1
|
House LC, Hasan A, Asnayanti A, Alrubaye AAK, Pummill J, Rhoads D. Phylogenomic Analyses of Three Distinct Lineages Uniting Staphylococcus cohnii and Staphylococcus urealyticus from Diverse Hosts. Microorganisms 2024; 12:1549. [PMID: 39203392 PMCID: PMC11356006 DOI: 10.3390/microorganisms12081549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
We sequenced and assembled genomes for 17 isolates of Staphylococcus cohnii isolated from osteomyelitis lesions in young broilers from two separate experiments where we induced lameness using a hybrid wire-litter flooring system. Whole genome comparisons using three different methods support a close relationship of genomes from both S. cohnii and Staphylococcus urealyticus. The data support three different lineages, which we designated as Lineage 1, Lineage 2, and Lineage 3, uniting these two species within an evolving complex. We present evidence for horizontal transfer between lineages of genomic regions from 50-440 kbp. The transfer of a 186 kbp region from Lineage 1 to Lineage 2 appears to have generated Lineage 3. Human-associated isolates appear to be limited to Lineages 2 and 3 but Lineage 2 appears to contain a higher number of human pathogenic isolates. The chicken isolates from our lameness trials included genomically diverse isolates from both Lineage 1 and 2, and isolates from both lineages were obtained from osteomyelitis lesions of individual birds. Our results expand the diversity of Staphylococci associated with osteomyelitis in poultry and suggest a high diversity in the microbiome of day-old chicks. Our data also support a reevaluation and unification of the taxonomic classifications of S. cohnii and S. urealyticus.
Collapse
Affiliation(s)
- L. Caroline House
- John Brown University, Siloam Springs, AR 72761, USA;
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| | - Amer Hasan
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad P.O. Box 1417, Iraq
| | - Andi Asnayanti
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| | - Adnan A. K. Alrubaye
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72703, USA
| | - Jeff Pummill
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
- Arkansas High Performance Computing Center, University of Arkansas, Fayetteville, AR 72703, USA
| | - Douglas Rhoads
- Cell and Molecular Biology Pogram, University of Arkansas, Fayetteville, AR 72703, USA; (A.H.); (A.A.); (A.A.K.A.); (J.P.)
| |
Collapse
|
2
|
Kittl S, Frey CF, Brodard I, Scalisi N, Vargas Amado ME, Thomann A, Schierack P, Jores J. Zoonotic bacterial and parasitic intestinal pathogens in foxes, raccoons and other predators from eastern Germany. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13261. [PMID: 38747071 PMCID: PMC11094574 DOI: 10.1111/1758-2229.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/06/2024] [Indexed: 05/18/2024]
Abstract
In this study, we investigated faecal specimens from legally hunted and road-killed red foxes, raccoons, raccoon dogs, badgers and martens in Germany for parasites and selected zoonotic bacteria. We found that Baylisascaris procyonis, a zoonotic parasite of raccoons, had spread to northeastern Germany, an area previously presumed to be free of this parasite. We detected various pathogenic bacterial species from the genera Listeria, Clostridium (including baratii), Yersinia and Salmonella, which were analysed using whole-genome sequencing. One isolate of Yersinia enterocolitica contained a virulence plasmid. The Salmonella Cholerasuis isolate encoded an aminoglycoside resistance gene and a parC point mutation, conferring resistance to ciprofloxacin. We also found tetracycline resistance genes in Paeniclostridium sordellii and Clostridium baratii. Phylogenetic analyses revealed that the isolates were polyclonal, indicating the absence of specific wildlife-adapted clones. Predators, which scavenge from various sources including human settlements, acquire and spread zoonotic pathogens. Therefore, their role should not be overlooked in the One Health context.
Collapse
Affiliation(s)
- Sonja Kittl
- Vetsuisse Faculty, Institute of Veterinary BacteriologyUniversity of BernBernSwitzerland
| | - Caroline F. Frey
- Vetsuisse Faculty, Institute of ParasitologyUniversity of BernBernSwitzerland
| | - Isabelle Brodard
- Vetsuisse Faculty, Institute of Veterinary BacteriologyUniversity of BernBernSwitzerland
| | - Nadia Scalisi
- Vetsuisse Faculty, Institute of Veterinary BacteriologyUniversity of BernBernSwitzerland
| | - Maria Elena Vargas Amado
- Department of GeographyUniversity of ZürichZürichSwitzerland
- Swiss Federal Research Institute WSLBirmensdorfSwitzerland
| | - Andreas Thomann
- Vetsuisse Faculty, Institute of Veterinary BacteriologyUniversity of BernBernSwitzerland
| | - Peter Schierack
- Faculty Environment and Natural Sciences, Institute of BiotechnologyBrandenburg University of Technology Cottbus‐SenftenbergSenftenbergGermany
- Faculty of Health Sciences BrandenburgBrandenburg University of Technology Cottbus‐SenftenbergSenftenbergGermany
| | - Joerg Jores
- Vetsuisse Faculty, Institute of Veterinary BacteriologyUniversity of BernBernSwitzerland
- Multidisciplinary Center for Infectious DiseasesUniversity of BernBernSwitzerland
| |
Collapse
|
3
|
Akarsu H, Liljander AM, Lacasta A, Ssajjakambwe P, Brodard I, Cherbuin JDR, Torres-Puig S, Perreten V, Kuhnert P, Labroussaa F, Jores J. Canine Staphylococcaceae circulating in a Kenyan animal shelter. Microbiol Spectr 2024; 12:e0292423. [PMID: 38206027 PMCID: PMC10846116 DOI: 10.1128/spectrum.02924-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Animal shelters, especially in resource-poor countries, bring together pets from different regions and with different backgrounds. The crowding of such animals often results in infectious diseases, such as respiratory infections. This study characterized Staphylococcaceae from diseased and apparently healthy dogs housed in an animal shelter in Kenya, to determine their antibiotic resistance profiles, their genetic relatedness, and the presence of dominant clones. Therefore, bacteria were collected from all 167 dogs present in the shelter in June 2015 and screened for Staphylococcaceae using standard cultivation techniques. In all, 92 strains were isolated from 85 dogs and subsequently sequenced by PacBio long-read sequencing. Strains encompassed nine validated species, while S. aureus (n = 47), S. pseudintermedius (n = 21), and Mammaliicoccus (M.) sciuri (n = 16) were the three most dominant species. Two S. aureus clones of ST15 (CC15) and ST1292 (CC1) were isolated from 7 and 37 dogs, respectively. All 92 strains isolated were tested for their antimicrobial susceptibility by determining the minimum inhibitory concentrations. In all, 86 strains had resistance-associated minimal inhibitory concentrations to at least one of the following antimicrobials: tetracycline, benzylpenicillin, oxacillin, erythromycin, clindamycin, trimethoprim, kanamycin/gentamicin, or streptomycin. Many virulence-encoding genes were detected in the S. aureus strains, other Staphylococcaceae contained a different set of homologs of such genes. The presence of mobile genetic elements, such as plasmids and prophages, known to facilitate the dissemination of virulence- and resistance-encoding genes, was also assessed. The unsuspected high presence of two S. aureus clones in about 50% of dogs suggests dissemination within the shelter and a human source.IMPORTANCEMicrobiological data from sub-Saharan Africa are scarce compared to data from North America, Europe, or Asia, and data derived from dogs, the man's best friend, kept in sub-Saharan Africa are largely missing. This work presents data on Staphylococcaceae mainly isolated from the nasal cavity of dogs stationed at a Kenyan shelter in 2015. We characterized 92 strains isolated from 85 dogs, diseased and apparently healthy ones. The strains isolated covered nine validated species and we determined their phenotypic resistance and characterized their complete genomes. Interestingly, Staphylococcus aureus of two predominant genetic lineages, likely to be acquired from humans, colonized many dogs. We also detected 15 novel sequence types of Mammaliicoccus sciuri and S. pseudintermedius indicating sub-Saharan-specific phylogenetic lineages. The data presented are baseline data that guide antimicrobial treatment for dogs in the region.
Collapse
Affiliation(s)
- Hatice Akarsu
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse, Bern, Switzerland
- SIB Swiss Institute of Bioinformatics, Écublens, Switzerland
| | - Anne M. Liljander
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Anna Lacasta
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Paul Ssajjakambwe
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Veterinary Pharmacy, Clinical and Comparative Medicine, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Isabelle Brodard
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse, Bern, Switzerland
| | - Jérémy D. R. Cherbuin
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Biomedical Science, University of Bern, Bern, Switzerland
| | - Sergi Torres-Puig
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse, Bern, Switzerland
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse, Bern, Switzerland
| | - Fabien Labroussaa
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Joerg Jores
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse, Bern, Switzerland
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Belhout C, Boyen F, Vereecke N, Theuns S, Taibi N, Stegger M, de la Fé-Rodríguez PY, Bouayad L, Elgroud R, Butaye P. Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococci (MRS) and Mammaliicocci (MRM) in Dromedary Camels from Algeria: First Detection of SCC mec- mecC Hybrid in Methicillin-Resistant Mammaliicoccus lentus. Antibiotics (Basel) 2023; 12:674. [PMID: 37107036 PMCID: PMC10134997 DOI: 10.3390/antibiotics12040674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Dromedary camels are an important source of food and income in many countries. However, it has been largely overlooked that they can also transmit antibiotic-resistant bacteria. The aim of this study was to identify the Staphylococcaceae bacteria composition of the nasal flora in dromedary camels and evaluate the presence of methicillin-resistant Mammaliicoccus (MRM) and methicillin-resistant Staphylococcus (MRS) in dromedary camels in Algeria. Nasal swabs were collected from 46 camels from seven farms located in two different regions of Algeria (M'sila and Ouargla). We used non-selective media to determine the nasal flora, and antibiotic-supplemented media to isolate MRS and MRM. The staphylococcal isolates were identified using an Autoflex Biotyper Mass Spectrometer (MALDI-TOF MS). The mecA and mecC genes were detected by PCR. Methicillin-resistant strains were further analysed by long-read whole genome sequencing (WGS). Thirteen known Staphylococcus and Mammaliicoccus species were identified in the nasal flora, of which half (49.2%) were coagulase-positive staphylococci. The results showed that four out of seven farms were positive for MRS and/or MRM, with a total of 16 isolates from 13 dromedary camels. The predominant species were M. lentus, S. epidermidis, and S. aureus. Three methicillin-resistant S. aureus (MRSA) were found to be ST6 and spa type t304. Among methicillin-resistant S. epidermidis (MRSE), ST61 was the predominant ST identified. Phylogenetic analysis showed clonal relatedness among M. lentus strains, while S. epidermidis strains were not closely related. Resistance genes were detected, including mecA, mecC, ermB, tet(K), and blaZ. An SCCmec type VIII element was found in a methicillin-resistant S. hominis (MRSH) belonging to the ST1 strain. An SCCmec-mecC hybrid element was detected in M. lentus, similar to what was previously detected in M. sciuri. This study highlights that dromedary camels may be a reservoir for MRS and MRM, and that they contain a specific set of SCCmec elements. This emphasizes the need for further research in this ecological niche from a One Health perspective.
Collapse
Affiliation(s)
- Chahrazed Belhout
- HASAQ Laboratory, High National Veterinary School, Issad Abbes Avenue, Oued Smar, El Harrach, Algiers 16270, Algeria
| | - Filip Boyen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nick Vereecke
- PathoSense, Pastoriestraat 10, 2500 Lier, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sebastiaan Theuns
- PathoSense, Pastoriestraat 10, 2500 Lier, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nadia Taibi
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Bou-Ismail, Tipaza 42415, Algeria
| | - Marc Stegger
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Pedro Yoelvys de la Fé-Rodríguez
- Departamento de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Carretera a Camajuaní km 5½, Santa Clara 54 830, Cuba
| | - Leila Bouayad
- HASAQ Laboratory, High National Veterinary School, Issad Abbes Avenue, Oued Smar, El Harrach, Algiers 16270, Algeria
| | - Rachid Elgroud
- Institute of Veterinary Sciences, University Frères Mentouri Constantine 1, Constantine 25017, Algeria
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|