol 2022; 30:581-592. [PMID: 34949516 PMCID: PMC7613904 DOI: 10.1016/j.tim.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Streptococcus pneumoniae (the 'pneumococcus') is a significant cause of morbidity and mortality worldwide, causing life-threatening diseases such as pneumonia, bacteraemia, and meningitis, with an annual death burden of over one million. Discovered over a century ago, pneumococcal serotype 1 (S1) is a significant cause of these life-threatening diseases. Our understanding of the epidemiology and biology of pneumococcal S1 has significantly improved over the past two decades, informing the development of preventative and surveillance strategies. However, many questions remain unanswered. Here, we review the current state of knowledge of pneumococcal S1, with a special emphasis on clinical epidemiology, genomics, and disease mechanisms.
Collapse
Affiliation(s)
- Chrispin Chaguza
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK; Darwin College, University of Cambridge, Silver Street, Cambridge, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK; NIHR Mucosal Pathogens Research Unit, Division of Infection and Immunity, University College London, London, UK.
| | - Marie Yang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK
| | - Laura C Jacques
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK.
| | - Stephen D Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK; Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, The Ronald Ross Building, West Derby St, Liverpool, UK
| |
Collapse
|
8
|
Janoušková M, Straw ML, Su YC, Riesbeck K. Gene Expression Regulation in Airway Pathogens: Importance for Otitis Media. Front Cell Infect Microbiol 2022; 12:826018. [PMID: 35252035 PMCID: PMC8895709 DOI: 10.3389/fcimb.2022.826018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Otitis media (OM) is an inflammatory disorder in the middle ear. It is mainly caused by viruses or bacteria associated with the airways. Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis are the three main pathogens in infection-related OM, especially in younger children. In this review, we will focus upon the multifaceted gene regulation mechanisms that are well-orchestrated in S. pneumoniae, H. influenzae, and M. catarrhalis during the course of infection in the middle ear either in experimental OM or in clinical settings. The sophisticated findings from the past 10 years on how the othopathogens govern their virulence phenotypes for survival and host adaptation via phase variation- and quorum sensing-dependent gene regulation, will be systematically discussed. Comprehensive understanding of gene expression regulation mechanisms employed by pathogens during the onset of OM may provide new insights for the design of a new generation of antimicrobial agents in the fight against bacterial pathogens while combating the serious emergence of antimicrobial resistance.
Collapse
|
9
|
Valente C, Cruz AR, Henriques AO, Sá-Leão R. Intra-Species Interactions in Streptococcus pneumoniae Biofilms. Front Cell Infect Microbiol 2022; 11:803286. [PMID: 35071049 PMCID: PMC8767070 DOI: 10.3389/fcimb.2021.803286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is a human pathogen responsible for high morbidity and mortality worldwide. Disease is incidental and is preceded by asymptomatic nasopharyngeal colonization in the form of biofilms. Simultaneous colonization by multiple pneumococcal strains is frequent but remains poorly characterized. Previous studies, using mostly laboratory strains, showed that pneumococcal strains can reciprocally affect each other's colonization ability. Here, we aimed at developing a strategy to investigate pneumococcal intra-species interactions occurring in biofilms. A 72h abiotic biofilm model mimicking long-term colonization was applied to study eight pneumococcal strains encompassing 6 capsular types and 7 multilocus sequence types. Strains were labeled with GFP or RFP, generating two fluorescent variants for each. Intra-species interactions were evaluated in dual-strain biofilms (1:1 ratio) using flow cytometry. Confocal microscopy was used to image representative biofilms. Twenty-eight dual-strain combinations were tested. Interactions of commensalism, competition, amensalism and neutralism were identified. The outcome of an interaction was independent of the capsular and sequence type of the strains involved. Confocal imaging of biofilms confirmed the positive, negative and neutral effects that pneumococci can exert on each other. In conclusion, we developed an experimental approach that successfully discriminates pneumococcal strains growing in mixed biofilms, which enables the identification of intra-species interactions. Several types of interactions occur among pneumococci. These observations are a starting point to study the mechanisms underlying those interactions.
Collapse
Affiliation(s)
- Carina Valente
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana R Cruz
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
10
|
Vogel V, Spellerberg B. Bacteriocin Production by Beta-Hemolytic Streptococci. Pathogens 2021; 10:pathogens10070867. [PMID: 34358017 PMCID: PMC8308785 DOI: 10.3390/pathogens10070867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/17/2023] Open
Abstract
Beta-hemolytic streptococci cause a variety of infectious diseases associated with high morbidity and mortality. A key factor for successful infection is host colonization, which can be difficult in a multispecies environment. Secreting bacteriocins can be beneficial during this process. Bacteriocins are small, ribosomally produced, antimicrobial peptides produced by bacteria to inhibit the growth of other, typically closely related, bacteria. In this systematic review, bacteriocin production and regulation of beta-hemolytic streptococci was surveyed. While Streptococcus pyogenes produces eight different bacteriocins (Streptococcin A-FF22/A-M49, Streptin, Salivaricin A, SpbMN, Blp1, Blp2, Streptococcin A-M57), only one bacteriocin of Streptococcus agalactiae (Agalacticin = Nisin P) and one of Streptococcus dysgalactiae subsp. equisimilis (Dysgalacticin) has been described. Expression of class I bacteriocins is regulated by a two-component system, typically with autoinduction by the bacteriocin itself. In contrast, a separate quorum sensing system regulates expression of class II bacteriocins. Both identified class III bacteriocins are plasmid-encoded and regulation has not been elucidated.
Collapse
|
11
|
Eavesdropping and crosstalk between secreted quorum sensing peptide signals that regulate bacteriocin production in Streptococcus pneumoniae. ISME JOURNAL 2018; 12:2363-2375. [PMID: 29899510 DOI: 10.1038/s41396-018-0178-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/25/2018] [Accepted: 03/28/2018] [Indexed: 11/08/2022]
Abstract
Quorum sensing (QS), where bacteria secrete and respond to chemical signals to coordinate population-wide behaviors, has revealed that bacteria are highly social. Here, we investigate how diversity in QS signals and receptors can modify social interactions controlled by the QS system regulating bacteriocin secretion in Streptococcus pneumoniae, encoded by the blp operon (bacteriocin-like peptide). Analysis of 4096 pneumococcal genomes detected nine blp QS signals (BlpC) and five QS receptor groups (BlpH). Imperfect concordance between signals and receptors suggested widespread social interactions between cells, specifically eavesdropping (where cells respond to signals that they do not produce) and crosstalk (where cells produce signals that non-clones detect). This was confirmed in vitro by measuring the response of reporter strains containing six different blp QS receptors to cognate and non-cognate peptides. Assays between pneumococcal colonies grown adjacent to one another provided further evidence that crosstalk and eavesdropping occur at endogenous levels of signal secretion. Finally, simulations of QS strains producing bacteriocins revealed that eavesdropping can be evolutionarily beneficial even when the affinity for non-cognate signals is very weak. Our results highlight that social interactions can mediate intraspecific competition among bacteria and reveal that competitive interactions can be modified by polymorphic QS systems.
Collapse
|
12
|
Competitive Dominance within Biofilm Consortia Regulates the Relative Distribution of Pneumococcal Nasopharyngeal Density. Appl Environ Microbiol 2017; 83:AEM.00953-17. [PMID: 28576759 DOI: 10.1128/aem.00953-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae is a main cause of child mortality worldwide, but strains also asymptomatically colonize the upper airways of most children and form biofilms. Recent studies have demonstrated that ∼50% of colonized children carry at least two different serotypes (i.e., strains) in the nasopharynx; however, studies of how strains coexist are limited. In this work, we investigated the physiological, genetic, and ecological requirements for the relative distribution of densities, and spatial localization, of pneumococcal strains within biofilm consortia. Biofilm consortia were prepared with vaccine type strains (i.e., serotype 6B [S6B], S19F, or S23F) and strain TIGR4 (S4). Experiments first revealed that the relative densities of S6B and S23F were similar in biofilm consortia. The density of S19F strains, however, was reduced to ∼10% in biofilm consortia, including either S6B, S23F, or TIGR4, in comparison to S19F monostrain biofilms. Reduction of S19F density within biofilm consortia was also observed in a simulated nasopharyngeal environment. Reduction of relative density was not related to growth rates, since the Malthusian parameter demonstrated similar rates of change of density for most strains. To investigate whether quorum sensing (QS) regulates relative densities in biofilm consortia, two different mutants were prepared: a TIGR4ΔluxS mutant and a TIGR4ΔcomC mutant. The density of S19F strains, however, was similarly reduced when consortia included TIGR4, TIGR4ΔluxS, or TIGR4ΔcomC Moreover, production of a different competence-stimulating peptide (CSP), CSP1 or CSP2, was not a factor that affected dominance. Finally, a mathematical model, confocal experiments, and experiments using Transwell devices demonstrated physical contact-mediated control of pneumococcal density within biofilm consortia.IMPORTANCEStreptococcus pneumoniae kills nearly half a million children every year, but it also produces nasopharyngeal biofilm consortia in a proportion of asymptomatic children, and these biofilms often contain two strains (i.e., serotypes). In our study, we investigated how strains coexist within pneumococcal consortia produced by vaccine serotypes S4, S6B, S19F, and S23F. Whereas S6B and S23F shared the biofilm consortium, our studies demonstrated reduction of the relative density of S19F strains, to ∼10% of what it would otherwise be if alone, in consortial biofilms formed with S4, S6B, or S23F. This dominance was not related to increased fitness when competing for nutrients, nor was it regulated by quorum-sensing LuxS/AI-2 or Com systems. It was demonstrated, however, to be enhanced by physical contact rather than by a product(s) secreted into the supernatant, as would naturally occur in the semidry nasopharyngeal environment. Competitive interactions within pneumococcal biofilm consortia regulate nasopharyngeal density, a risk factor for pneumococcal disease.
Collapse
|
13
|
Interbacterial predation as a strategy for DNA acquisition in naturally competent bacteria. Nat Rev Microbiol 2017; 15:621-629. [PMID: 28690319 DOI: 10.1038/nrmicro.2017.66] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Natural competence enables bacteria to take up exogenous DNA. The evolutionary function of natural competence remains controversial, as imported DNA can act as a source of substrates or can be integrated into the genome. Exogenous homologous DNA can also be used for genome repair. In this Opinion article, we propose that predation of non-related neighbouring bacteria coupled with competence regulation might function as an active strategy for DNA acquisition. Competence-dependent kin-discriminated killing has been observed in the unrelated bacteria Vibrio cholerae and Streptococcus pneumoniae. Importantly, both the regulatory networks and the mode of action of neighbour predation differ between these organisms, with V. cholerae using a type VI secretion system and S. pneumoniae secreting bacteriocins. We argue that the forced release of DNA from killed bacteria and the transfer of non-clonal genetic material have important roles in bacterial evolution.
Collapse
|