1
|
Wang N, Pan G, Liu P, Rong S, Gao Z, Li Q. Advances and Future Perspective on Detection Technology of Human Norovirus. Pathogens 2021; 10:pathogens10111383. [PMID: 34832539 PMCID: PMC8618740 DOI: 10.3390/pathogens10111383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Human norovirus (HuNoV) is a food-borne pathogen that causes acute gastroenteritis in people of all ages worldwide. However, no approved vaccines and antiviral drugs are available at present. Therefore, the development of accurate and rapid detection technologies is important in controlling the outbreak of HuNoVs. This paper reviewed the research progress on HuNoV detection, including immunological methods, molecular detection and biosensor technology. Immunological methods and molecular detection technologies are still widely used for HuNoV detection. Furthermore, biosensors will become an emerging developmental direction for the rapid detection of HuNoVs because of their high sensitivity, low cost, easy operation and suitability for onsite detection.
Collapse
Affiliation(s)
- Nan Wang
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
| | - Guiying Pan
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
| | - Ping Liu
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
| | - Shaofeng Rong
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
| | - Zhiyong Gao
- Beijing Research Center for Preventive Medicine, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
- Correspondence: ; Tel.: +86-21-60873381
| |
Collapse
|
2
|
Kim S, Mertens-Talcott SU, Vaidya B, Venancio VP, Cho SY, Song JA, Chew BP, Kwon J, Kim D. Performance of concanavalin A-immobilized on polyacrylate beads for the detection of human norovirus and hepatitis A virus in fecal specimens. Food Sci Biotechnol 2020; 29:1727-1733. [PMID: 33282439 PMCID: PMC7708564 DOI: 10.1007/s10068-020-00833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
Quantitative reverse transcription PCR (qRT-PCR) is a sensitive method for the detection of foodborne viruses in fecal samples. However, the performance of qRT-PCR depends on the efficiency of virus concentration methods. In this study, the effect of Concanavalin A (Con A)-immobilized on polyacrylate beads (Con A-PAB) on the qRT-PCR performance, in terms of sensitivity and specificity to detect foodborne viruses in human fecal specimens was compared with commercial viral RNA extraction kit (VRNA). The detection of foodborne viruses by qRT-PCR was validated by viral genome sequencing. Both Con A-PAB and VRNA methods were equally sensitive and specific for detecting hepatitis A virus in fecal specimens. Even though both methods showed high specificity (100% vs. 100%) for detecting human norovirus (HuNoV), Con A-PAB method exhibited higher sensitivity (100% vs. 42.9%) and accuracy (100% vs. 73.3%) compared to VRNA method. In conclusion, the application of Con A-PAB would improve the performance of qRT-PCR for the detection of HuNoV in fecal samples.
Collapse
Affiliation(s)
- Songhak Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| | | | - Bipin Vaidya
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Vinicius Paula Venancio
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843-2252 USA
| | - Se-Young Cho
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jong-Am Song
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 34133 Republic of Korea
| | - Boon P. Chew
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843-2252 USA
| | - Joseph Kwon
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 34133 Republic of Korea
| | - Duwoon Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
3
|
A Survey of Analytical Techniques for Noroviruses. Foods 2020; 9:foods9030318. [PMID: 32164213 PMCID: PMC7142446 DOI: 10.3390/foods9030318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022] Open
Abstract
As the leading cause of acute gastroenteritis worldwide, human noroviruses (HuNoVs) have caused around 685 million cases of infection and nearly $60 billion in losses every year. Despite their highly contagious nature, an effective vaccine for HuNoVs has yet to become commercially available. Therefore, rapid detection and subtyping of noroviruses is crucial for preventing viral spread. Over the past half century, there has been monumental progress in the development of techniques for the detection and analysis of noroviruses. However, currently no rapid, portable assays are available to detect and subtype infectious HuNoVs. The purpose of this review is to survey and present different analytical techniques for the detection and characterization of noroviruses.
Collapse
|
4
|
Gyawali P, Kc S, Beale DJ, Hewitt J. Current and Emerging Technologies for the Detection of Norovirus from Shellfish. Foods 2019; 8:foods8060187. [PMID: 31159220 PMCID: PMC6617275 DOI: 10.3390/foods8060187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
Reports of norovirus infections associated with the consumption of contaminated bivalve molluscan shellfish negatively impact both consumers and commercial shellfish operators. Current virus recovery and PCR detection methods can be expensive and time consuming. Due to the lack of rapid, user-friendly and onsite/infield methods, it has been difficult to establish an effective virus monitoring regime that is able to identify contamination points across the production line (i.e., farm-to-plate) to ensure shellfish quality. The focus of this review is to evaluate current norovirus detection methods and discuss emerging approaches. Recent advances in omics-based detection approaches have the potential to identify novel biomarkers that can be incorporated into rapid detection kits for onsite use. Furthermore, some omics techniques have the potential to simultaneously detect multiple enteric viruses that cause human disease. Other emerging technologies discussed include microfluidic, aptamer and biosensor-based detection methods developed to detect norovirus with high sensitivity from a simple matrix. Many of these approaches have the potential to be developed as user-friendly onsite detection kits with minimal costs. However, more collaborative efforts on research and development will be required to commercialize such products. Once developed, these emerging technologies could provide a way forward that minimizes public health risks associated with shellfish consumption.
Collapse
Affiliation(s)
- Pradip Gyawali
- Institute of Environmental Science and Research Ltd. (ESR), Porirua 5240, New Zealand.
| | - Sanjaya Kc
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - David J Beale
- Commonwealth Scientific and Industrial Research Organization, Ecoscience Precinct, Dutton Park, QLD 4102, Australia.
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd. (ESR), Porirua 5240, New Zealand.
| |
Collapse
|
5
|
|
6
|
Farkas K, Cooper DM, McDonald JE, Malham SK, de Rougemont A, Jones DL. Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:1174-1183. [PMID: 29710623 DOI: 10.1016/j.scitotenv.2018.04.038] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 04/14/2023]
Abstract
Enteric viruses represent a global public health threat and are implicated in numerous foodborne and waterborne disease outbreaks. Nonetheless, relatively little is known of their fate and stability in the environment. In this study we used carefully validated methods to monitor enteric viruses, namely adenovirus (AdV), JC polyomavirus (JCV), noroviruses (NoVs), sapovirus (SaV) and hepatitis A and E viruses (HAV and HEV) from wastewater source to beaches and shellfish beds. Wastewater influent and effluent, surface water, sediment and shellfish samples were collected in the Conwy catchment (North Wales, UK) once a month for one year. High concentrations of AdV and JCV were found in the majority of samples, and no seasonal patterns were observed. No HAV and HEV were detected and no related illnesses were reported in the area during the period of sampling. Noroviruses and SaV were also detected at high concentrations in wastewater and surface water, and their presence correlated with local gastroenteritis outbreaks during the spring and autumn seasons. Noroviruses were also found in estuarine sediment and in shellfish harvested for human consumption. As PCR-based methods were used for quantification, viral infectivity and degradation was estimated using a NoV capsid integrity assay. The assay revealed low-levels of viral decay in wastewater effluent compared to influent, and more significant decay in environmental waters and sediment. Results suggest that AdV and JCV may be suitable markers for the assessment of the spatial distribution of wastewater contamination in the environment; and pathogenic viruses can be directly monitored during and after reported outbreaks to prevent further environment-derived illnesses.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environment, Natural Resources and Geography, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.
| | - David M Cooper
- Centre for Ecology and Hydrology, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, UK
| | - James E McDonald
- School of Biological Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Alexis de Rougemont
- Centre National de Référence Virus des gastro-entérites, Laboratoire de Virologie-Sérologie, CHU de Dijon, 2 rue Angélique Ducoudray, BP37013, 21070 Dijon cedex, France; UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | - Davey L Jones
- School of Environment, Natural Resources and Geography, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
7
|
Araud E, Shisler JL, Nguyen TH. Inactivation Mechanisms of Human and Animal Rotaviruses by Solar UVA and Visible Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5682-5690. [PMID: 29671592 DOI: 10.1021/acs.est.7b06562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two rotavirus (RV) strains (sialidase-resistant Wa and sialidase-sensitive OSU) were irradiated with simulated solar UVA and visible light in sensitizer-free phosphate buffered solution (PBS) (lacking exogenous reactive oxygen species (ROS)) or secondary effluent wastewater (producing ROS). Although light attenuated for up to 15% through the secondary effluent wastewater (SEW), the inactivation efficacies increased by 0.7 log10 for Wa and 2 log10 for OSU compared to those in sensitizer-free phosphate buffered solution (PBS) after 4 h of irradiation. A binding assay using magnetic beads coated with porcine gastric mucin containing receptors for rotaviruses (PGM-MB) was developed to determine if inactivation influenced RV binding to its receptors. The linear correlation between the reduction in infectivity and the reduction in binding after irradiation in sensitizer-free solution suggests that the main mechanism of RV inactivation in the absence of exogenous ROS was due to damage to VP8*, the RV protein that binds to host cell receptors. For a given reduction in infectivity, greater damage in VP8* was observed with sialidase-resistant Wa compared to sialidase-sensitive OSU. The lack of correlation between the reduction in infectivity and the reduction in binding, in SEW, led us to include RNase treatment before the binding step to quantify virions with intact protein capsids and exclude virions that can bind to the receptors but have their capsid permeable after irradiation. This assay showed a linear correlation between the reduction in RV infectivity and RV-receptor interactions, suggesting that RV inactivation in SEW was due to compromised capsid proteins other than the VP8* protein. Thus, rotavirus inactivation by UVA and visible light irradiation depends on both the formation of ROS and the stability of viral proteins.
Collapse
Affiliation(s)
- Elbashir Araud
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Joanna L Shisler
- Department of Microbiology and Department of Pathobiology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
8
|
Tian P, Yang D, Shan L, Li Q, Liu D, Wang D. Estimation of Human Norovirus Infectivity from Environmental Water Samples by In Situ Capture RT-qPCR Method. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:29-38. [PMID: 28856596 DOI: 10.1007/s12560-017-9317-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/12/2017] [Indexed: 05/05/2023]
Abstract
Human noroviruses (HuNoVs) are highly infectious viruses for which water is an important medium of transmission. In this study, we explored a new in situ capture RT-qPCR (ISC-RT-qPCR) methodology to estimate the infectivity of HuNoV in environmental water samples. This assay was based on capturing encapsidated HuNoV by viral receptors, followed by in situ amplification of the captured viral genomes by RT-qPCR. We demonstrated that the ISC-RT-qPCR did not capture and enable signal amplification of heat-denatured Tulane Virus (TV) and HuNoVs. We further demonstrated that the sensitivity of ISC-RT-qPCR was equal or better than that of conventional RT-qPCR procedures for the detection of HuNoV GI and GII. We then utilized the ISC-RT-qPCR to detect HuNoV in environmental water samples for comparison against that from a conventional RT-qPCR procedure. TV was used as a process control virus. While complete inhibition of TV genomic signal was observed in 27% of samples tested by RT-qPCR, no inhibition of TV genomic signal was observed by ISC-RT-qPCR. From 72 samples tested positive for HuNoV GI signal by RT-qPCR, only 20 (27.8%) of these samples tested positive by ISC-RT-qPCR, suggesting that 72.2% of RT-qPCR-positive samples were unlikely to be infectious. From 16 samples tested positive for HuNoV GII signal by RT-qPCR, only one of these samples tested positive by ISC-RT-qPCR. Five samples that had initially tested negative for HuNoV GII signal by RT-qPCR, was tested as positive by ISC-RT-qPCR. Overall, ISC-RT-qPCR method provided an alternative assay to estimate infectivity of HuNoV in environmental samples.
Collapse
Affiliation(s)
- Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA, 94710-1105, USA.
| | - David Yang
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA, 94710-1105, USA
| | - Lei Shan
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan St., Albany, CA, 94710-1105, USA
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 100 Haiquan Road, Fengxian District, Shanghai, 201418, People's Republic of China
| | - Danlei Liu
- MOST-USDA Joint Research Center for Food Safety & Bor Luh Food Safety Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Dapeng Wang
- MOST-USDA Joint Research Center for Food Safety & Bor Luh Food Safety Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
9
|
A novel method for concentration of porcine reproductive and respiratory syndrome virus from the environmental samples using self-aggregating peptide-tagged CD151-binding capture. Appl Microbiol Biotechnol 2017; 101:7987-7996. [PMID: 28929229 DOI: 10.1007/s00253-017-8477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 10/18/2022]
Abstract
Environmental surveillance of porcine reproductive and respiratory syndrome virus (PRRSV) represents a key issue in control of the disease. CD151 has recently been recognized as one of several receptors for PRRSV. We describe here a novel method for concentration of PRRSV from the environmental samples by CD151-binding capture. After fusion to self-aggregating peptide ELK16, the large extracellular loop (LEL) of porcine CD151 and its two segments (namely N63 and C63) were expressed in E. coli as protein aggregates. The three fusion proteins were purified to high purities by regular centrifugation and washing with Triton X-100. Viral binding assay showed that the C63-ELK16 protein, but not ELK16-N63 protein, had the specific binding affinity for PRRSV. The C63-ELK16 protein could bind to, and eluted from, PRRSV in pH-, temperature-, and time-dependent manners with a final virus recovery of 44.7%. By using PRRSV-spiked and experimentally infected pig fecal slurry samples, the C63-ELK16 binding capture-combined quantitative RT-PCR was shown to have higher detection sensitivity than the conventional RT-PCR. Although the viral RNA could be detected in the experimentally infected pig samples with or without C63-ELK16 binding capture, infectious PRRSV was not isolated without C63-ELK16 binding capture. Therefore, the CD151-binding capture method established offers sufficient recovery and quickness and will facilitate environmental PRRSV surveillance.
Collapse
|
10
|
Moore MD, Jaykus LA. A plate-based histo-blood group antigen binding assay for evaluation of human norovirus receptor binding ability. Anal Biochem 2017; 533:56-59. [PMID: 28663001 DOI: 10.1016/j.ab.2017.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/20/2017] [Accepted: 06/25/2017] [Indexed: 11/27/2022]
Abstract
Human norovirus is a leading cause of gastroenteritis worldwide. Although two in vitro cultivation methods have been reported, they cannot provide mechanistic insights into viral inactivation. Receptor-binding assays supplement these assays and give insight into capsid integrity. We present a streamlined version of a receptor-binding assay with minimal time-to-result while maintaining accuracy and high throughput. We validate assay performance for physical and chemical inactivation treatments of a norovirus GII.4 capsid. The assay produces a high positive/negative ratio (25.3 ± 4.9) in <2.5 h and has a limit of detection of 0.1 μg/ml capsid. This method is a valuable additional tool for understanding human norovirus inactivation.
Collapse
Affiliation(s)
- Matthew D Moore
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA.
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
11
|
Gupta N, Lainson JC, Belcher PE, Shen L, Mason HS, Johnston SA, Diehnelt CW. Cross-Reactive Synbody Affinity Ligands for Capturing Diverse Noroviruses. Anal Chem 2017. [DOI: 10.1021/acs.analchem.7b01337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nidhi Gupta
- Biodesign
Institute Center for Innovations in Medicine, and ‡Biodesign Institute
Center for Immunotherapy, Vaccines, and Virotherapy, and School of
Life Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - John C. Lainson
- Biodesign
Institute Center for Innovations in Medicine, and ‡Biodesign Institute
Center for Immunotherapy, Vaccines, and Virotherapy, and School of
Life Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Paul E. Belcher
- Biodesign
Institute Center for Innovations in Medicine, and ‡Biodesign Institute
Center for Immunotherapy, Vaccines, and Virotherapy, and School of
Life Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Luhui Shen
- Biodesign
Institute Center for Innovations in Medicine, and ‡Biodesign Institute
Center for Immunotherapy, Vaccines, and Virotherapy, and School of
Life Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Hugh S. Mason
- Biodesign
Institute Center for Innovations in Medicine, and ‡Biodesign Institute
Center for Immunotherapy, Vaccines, and Virotherapy, and School of
Life Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Stephen Albert Johnston
- Biodesign
Institute Center for Innovations in Medicine, and ‡Biodesign Institute
Center for Immunotherapy, Vaccines, and Virotherapy, and School of
Life Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Chris W. Diehnelt
- Biodesign
Institute Center for Innovations in Medicine, and ‡Biodesign Institute
Center for Immunotherapy, Vaccines, and Virotherapy, and School of
Life Sciences, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
12
|
Zhou Z, Tian Z, Li Q, Tian P, Wu Q, Wang D, Shi X. In Situ Capture RT-qPCR: A New Simple and Sensitive Method to Detect Human Norovirus in Oysters. Front Microbiol 2017; 8:554. [PMID: 28421051 PMCID: PMC5376551 DOI: 10.3389/fmicb.2017.00554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Human noroviruses (HuNoVs) are the major cause worldwide for non-bacterial acute gastroenteritis. In this study, we applied a novel viral receptor mediated in situ capture RT-qPCR (ISC-RT-qPCR) to detect HuNoVs in oysters and compared with the traditional RT-qPCR method. Ten HuNoVs RT-PCR positive and 5 negative clinical samples from gastroenteritis patients were used to compare specificity and sensitivity of ISC-RT-qPCR against that of the RT-qPCR assay. ISC-RT-qPCR had at a one-log and a two-log increase in sensitivity over that of the RT-qPCR assay for genotype I (GI) and GII, respectively. Distributions of HuNoVs in oyster tissues were investigated in artificially inoculated oysters. GI HuNoVs could be detected in all tissues in inoculated oysters by both ISC-RT-qPCR and RT-qPCR. GII HuNoVs could only be detected in gills and digestive glands by both methods. The number of viral genomic copies (vgc) measured by ISC-RT-qPCR was comparable with RT-qPCR in the detection of GI and GII HuNoVs in inoculated oysters. Thirty-six oyster samples from local market were assayed for HuNoVs by both assays. More HuNoVs could be detected by ISC-RT-qPCR in retail oysters. The detection rates of GI HuNoVs in gills, digestive glands, and residual tissues were 33.3, 25.0, and 19.4% by ISC-RT-qPCR; and 5.6, 11.1, and 11.1% by RT-qPCR, respectively. The detection rates of GII HuNoVs in gills were 2.8% by ISC-RT-qPCR; no GII HuNoV was detected in these oysters by RT-qPCR. Overall, all results demonstrated that ISC-RT-qPCR is a promising method for detecting HuNoVs in oyster samples.
Collapse
Affiliation(s)
- Zhenhuan Zhou
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Zhengan Tian
- Shanghai Entry-Exit Inspection and Quarantine Bureau of P.R.CShanghai, China
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of TechnologyShanghai, China
| | - Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Dapeng Wang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China.,State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of MicrobiologyGuangzhou, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
13
|
|
14
|
Woods JW, Calci KR, Marchant-Tambone JG, Burkhardt W. Detection and molecular characterization of norovirus from oysters implicated in outbreaks in the US. Food Microbiol 2016; 59:76-84. [DOI: 10.1016/j.fm.2016.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
15
|
Dhawane AN, Diez-Valcarce M, Gurale BP, Dinh H, Vinjé J, Iyer SS. Synthesis and Evaluation of Biotinylated Bivalent HistoBlood Group Antigens for Capturing Human Noroviruses. Bioconjug Chem 2016; 27:1822-9. [PMID: 27383368 DOI: 10.1021/acs.bioconjchem.6b00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A panel of biotinylated bivalent H-type glycans that have been reported as binding ligands for human noroviruses were synthesized using a modular synthetic strategy. These glycoconjugates were attached to streptavidin-coated magnetic beads and used to recover human norovirus from fecal samples using a magnetic bead-based assay. The biotinylated bivalent glycans synthesized for this study exhibited similar or better capturing ability when compared to commercial biotinylated glycopolymers.
Collapse
Affiliation(s)
- Abasaheb N Dhawane
- 788 Petit Science Center, Department of Chemistry, Georgia State University , Atlanta, Georgia 30302-4098, United States
| | - Marta Diez-Valcarce
- Division of Viral Diseases, Centers for Disease Control and Prevention , 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Bharat P Gurale
- 788 Petit Science Center, Department of Chemistry, Georgia State University , Atlanta, Georgia 30302-4098, United States
| | - Hieu Dinh
- 788 Petit Science Center, Department of Chemistry, Georgia State University , Atlanta, Georgia 30302-4098, United States
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention , 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Suri S Iyer
- 788 Petit Science Center, Department of Chemistry, Georgia State University , Atlanta, Georgia 30302-4098, United States
| |
Collapse
|
16
|
Response to the Questions Posed by the Food Safety and Inspection Service, the Centers for Disease Control and Prevention, the National Marine Fisheries Service, and the Defense Health Agency, Veterinary Services Activity Regarding Control Strategies for Reducing Foodborne Norovirus Infections. J Food Prot 2016; 79:843-89. [PMID: 27296435 DOI: 10.4315/0362-028x.jfp-15-215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Afolayan OT, Webb CC, Cannon JL. Evaluation of a Porcine Gastric Mucin and RNase A Assay for the Discrimination of Infectious and Non-infectious GI.1 and GII.4 Norovirus Following Thermal, Ethanol, or Levulinic Acid Plus Sodium Dodecyl Sulfate Treatments. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:70-78. [PMID: 26514820 DOI: 10.1007/s12560-015-9219-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
Human noroviruses (NoVs) are a major source of foodborne illnesses worldwide. Since human NoVs cannot be cultured in vitro, methods that discriminate infectious from non-infectious NoVs are needed. The purpose of this study was to evaluate binding of NoV genotypes GI.1 and GII.4 to histo-blood group antigens expressed in porcine gastric mucin (PGM) as a surrogate for detecting infectious virus following thermal (99 °C/5 min), 70% ethanol or 0.5% levulinic acid (LV) plus 0.01 or 0.1% sodium dodecyl sulfate (SDS) sanitizer treatments and to determine the limit of detection of GI.1 and GII.4 binding to PGM. Treated and control virus samples were applied to 96-well plates coated with 1 µg/ml PGM followed by RNase A (5 ng/µl) treatment for degradation of exposed RNA. Average log genome copies per ml (gc/ml) reductions and relative differences (RD) in quantification cycle (Cq) values after thermal treatment were 1.77/5.62 and 1.71/7.25 (RNase A) and 1.73/5.50 and 1.56/6.58 (no RNase A) for GI.1 and GII.4, respectively. Treatment of NoVs with 70% EtOH resulted in 0.05/0.16 (GI.1) and 3.54/10.19 (GII.4) log reductions in gc/ml and average RD in Cq value, respectively. LV (0.5%) combined with 0.1 % SDS provided a greater decrease of GI.1 and GII.4 NoVs with 8.97 and 8.13 average RD in Cq values obtained, respectively than 0.5% LV/0.01 % SDS. Virus recovery after PGM binding was variable with GII.4 > GI.1. PGM binding is a promising surrogate for identifying infectious and non-infectious NoVs after capsid destruction, however, results vary depending on virus strain and inactivation method.
Collapse
Affiliation(s)
- Olamide T Afolayan
- Department of Food Science and Technology, Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Cathy C Webb
- Department of Food Science and Technology, Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA.
| | - Jennifer L Cannon
- Department of Food Science and Technology, Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA.
| |
Collapse
|
18
|
Moore MD, Escudero-Abarca BI, Suh SH, Jaykus LA. Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain. J Biotechnol 2015; 209:41-9. [PMID: 26080079 DOI: 10.1016/j.jbiotec.2015.06.389] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
Human noroviruses (NoV) are the leading cause of acute viral gastroenteritis worldwide. Significant antigenic diversity of NoV strains has limited the availability of broadly reactive ligands for design of detection assays. The purpose of this work was to produce and characterize single stranded (ss)DNA aptamers with binding specificity to human NoV using an easily produced NoV target-the P domain protein. Aptamer selection was done using SELEX (Systematic Evolution of Ligands by EXponential enrichment) directed against an Escherichia coli-expressed and purified epidemic NoV GII.4 strain P domain. Two of six unique aptamers (designated M1 and M6-2) were chosen for characterization. Inclusivity testing using an enzyme-linked aptamer sorbent assay (ELASA) against a panel of 14 virus-like particles (VLPs) showed these aptamers had broad reactivity and exhibited strong binding to GI.7, GII.2, two GII.4 strains, and GII.7 VLPs. Aptamer M6-2 exhibited at least low to moderate binding to all VLPs tested. Aptamers significantly (p<0.05) bound virus in partially purified GII.4 New Orleans outbreak stool specimens as demonstrated by ELASA and aptamer magnetic capture (AMC) followed by RT-qPCR. This is the first demonstration of human NoV P domain protein as a functional target for the selection of nucleic acid aptamers that specifically bind and broadly recognize diverse human NoV strains.
Collapse
Affiliation(s)
- Matthew D Moore
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA.
| | - Blanca I Escudero-Abarca
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Soo Hwan Suh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Lee-Ann Jaykus
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 315 Schaub Hall, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
19
|
|
20
|
Wang D, Tian P. Inactivation conditions for human norovirus measured by an in situ capture-qRT-PCR method. Int J Food Microbiol 2014; 172:76-82. [DOI: 10.1016/j.ijfoodmicro.2013.11.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 11/17/2022]
|
21
|
New in situ capture quantitative (real-time) reverse transcription-PCR method as an alternative approach for determining inactivation of Tulane virus. Appl Environ Microbiol 2014; 80:2120-4. [PMID: 24463967 DOI: 10.1128/aem.04036-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses (HuNoVs) are the major cause of epidemic nonbacterial gastroenteritis. Although quantitative (real-time) reverse transcription-PCR (qRT-PCR) is widely used for detecting HuNoVs, it only detects the presence of viral RNA and does not indicate viral infectivity. Human blood group antigens (HBGAs) have been identified as receptors/co-receptors for both HuNoVs and Tulane virus (TV) and are crucial for viral infection. We propose that viral infectivity can be evaluated with a molecular assay based on receptor-captured viruses. In this study, we employed TV as an HuNoV surrogate to validate the HBGA-based capture qRT-PCR method against the 50% tissue culture infectious dose (TCID50) method. We employed type B HBGA on an immuno-well module to concentrate TV, followed by amplification of the captured viral genome by in situ qRT-PCR. We first demonstrated that this in situ capture qRT-PCR (ISC-qRT-PCR) method could effectively concentrate and detect TV. We then treated TV under either partial or full inactivation conditions and measured the remaining infectivity by ISC-qRT-PCR and a tissue culture-based amplification method (TCID50). We found that the ISC-qRT-PCR method could be used to evaluate virus inactivation deriving from damage to the capsid and study interactions between the capsid and viral receptor. Heat, chlorine, and ethanol treatment primarily affect the capsid structure, which in turns affects the ability of the capsid to bind to viral receptors. Inactivation of the virus by these methods could be reflected by the ISC-qRT-PCR method and confirmed by TCID50 assay. However, the loss of the infectivity caused by damage to the viral genome (such as that from UV irradiation) could not be effectively reflected by this method. Despite this limitation, the ISC-qRT-PCR provides an alternative approach to determine inactivation of Tulane virus. A particular advantage of the ISC-qRT-PCR method is that it is also a faster and easier method to effectively recover and detect the viruses, as there is no need to extract viral RNA or to transfer the captured virus from magnetic beads to PCR tubes for further amplification. Therefore, ISC-qRT-PCR can be easily adapted for use in automated systems for multiple samples.
Collapse
|
22
|
Hirneisen KA, Kniel KE. Comparison of ELISA attachment and infectivity assays for murine norovirus. J Virol Methods 2012; 186:14-20. [DOI: 10.1016/j.jviromet.2012.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/07/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
|
23
|
Knight A, Li D, Uyttendaele M, Jaykus LA. A critical review of methods for detecting human noroviruses and predicting their infectivity. Crit Rev Microbiol 2012; 39:295-309. [DOI: 10.3109/1040841x.2012.709820] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors - occurrence, properties and removal. J Appl Microbiol 2012; 113:1014-26. [PMID: 22747964 DOI: 10.1111/j.1365-2672.2012.05384.x] [Citation(s) in RCA: 1175] [Impact Index Per Article: 90.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/14/2012] [Accepted: 06/27/2012] [Indexed: 12/21/2022]
Abstract
The polymerase chain reaction (PCR) is increasingly used as the standard method for detection and characterization of microorganisms and genetic markers in a variety of sample types. However, the method is prone to inhibiting substances, which may be present in the analysed sample and which may affect the sensitivity of the assay or even lead to false-negative results. The PCR inhibitors represent a diverse group of substances with different properties and mechanisms of action. Some of them are predominantly found in specific types of samples thus necessitating matrix-specific protocols for preparation of nucleic acids before PCR. A variety of protocols have been developed to remove the PCR inhibitors. This review focuses on the general properties of PCR inhibitors and their occurrence in specific matrices. Strategies for their removal from the sample and for quality control by assessing their influence on the individual PCR test are presented and discussed.
Collapse
Affiliation(s)
- C Schrader
- Food Hygiene and Safety Concepts, Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | | |
Collapse
|
25
|
Detection of human norovirus in cherry tomatoes, blueberries and vegetable salad by using a receptor-binding capture and magnetic sequestration (RBCMS) method. Food Microbiol 2012; 30:420-6. [DOI: 10.1016/j.fm.2011.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/08/2011] [Accepted: 12/28/2011] [Indexed: 01/12/2023]
|
26
|
Magnetic techniques for the detection and determination of xenobiotics and cells in water. Anal Bioanal Chem 2012; 404:1257-73. [DOI: 10.1007/s00216-012-6056-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/15/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
27
|
Dancho BA, Chen H, Kingsley DH. Discrimination between infectious and non-infectious human norovirus using porcine gastric mucin. Int J Food Microbiol 2012; 155:222-6. [PMID: 22425335 DOI: 10.1016/j.ijfoodmicro.2012.02.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/30/2012] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
Human noroviruses (NoVs) are known to bind to human histo-blood group antigens, as well as to chemically-similar porcine gastric mucins. Here, the binding ability of NoV to porcine mucin is shown to be substantially deficient after UV, thermal, and high pressure treatments. Using qRT-PCR, ≥ 68% of GI.1 NoV (Norwalk strain) bound to porcine gastric mucin-conjugated magnetic beads (PGM-MBs). Application of 600-MPa high pressure treatments reduced binding of the virus to PGM-MBs by 4.7-log₁₀, as determined by qRT-PCR, while a 300-MPa pressure treatment, reduced binding to PGM-MBs by only 0.45-log₁₀. This is consistent with a previously reported clinical trial (Leon et al., 2011. Appl. Environ Microbiol. 77:5476-5482.) which demonstrated inactivation of 4-log₁₀ of GI.1 NoV at 600-MPa. After thermal treatment, binding to PGM-MBs decreased when samples were heated from 0 to 80 °C. Ultraviolet treatments of 0.5 and 2 J/cm² reduced observed PGM-MB binding of norovirus to 33% and negligible levels, respectively, from an initially observed 84% binding for untreated NoV. Although thermal and UV treatments are generally recognized to inactivate viruses, verification of NoV inactivation by these treatments may require volunteer studies. In total, these results suggest the loss of NoV binding to porcine mucin as a potential means to preferentially exclude non-infectious virus particles from subsequent RT-PCR detection.
Collapse
Affiliation(s)
- Brooke A Dancho
- Agricultural Research Service, Food Safety and Intervention Technologies Unit, U.S. Department of Agriculture, Delaware State University, Dover, DE 19901, USA
| | | | | |
Collapse
|
28
|
Imai T, Sano D, Miura T, Okabe S, Wada K, Masago Y, Omura T. Adsorption characteristics of an enteric virus-binding protein to norovirus, rotavirus and poliovirus. BMC Biotechnol 2011; 11:123. [PMID: 22176631 PMCID: PMC3262155 DOI: 10.1186/1472-6750-11-123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/16/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Water contamination with human enteric viruses has posed human health risks all over the world. Reasonable and facile methodologies for recovering and quantifying infectious enteric viruses in environmental samples are needed to address the issues of waterborne viral infectious diseases. In this study, a bacterial protein that has a binding capability with several enteric viruses is discovered, and its binding characteristics were investigated for utilizing it as a viral adsorbent in virus recovery and detection technologies. RESULTS A gene of an enteric virus-binding protein (EVBP), derived from a monomer of a bacterial chaperon protein GroEL, was successfully acquired from a genomic DNA library of activated sludge microorganisms with nested PCR. Equilibrium dissociation constants between EVBP and norovirus-like particles (NoVLPs) of genotypes GI.7 and GII.4, estimated with quartz crystal microbalance method, were 240 and 210 nM, respectively. These values of equilibrium dissociation constant imply that the binding affinity between EVBP and NoVLPs is 1 to 3-log weaker than that in general antigen-antibody interactions, but about 2-log stronger than that in weak specific interactions of proteins with cations and organic polymers. The adsorptions of EVBP to norovirus, group A rotavirus and poliovirus type 1 were found to be significant in enzyme-linked immunosorbent assay. Meanwhile, the binding of native GroEL tetradecamer to viral particles was weaker than that of EVBP, presumably because of a steric hindrance. The small molecule of EVBP could have an advantage in the access to the surface of viral particles with rugged structure. CONCLUSIONS EVBP that has a broad binding spectrum to enteric viruses was newly discovered. The broad binding characteristic of EVBP would allow us to utilize it as a novel adsorbent for detecting diverse enteric viruses in clinical and environmental samples.
Collapse
Affiliation(s)
- Takahiro Imai
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Sendai, 980-8579, Japan
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Daisuke Sano
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Takayuki Miura
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Keishi Wada
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Sendai, 980-8579, Japan
| | - Yoshifumi Masago
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Sendai, 980-8579, Japan
| | - Tatsuo Omura
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Sendai, 980-8579, Japan
| |
Collapse
|
29
|
Application of a receptor-binding capture quantitative reverse transcription-PCR assay to concentrate human norovirus from sewage and to study the distribution and stability of the virus. Appl Environ Microbiol 2011; 78:429-36. [PMID: 22101044 DOI: 10.1128/aem.06875-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Water is an important route for human norovirus (HuNoV) transmission. Using magnetic beads conjugated with blood group-like antigens (HuNoV receptors), we developed a simple and rapid receptor-binding capture and magnetic sequestration (RBCMS) method and compared it to the existing negatively charged membrane absorption/elution (NCMAE) method for concentrating HuNoV from sewage effluent. RBCMS required 6-fold-less sample volume than the NCMAE method and also resulted in a significantly higher yield of HuNoV. The NCMAE and RBCMS concentrations of genogroup I (GI) HuNoV measured by quantitative reverse transcription-PCR (qRT-PCR) resulted in average threshold cycle (C(T)) values of 34.68 (8.68 copies, 252-fold concentration) versus 34.07 (13.05 copies, 477-fold concentration), respectively; the NCMAE and RBCMS concentrations of genogroup II (GII) HuNoV were measured as average C(T) values of 33.32 (24.7 copies, 239-fold concentration) versus 32.38 (46.9 copies, 333-fold concentration), respectively. The specificity of qRT-PCR was confirmed by traditional RT-PCR and an RNase I protection assay. The qRT-PCR signal from RBCMS-concentrated HuNoV treated with RNase I indicated that it was from encapsidated RNA and, probably, viable virus. In contrast, the qRT-PCR signal from NCMAE-concentrated HuNoV was not protected from RNase I and, likely, degradation. Both GI and GII HuNoV were detected from sewage effluent samples collected between April and July with average concentrations of 7.8 × 10(3) genomic copies per liter (gc/liter) and 4.3 × 10(4) gc/liter, respectively. No GI and <2% GII HuNoV were detected in sewage samples stored at room temperature for 4 weeks. We conclude that RBCMS requires less sample volume, has better recovery and sensitivity, and is faster than NCMAE for detection of HuNoV in sewage.
Collapse
|
30
|
Tian P, Yang D, Mandrell R. A simple method to recover Norovirus from fresh produce with large sample size by using histo-blood group antigen-conjugated to magnetic beads in a recirculating affinity magnetic separation system (RCAMS). Int J Food Microbiol 2011; 147:223-7. [PMID: 21546111 DOI: 10.1016/j.ijfoodmicro.2011.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 11/21/2022]
Abstract
Human norovirus (NoV) outbreaks are major food safety concerns. The virus has to be concentrated from food samples in order to be detected. PEG precipitation is the most common method to recover the virus. Recently, histo-blood group antigens (HBGA) have been recognized as receptors for human NoV, and have been utilized as an alternative method to concentrate human NoV for samples up to 40 mL in volume. However, to wash off the virus from contaminated fresh food samples, at least 250 mL of wash volume is required. Recirculating affinity magnetic separation system (RCAMS) has been tried by others to concentrate human NoV from large-volume samples and failed to yield consistent results with the standard procedure of 30 min of recirculation at the default flow rate. Our work here demonstrates that proper recirculation time and flow rate are key factors for success in using the RCAMS. The bead recovery rate was increased from 28% to 47%, 67% and 90% when recirculation times were extended from 30 min to 60 min, 120 min and 180 min, respectively. The kinetics study suggests that at least 120 min recirculation is required to obtain a good recovery of NoV. In addition, different binding and elution conditions were compared for releasing NoV from inoculated lettuce. Phosphate-buffered saline (PBS) and water results in similar efficacy for virus release, but the released virus does not bind to RCAMS effectively unless pH was adjusted to acidic. Either citrate-buffered saline (CBS) wash, or water wash followed by CBS adjustment, resulted in an enhanced recovery of virus. We also demonstrated that the standard curve generated from viral RNA extracted from serially-diluted virus samples is more accurate for quantitative analysis than standard curves generated from serially-diluted plasmid DNA or transcribed-RNA templates, both of which tend to overestimate the concentration power. The efficacy of recovery of NoV from produce using RCAMS was directly compared with that of the PEG method in NoV inoculated lettuce. 40, 4, 0.4, and 0.04 RTU can be detected by both methods. At 0.004 RTU, NoV was detectable in all three samples concentrated by the RCAMS method, while none could be detected by the PEG precipitation method. RCAMS is a simple and rapid method that is more sensitive than conventional methods for recovery of NoV from food samples with a large sample size. In addition, the RTU value detected through RCAMS-processed samples is more biologically relevant.
Collapse
Affiliation(s)
- Peng Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA
| | | | | |
Collapse
|
31
|
Tian P, Yang D, Jiang X, Zhong W, Cannon JL, Burkhardt W, Woods JW, Hartman G, Lindesmith L, Baric RS, Mandrell R. Specificity and kinetics of norovirus binding to magnetic bead-conjugated histo-blood group antigens. J Appl Microbiol 2010; 109:1753-62. [PMID: 21040268 DOI: 10.1111/j.1365-2672.2010.04812.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To characterize the specificity and effect of pH and ionic strength on the kinetics of virus binding to histo-blood group antigens (HBGA)-conjugated magnetic beads. METHODS AND RESULTS HBGAs from porcine gastric mucin (PGM) have been conjugated to magnetic beads (PGM-MB) for concentration of NoV. A GII.4 virus was used for the detailed binding kinetics study and a panel of genogroup I (GI) NoVs, genogroup II (GII) NoVs and recombinant NoVs (rNoVs) were used for specificity and binding efficiency assays. We determined that NoV can be captured after 15min of incubation with PGM-MB, and virus recovery efficiency is decreased after extended incubation times. rNoV binding as measured by ELISA and NoV recovery as measured by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), were both enhanced significantly at acidic pH conditions. rNoV binding to PGM as measured by ELISA was increased up to 66%. While real-time RT-PCR analyses suggest that NoV could be concentrated as much as 1000-fold at neutral pH, up to 3·4-fold further increase of NoV recovery was achieved by adjusting the pH of the sample to 3·0-4·2. Variation between GI and GII viral binding to the PGM-MB at basic pH was observed. All five GI rNoVs tested and 6 of 9 GII rNoVs were captured by PGM. All eight GI strains tested were concentrated by PGM-MB, ranging from 28-fold (GI.4) to 1502-fold (GI.1). Eleven of 13 GII strains were concentrated from 30-fold (GII.5) to 1014-fold (GII.4, lab strain) by PGM-MB. GI and GII rNoVs viral capsid proteins were recovered with high salt conditions, but results were inconsistent for whole virus recovery. CONCLUSIONS All GI and 85% of GII NoVs tested could be captured and concentrated by PGM-MB method. The binding occurred rapidly and was enhanced at low pH. SIGNIFICANCE AND IMPACT OF THE STUDY These results facilitated development of a prototype method for sensitive detection of NoV in samples requiring larger volumes.
Collapse
Affiliation(s)
- P Tian
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94547-1105, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters. Appl Environ Microbiol 2010; 76:5621-30. [PMID: 20562271 DOI: 10.1128/aem.00148-10] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bivalve molluscan shellfish, such as oysters, filter large volumes of water as part of their feeding activities and are able to accumulate and concentrate different types of pathogens, particularly noroviruses, from fecal human pollution. Based on our previous observation of a specific binding of the Norwalk strain (prototype norovirus genogroup I) to the oyster digestive tract through an A-like carbohydrate structure indistinguishable from human blood group A antigen and on the large diversity between strains in terms of carbohydrate-binding specificities, we evaluated the different ligands implicated in attachment to oysters tissues of strains representative of two main genogroups of human norovirus. The GI.1 and GII.4 strains differed in that the latter recognized a sialic acid-containing ligand, present in all tissues, in addition to the A-like ligand of the digestive tract shared with the GI.1 strain. Furthermore, bioaccumulation experiments using wild-type or mutant GI.1 Viruslike particles showed accumulation in hemocytes largely, but not exclusively, based on interaction with the A-like ligand. Moreover, a seasonal effect on the expression of these ligands was detected, most visibly for the GI.1 strain, with a peak in late winter and spring, a period when GI strains are regularly involved in oyster-related outbreaks. These observations may explain some of the distinct epidemiological features of strains from different genogroups.
Collapse
|
33
|
AKIBA T, TANAKA T, NAGANO M, MORI K, HAYASHI Y, OBATA H, CHIBA T, IKUTA Y, KAMIYA Y, NAKAMA A, HOSAKA M, KAI A. Detection of Norovirus RNA in Bivalve Molluscs by Using Bacteria-Culture-Employed Method (A3T Method). Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2010; 51:237-41. [DOI: 10.3358/shokueishi.51.237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Brehm-Stecher B, Young C, Jaykus LA, Tortorello ML. Sample preparation: the forgotten beginning. J Food Prot 2009; 72:1774-89. [PMID: 19722419 DOI: 10.4315/0362-028x-72.8.1774] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Advances in molecular technologies and automated instrumentation have provided many opportunities for improved detection and identification of microorganisms; however, the upstream sample preparation steps needed to apply these advances to foods have not been adequately researched or developed. Thus, the extent to which these advances have improved food microbiology has been limited. The purpose of this review is to present the current state of sample preparation, to identify knowledge gaps and opportunities for improvement, and to recognize the need to support greater research and development efforts on preparative methods in food microbiology. The discussion focuses on the need to push technological developments toward methods that do not rely on enrichment culture. Among the four functional components of microbiological analysis (i.e., sampling, separation, concentration, detection), the separation and concentration components need to be researched more extensively to achieve rapid, direct, and quantitative methods. The usefulness of borrowing concepts of separation and concentration from other disciplines and the need to regard the microorganism as a physicochemical analyte that may be directly extracted from the food matrix are discussed. The development of next-generation systems that holistically integrate sample preparation with rapid, automated detection will require interdisciplinary collaboration and substantially increased funding.
Collapse
Affiliation(s)
- Byron Brehm-Stecher
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
35
|
Detection of noroviruses in ready-to-eat foods by using carbohydrate-coated magnetic beads. Appl Environ Microbiol 2009; 75:4641-3. [PMID: 19429549 DOI: 10.1128/aem.00202-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This study used histo-blood group antigen-conjugated beads to detect norovirus (NoV) in contaminated strawberries, green onions, lettuce, and deli ham. In addition, multiple strains of NoV from genogroups I and II were recovered. This provides an effective protocol for food testing in the investigation of suspected NoV outbreaks.
Collapse
|