1
|
Huo Y, Zou F, You Z, Zhao G, Dai M, Zhang S. Cold-active β-galactosidase from Weissella confusa SW1 for the preparation of low-lactose milk. Int J Food Microbiol 2025; 429:111003. [PMID: 39662279 DOI: 10.1016/j.ijfoodmicro.2024.111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
β-Galactosidases can be used to degrade lactose in milk to prepare lactose-free milk, which is sweeter than ordinary milk and suitable for people with lactose intolerance. The β-galactosidase gene (WcGal2809) was cloned from Weissella confusa SW1 and successfully expressed in Escherichia coli BL21(DE3). The active WcGal2809 was identified to be a heterodimer composed of two distinct proteins LacL (72.4 kDa) and LacM (33.2 kDa), and it belonged to glycoside hydrolase family 2. The purified WcGal2809 showed the maximum activity at 25 °C and pH 7.0 for o-nitrophenyl-β-D-galactopyranoside (oNPG). WcGal2809 was strongly activated by Mn2+, Mg2+, and Fe2+, and significantly inhibited by Zn2+, Cu2+, and Ni+. The activity of WcGal2809 decreased quickly after incubation at 40 °C or higher temperature, suggesting it was a cold-adapted enzyme. Additionally, 6 U of WcGal2809 could hydrolyze 85.23 % of the lactose in 1 mL of milk at 25 °C after incubation for 48 h, while 2 U of WcGal2809 could hydrolyze 74.40 % of the lactose in 1 mL of milk at 25 °C after incubation for 7 d. Taken together, WcGal2809 is a promising industrial biocatalyst for efficiently hydrolyzing lactose in milk at room temperature during milk storage or transportation.
Collapse
Affiliation(s)
- Yingxin Huo
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Fanghong Zou
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Zihui You
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Guoyan Zhao
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Susu Zhang
- College of Life Science, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
2
|
Yüksel E, Kort R, Voragen AGJ. Structure and degradation dynamics of dietary pectin. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 39681562 DOI: 10.1080/10408398.2024.2437573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Pectin, a complex dietary fiber, constitutes a key structural component of the cell walls of numerous edible plant products. It is resistant to digestion by human enzymes and undergoes depolymerization and saccharification in the gastrointestinal tract through the action of carbohydrate-active enzymes (CAZymes) produced by gut microbiota. This enzymatic breakdown generates intermediate structural fragments, which are subsequently converted into pectin oligosaccharides (POS) and monosaccharides. POS exhibit prebiotic properties and have demonstrated potential health benefits, including anti-carcinogenic effects, mucoadhesive capabilities, and the promotion of beneficial gut bacterial growth. However, the current understanding of the molecular structure of pectin and its degradation dynamics remains fragmented within the literature, impeding progress in dietary fiber intervention research and the development of personalized nutrition approaches. This review aims to provide a comprehensive overview of the structural features of pectin and the intricate breakdown mechanisms orchestrated by CAZymes. It underscores the complex architecture of pectin that influences its breakdown dynamics and specifies the enzymatic requirements for the cleavage of its diverse structural components. These insights complement our accompanying review on the structure-function relationships between pectin and the human gut microbiota, previously published in this journal.
Collapse
Affiliation(s)
- Ecem Yüksel
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije University Amsterdam, Amsterdam, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije University Amsterdam, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| | - Alphons G J Voragen
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
- Keep Food Simple, Driebergen, The Netherlands
| |
Collapse
|
3
|
|
4
|
Zhang Q, Liu Z, Xia H, Huang Z, Zhu Y, Xu L, Liu Y, Li J, Du G, Lv X, Liu L. Engineered Bacillus subtilis for the de novo production of 2'-fucosyllactose. Microb Cell Fact 2022; 21:110. [PMID: 35655274 PMCID: PMC9164505 DOI: 10.1186/s12934-022-01838-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The most abundant human milk oligosaccharide in breast milk, 2'-fucosyllactose (2'-FL), has been approved as an additive to infant formula due to its multifarious nutraceutical and pharmaceutical functions in promoting neonate health. However, the low efficiency of de novo synthesis limits the cost-efficient bioproduction of 2'-FL. RESULTS This study achieved 2'-FL de novo synthesis in a generally recognized as safe (GRAS) strain Bacillus subtilis. First, a de novo biosynthetic pathway for 2'-FL was introduced by expressing the manB, manC, gmd, wcaG, and futC genes from Escherichia coli and Helicobacter pylori in B. subtilis, resulting in 2'-FL production of 1.12 g/L. Subsequently, a 2'-FL titer of 2.57 g/L was obtained by reducing the competitive lactose consumption, increasing the regeneration of the cofactor guanosine-5'-triphosphate (GTP), and enhancing the supply of the precursor mannose-6-phosphate (M6P). By replacing the native promoter of endogenous manA gene (encoding M6P isomerase) with a constitutive promoter P7, the 2'-FL titer in shake flask reached 18.27 g/L. The finally engineered strain BS21 could produce 88.3 g/L 2'-FL with a yield of 0.61 g/g lactose in a 3-L bioreactor, without the addition of antibiotics and chemical inducers. CONCLUSIONS The efficient de novo synthesis of 2'-FL can be achieved by the engineered B. subtilis, paving the way for the large-scale bioproduction of 2'-FL titer in the future.
Collapse
Affiliation(s)
- Quanwei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Hongzhi Xia
- Nantong Licheng Biological Engineering Co., Ltd, Shanghai, 200000, China
| | - Ziyang Huang
- Yixing Institute of Food Biotechnology Co., Ltd, Yixing, 214200, China
| | - Yonglian Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Linfeng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Luan S, Duan X. A Novel Thermal-Activated β-Galactosidase from Bacillus aryabhattai GEL-09 for Lactose Hydrolysis in Milk. Foods 2022; 11:foods11030372. [PMID: 35159524 PMCID: PMC8834341 DOI: 10.3390/foods11030372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
β-Galactosidase has been greatly used in the dairy industry. This study investigated a novel thermostable β-galactosidase (lacZBa) from Bacillus aryabhattai GEL-09 and evaluated the hydrolytic performance of this enzyme. Firstly, the lacZBa-encoding gene was cloned and overexpressed in Escherichia coli BL21(DE3). Phylogenetic analyses revealed that lacZBa belonged to the glycoside hydrolase family 42. Using SDS-PAGE, we determined that the molecular weight of lacZBa was ~75 kDa. Purified lacZBa exhibited a maximum activity at 45 °C, pH 6.0, and could be activated following incubation at 45 °C for several minutes. The half-life of lacZBa at 45 °C and 50 °C was 264 h and 36 h, respectively. While Co2+, Mn2+, Zn2+, Fe2+, Mg2+, and Ca2+ enhanced enzymatic activity, Cu2+ and ethylenediaminetetraacetic acid inhibited enzymatic activity. Moreover, lacZBa could hydrolyze lactose and oNPG with Km values of 85.09 and 14.38 mM. Molecular docking results revealed that lacZBa efficiently recognized and catalyzed lactose. Additionally, the hydrolysis of lactose by lacZBa was studied in lactose solution and commercial milk. Lactose was completely hydrolyzed within 4 h with 8 U/mL of lacZBa at 45 °C. These results suggested that lacZBa identified in this study has potential applications in the dairy industry.
Collapse
|
6
|
Aulitto M, Strazzulli A, Sansone F, Cozzolino F, Monti M, Moracci M, Fiorentino G, Limauro D, Bartolucci S, Contursi P. Prebiotic properties of Bacillus coagulans MA-13: production of galactoside hydrolyzing enzymes and characterization of the transglycosylation properties of a GH42 β-galactosidase. Microb Cell Fact 2021; 20:71. [PMID: 33736637 PMCID: PMC7977261 DOI: 10.1186/s12934-021-01553-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/25/2021] [Indexed: 01/18/2023] Open
Abstract
Background The spore-forming lactic acid bacterium Bacillus coagulans MA-13 has been isolated from canned beans manufacturing and successfully employed for the sustainable production of lactic acid from lignocellulosic biomass. Among lactic acid bacteria, B. coagulans strains are generally recognized as safe (GRAS) for human consumption. Low-cost microbial production of industrially valuable products such as lactic acid and various enzymes devoted to the hydrolysis of oligosaccharides and lactose, is of great importance to the food industry. Specifically, α- and β-galactosidases are attractive for their ability to hydrolyze not-digestible galactosides present in the food matrix as well as in the human gastrointestinal tract. Results In this work we have explored the potential of B. coagulans MA-13 as a source of metabolites and enzymes to improve the digestibility and the nutritional value of food. A combination of mass spectrometry analysis with conventional biochemical approaches has been employed to unveil the intra- and extra- cellular glycosyl hydrolase (GH) repertoire of B. coagulans MA-13 under diverse growth conditions. The highest enzymatic activity was detected on β-1,4 and α-1,6-glycosidic linkages and the enzymes responsible for these activities were unambiguously identified as β-galactosidase (GH42) and α-galactosidase (GH36), respectively. Whilst the former has been found only in the cytosol, the latter is localized also extracellularly. The export of this enzyme may occur through a not yet identified secretion mechanism, since a typical signal peptide is missing in the α-galactosidase sequence. A full biochemical characterization of the recombinant β-galactosidase has been carried out and the ability of this enzyme to perform homo- and hetero-condensation reactions to produce galacto-oligosaccharides, has been demonstrated. Conclusions Probiotics which are safe for human use and are capable of producing high levels of both α-galactosidase and β-galactosidase are of great importance to the food industry. In this work we have proven the ability of B. coagulans MA-13 to over-produce these two enzymes thus paving the way for its potential use in treatment of gastrointestinal diseases. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01553-y.
Collapse
Affiliation(s)
- Martina Aulitto
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrea Strazzulli
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Ferdinando Sansone
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145, Naples, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy.,CEINGE Advanced Biotechnologies, University of Naples Federico II, 80145, Naples, Italy
| | - Marco Moracci
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy.,Institute of Biosciences and BioResources-National Research Council of Italy, Naples, Italy
| | - Gabriella Fiorentino
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy
| | - Danila Limauro
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy
| | | | - Patrizia Contursi
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy. .,Task Force On Microbiome Studies, University of Naples Federico II, Naples, Italy. .,BAT Center-Interuniversity Center for Studies On Bioinspired Agro-Environmental Technology, University of Napoli Federico II, Portici, NA, Italy.
| |
Collapse
|
7
|
Mangiagalli M, Lotti M. Cold-Active β-Galactosidases: Insight into Cold Adaption Mechanisms and Biotechnological Exploitation. Mar Drugs 2021; 19:md19010043. [PMID: 33477853 PMCID: PMC7832830 DOI: 10.3390/md19010043] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/22/2023] Open
Abstract
β-galactosidases (EC 3.2.1.23) catalyze the hydrolysis of β-galactosidic bonds in oligosaccharides and, under certain conditions, transfer a sugar moiety from a glycosyl donor to an acceptor. Cold-active β-galactosidases are identified in microorganisms endemic to permanently low-temperature environments. While mesophilic β-galactosidases are broadly studied and employed for biotechnological purposes, the cold-active enzymes are still scarcely explored, although they may prove very useful in biotechnological processes at low temperature. This review covers several issues related to cold-active β-galactosidases, including their classification, structure and molecular mechanisms of cold adaptation. Moreover, their applications are discussed, focusing on the production of lactose-free dairy products as well as on the valorization of cheese whey and the synthesis of glycosyl building blocks for the food, cosmetic and pharmaceutical industries.
Collapse
|
8
|
Wang L, Mou Y, Guan B, Hu Y, Zhang Y, Zeng J, Ni Y. Genome sequence of the psychrophilic Cryobacterium sp. LW097 and characterization of its four novel cold-adapted β-galactosidases. Int J Biol Macromol 2020; 163:2068-2083. [DOI: 10.1016/j.ijbiomac.2020.09.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 12/24/2022]
|
9
|
Dahlhausen KE, Jospin G, Coil DA, Eisen JA, Wilkins LG. Isolation and sequence-based characterization of a koala symbiont: Lonepinella koalarum. PeerJ 2020; 8:e10177. [PMID: 33150080 PMCID: PMC7583611 DOI: 10.7717/peerj.10177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/22/2020] [Indexed: 11/23/2022] Open
Abstract
Koalas (Phascolarctos cinereus) are highly specialized herbivorous marsupials that feed almost exclusively on Eucalyptus leaves, which are known to contain varying concentrations of many different toxic chemical compounds. The literature suggests that Lonepinella koalarum, a bacterium in the Pasteurellaceae family, can break down some of these toxic chemical compounds. Furthermore, in a previous study, we identified L. koalarum as the most predictive taxon of koala survival during antibiotic treatment. Therefore, we believe that this bacterium may be important for koala health. Here, we isolated a strain of L. koalarum from a healthy koala female and sequenced its genome using a combination of short-read and long-read sequencing. We placed the genome assembly into a phylogenetic tree based on 120 genome markers using the Genome Taxonomy Database (GTDB), which currently does not include any L. koalarum assemblies. Our genome assembly fell in the middle of a group of Haemophilus, Pasteurella and Basfia species. According to average nucleotide identity and a 16S rRNA gene tree, the closest relative of our isolate is L. koalarum strain Y17189. Then, we annotated the gene sequences and compared them to 55 closely related, publicly available genomes. Several genes that are known to be involved in carbohydrate metabolism could exclusively be found in L. koalarum relative to the other taxa in the pangenome, including glycoside hydrolase families GH2, GH31, GH32, GH43 and GH77. Among the predicted genes of L. koalarum were 79 candidates putatively involved in the degradation of plant secondary metabolites. Additionally, several genes coding for amino acid variants were found that had been shown to confer antibiotic resistance in other bacterial species against pulvomycin, beta-lactam antibiotics and the antibiotic efflux pump KpnH. In summary, this genetic characterization allows us to build hypotheses to explore the potentially beneficial role that L. koalarum might play in the koala intestinal microbiome. Characterizing and understanding beneficial symbionts at the whole genome level is important for the development of anti- and probiotic treatments for koalas, a highly threatened species due to habitat loss, wildfires, and high prevalence of Chlamydia infections.
Collapse
Affiliation(s)
| | - Guillaume Jospin
- Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, USA
| | - David A. Coil
- Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, USA
| | - Jonathan A. Eisen
- Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - Laetitia G.E. Wilkins
- Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, USA
| |
Collapse
|
10
|
A novel glycoside hydrolase family 42 enzyme with bifunctional β-galactosidase and α-L-arabinopyranosidase activities and its synergistic effects with cognate glycoside hydrolases in plant polysaccharides degradation. Int J Biol Macromol 2019; 140:129-139. [DOI: 10.1016/j.ijbiomac.2019.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022]
|
11
|
Purification and characterization of a novel thermophilic β-galactosidase from Picrophilus torridus of potential industrial application. Extremophiles 2019; 23:783-792. [DOI: 10.1007/s00792-019-01133-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
|
12
|
Extracytoplasmic Function σ Factors Can Be Implemented as Robust Heterologous Genetic Switches in Bacillus subtilis. iScience 2019; 13:380-390. [PMID: 30897511 PMCID: PMC6426705 DOI: 10.1016/j.isci.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/14/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
In bacteria, the promoter specificity of RNA polymerase is determined by interchangeable σ subunits. Extracytoplasmic function σ factors (ECFs) form the largest and most diverse family of alternative σ factors, and their suitability for constructing genetic switches and circuits was already demonstrated. However, a systematic study on how genetically determined perturbations affect the behavior of these switches is still lacking, which impairs our ability to predict their behavior in complex circuitry. Here, we implemented four ECF switches in Bacillus subtilis and comprehensively characterized their robustness toward genetic perturbations, including changes in copy number, protein stability, or antisense transcription. All switches show characteristic dose-response behavior that varies depending on the individual ECF-promoter pair. Most perturbations had performance costs. Although some general design rules could be derived, a detailed characterization of each ECF switch before implementation is recommended to understand and thereby accommodate its individual behavior. Four heterologous ECF-based genetic switches were implemented in Bacillus subtilis Each ECF switch was excessively modified and comprehensively evaluated The robustness to genetic perturbations differed significantly between switches B. subtilis has a narrow phylogenetic acceptance range for heterologous ECFs
Collapse
|
13
|
Askelson TE, McMullin AB, Duong T. Targeted gene inactivation in Lactobacillus gallinarum ATCC 33199 using chromosomal integration. Poult Sci 2019; 98:398-403. [PMID: 30124967 DOI: 10.3382/ps/pey363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/02/2018] [Indexed: 11/20/2022] Open
Abstract
Although Lactobacillus species have been administered widely as probiotics in poultry production, the mechanisms responsible for their functionality are not well understood. The genetic tools available for use in lactobacilli are advanced but have not been applied widely to investigate their probiotic functionality in poultry. The genome sequence of Lactobacillus gallinarum ATCC 33199, originally isolated from the chicken crop, has recently been made available suggesting this organism as a potentially important model organism for probiotic research in poultry. In this study, we demonstrated the functionality of the pORI28 system for construction of isogenic knockout mutants in L. gallinarum ATCC 33199 using insertional inactivation of lacL as proof-of-principle. The establishment of an effective chromosomal integration system for use in L. gallinarum ATCC 33199 will provide a platform for functional genomic analyses to investigate the functionality of this model organism in the gastrointestinal tract of poultry.
Collapse
Affiliation(s)
- T E Askelson
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
| | - A B McMullin
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
| | - T Duong
- Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
| |
Collapse
|
14
|
Metatranscriptome Analysis of the Vaginal Microbiota Reveals Potential Mechanisms for Protection against Metronidazole in Bacterial Vaginosis. mSphere 2018; 3:3/3/e00262-18. [PMID: 29875146 PMCID: PMC5990888 DOI: 10.1128/mspheredirect.00262-18] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Bacterial vaginosis is a serious issue for women in their reproductive years. Although it can usually be cured by antibiotics, the recurrence rate is very high, and some women do not respond to antibiotic therapy. The reasons for that are not known. Therefore, we undertook a study to detect the activity of the complete microbiota in the vaginal fluid of women who responded to antibiotic therapy and compared it to the activity of the microbiota in women who did not respond. We found that one of the most important pathogens in bacterial vaginosis, Gardnerella vaginalis, has activated genes that can repair the DNA damage caused by the antibiotic in those women that do not respond to therapy. Suppressing these genes might be a possibility to improve the antibiotic therapy of bacterial vaginosis. Bacterial vaginosis (BV) is a prevalent multifactorial disease of women in their reproductive years characterized by a shift from the Lactobacillus species-dominated microbial community toward a taxonomically diverse anaerobic community. For unknown reasons, some women do not respond to therapy. In our recent clinical study, among 37 women diagnosed with BV, 31 were successfully treated with metronidazole, while 6 still had BV after treatment. To discover possible reasons for the lack of response in those patients, we performed a metatranscriptome analysis of their vaginal microbiota, comparing them to the patients who responded. Seven of 8 clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) genes of Gardnerella vaginalis were highly upregulated in nonresponding patients. Cas genes, in addition to protecting against phages, might be involved in DNA repair, thus mitigating the bactericidal effect of DNA-damaging agents such as metronidazole. In the second part of our study, we analyzed the vaginal metatranscriptomes of four patients over 3 months and showed high in vivo expression of genes for pore-forming toxins in L. iners and of genes encoding enzymes for the production of hydrogen peroxide and d-lactate in L. crispatus. IMPORTANCE Bacterial vaginosis is a serious issue for women in their reproductive years. Although it can usually be cured by antibiotics, the recurrence rate is very high, and some women do not respond to antibiotic therapy. The reasons for that are not known. Therefore, we undertook a study to detect the activity of the complete microbiota in the vaginal fluid of women who responded to antibiotic therapy and compared it to the activity of the microbiota in women who did not respond. We found that one of the most important pathogens in bacterial vaginosis, Gardnerella vaginalis, has activated genes that can repair the DNA damage caused by the antibiotic in those women that do not respond to therapy. Suppressing these genes might be a possibility to improve the antibiotic therapy of bacterial vaginosis.
Collapse
|
15
|
Biocatalytic strategies in the production of galacto-oligosaccharides and its global status. Int J Biol Macromol 2018; 111:667-679. [DOI: 10.1016/j.ijbiomac.2018.01.062] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/20/2017] [Accepted: 01/10/2018] [Indexed: 01/03/2023]
|
16
|
Ferreira MJ, Mendes AL, de Sá-Nogueira I. The MsmX ATPase plays a crucial role in pectin mobilization by Bacillus subtilis. PLoS One 2017; 12:e0189483. [PMID: 29240795 PMCID: PMC5730181 DOI: 10.1371/journal.pone.0189483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Carbohydrates from plant cell walls are often found as heteropolysaccharides intertwined with each other. For competitive advantage against other microorganisms, and ability to fully exploit available carbon and energy sources, Bacillus subtilis possesses a high number of proteins dedicated to the uptake of mono- and oligosaccharides. Here, we characterize transporter complexes, belonging to the ATP-binding cassette (ABC) superfamily, involved in the uptake of oligosaccharides commonly found in pectin. The uptake of these carbohydrates is shown to be MsmX-dependent, assigning a key role in pectin mobilization for MsmX, a multipurpose ATPase serving several distinct ABC-type I sugar importers. Mutagenesis analysis of the transmembrane domains of the AraNPQ MsmX-dependent importer revealed putative residues for MsmX interaction. Interestingly however, although MsmX is shown to be essential for energizing various ABC transporters we found that a second B. subtilis ATPase, YurJ, is able to complement its function when placed in trans at a different locus of the chromosome.
Collapse
Affiliation(s)
- Mário J. Ferreira
- UCIBIO, REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Aristides L. Mendes
- UCIBIO, REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Isabel de Sá-Nogueira
- UCIBIO, REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- * E-mail:
| |
Collapse
|
17
|
Habib C, Yu Y, Gozzi K, Ching C, Shemesh M, Chai Y. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis. PLoS One 2017; 12:e0179761. [PMID: 28617843 PMCID: PMC5472308 DOI: 10.1371/journal.pone.0179761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/02/2017] [Indexed: 11/18/2022] Open
Abstract
The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms.
Collapse
Affiliation(s)
- Cameron Habib
- Department of Biology, Northeastern University, Boston, MA, United States of America
| | - Yiyang Yu
- Department of Biology, Northeastern University, Boston, MA, United States of America
| | - Kevin Gozzi
- Department of Biology, Northeastern University, Boston, MA, United States of America
| | - Carly Ching
- Department of Biology, Northeastern University, Boston, MA, United States of America
| | - Moshe Shemesh
- Agricultural Research Organization The Volcani Center, Rishon LeZion, Israel
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
18
|
Strazzulli A, Cobucci-Ponzano B, Carillo S, Bedini E, Corsaro MM, Pocsfalvi G, Withers SG, Rossi M, Moracci M. Introducing transgalactosylation activity into a family 42 β-galactosidase. Glycobiology 2017; 27:425-437. [DOI: 10.1093/glycob/cwx013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/27/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Andrea Strazzulli
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy
| | - Beatrice Cobucci-Ponzano
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| | - Sara Carillo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy
| | - Gabriella Pocsfalvi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mosè Rossi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
| | - Marco Moracci
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy
- Department of Biology, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126 Napoli, Italy
| |
Collapse
|
19
|
Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis. J Bacteriol 2016; 198:2887-96. [PMID: 27501980 DOI: 10.1128/jb.00468-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/29/2016] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis possesses different enzymes for the utilization of plant cell wall polysaccharides. This includes a gene cluster containing galactan degradation genes (ganA and ganB), two transporter component genes (ganQ and ganP), and the sugar-binding lipoprotein-encoding gene ganS (previously known as cycB). These genes form an operon that is regulated by GanR. The degradation of galactan by B. subtilis begins with the activity of extracellular GanB. GanB is an endo-β-1,4-galactanase and is a member of glycoside hydrolase (GH) family 53. This enzyme was active on high-molecular-weight arabinose-free galactan and mainly produced galactotetraose as well as galactotriose and galactobiose. These galacto-oligosaccharides may enter the cell via the GanQP transmembrane proteins of the galactan ABC transporter. The specificity of the galactan ABC transporter depends on the sugar-binding lipoprotein, GanS. Purified GanS was shown to bind galactotetraose and galactotriose using thermal shift assay. The energy for this transport is provided by MsmX, an ATP-binding protein. The transported galacto-oligosaccharides are further degraded by GanA. GanA is a β-galactosidase that belongs to GH family 42. The GanA enzyme was able to hydrolyze short-chain β-1,4-galacto-oligosaccharides as well as synthetic β-galactopyranosides into galactose. Thermal shift assay as well as electrophoretic mobility shift assay demonstrated that galactobiose is the inducer of the galactan operon regulated by GanR. DNase I footprinting revealed that the GanR protein binds to an operator overlapping the -35 box of the σ(A)-type promoter of Pgan, which is located upstream of ganS IMPORTANCE: Bacillus subtilis is a Gram-positive soil bacterium that utilizes different types of carbohydrates, such as pectin, as carbon sources. So far, most of the pectin degradation systems and enzymes have been thoroughly studied in B. subtilis Nevertheless, the B. subtilis utilization system of galactan, which is found as the side chain of the rhamnogalacturonan type I complex in pectin, has remained partially studied. Here, we investigated the galactan utilization system consisting of the ganSPQAB operon and its regulator ganR This study improves our knowledge of the carbohydrate degradation systems of B. subtilis, especially the pectin degradation systems. Moreover, the galactan-degrading enzymes may be exploited for the production of galacto-oligosaccharides, which are used as prebiotic substances in the food industry.
Collapse
|
20
|
Andreevskaya M, Hultman J, Johansson P, Laine P, Paulin L, Auvinen P, Björkroth J. Complete genome sequence of Leuconostoc gelidum subsp. gasicomitatum KG16-1, isolated from vacuum-packaged vegetable sausages. Stand Genomic Sci 2016; 11:40. [PMID: 27274361 PMCID: PMC4895993 DOI: 10.1186/s40793-016-0164-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/31/2016] [Indexed: 11/10/2022] Open
Abstract
Leuconostoc gelidum subsp. gasicomitatum is a predominant lactic acid bacterium (LAB) in spoilage microbial communities of different kinds of modified-atmosphere packaged (MAP) food products. So far, only one genome sequence of a poultry-originating type strain of this bacterium (LMG 18811(T)) has been available. In the current study, we present the completely sequenced and functionally annotated genome of strain KG16-1 isolated from a vegetable-based product. In addition, six other vegetable-associated strains were sequenced to study possible "niche" specificity suggested by recent multilocus sequence typing. The genome of strain KG16-1 consisted of one circular chromosome and three plasmids, which together contained 2,035 CDSs. The chromosome carried at least three prophage regions and one of the plasmids encoded a galactan degradation cluster, which might provide a survival advantage in plant-related environments. The genome comparison with LMG 18811(T) and six other vegetable strains suggests no major differences between the meat- and vegetable-associated strains that would explain their "niche" specificity. Finally, the comparison with the genomes of other leuconostocs highlights the distribution of functionally interesting genes across the L. gelidum strains and the genus Leuconostoc.
Collapse
Affiliation(s)
- Margarita Andreevskaya
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5D, 00790 Helsinki, Finland
| | - Jenni Hultman
- Department of Food Hygiene and Environmental Health, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | - Per Johansson
- Department of Food Hygiene and Environmental Health, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5D, 00790 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5D, 00790 Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5D, 00790 Helsinki, Finland
| | - Johanna Björkroth
- Department of Food Hygiene and Environmental Health, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| |
Collapse
|
21
|
Solomon HV, Tabachnikov O, Lansky S, Salama R, Feinberg H, Shoham Y, Shoham G. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus. ACTA ACUST UNITED AC 2015; 71:2433-48. [PMID: 26627651 DOI: 10.1107/s1399004715018672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/05/2015] [Indexed: 01/08/2023]
Abstract
Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a battery of degrading enzymes for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. A 9.4 kb gene cluster has recently been characterized in G. stearothermophilus that encodes a number of galactan-utilization elements. A key enzyme of this degradation system is Gan42B, an intracellular GH42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides into galactose units, making it of high potential for various biotechnological applications. The Gan42B monomer is made up of 686 amino acids, and based on sequence homology it was suggested that Glu323 is the catalytic nucleophile and Glu159 is the catalytic acid/base. In the current study, the detailed three-dimensional structure of wild-type Gan42B (at 2.45 Å resolution) and its catalytic mutant E323A (at 2.50 Å resolution), as determined by X-ray crystallography, are reported. These structures demonstrate that the three-dimensional structure of the Gan42B monomer generally correlates with the overall fold observed for GH42 proteins, consisting of three main domains: an N-terminal TIM-barrel domain, a smaller mixed α/β domain, and the smallest all-β domain at the C-terminus. The two catalytic residues are located in the TIM-barrel domain in a pocket-like active site such that their carboxylic functional groups are about 5.3 Å from each other, consistent with a retaining mechanism. The crystal structure demonstrates that Gan42B is a homotrimer, resembling a flowerpot in general shape, in which each monomer interacts with the other two to form a cone-shaped tunnel cavity in the centre. The cavity is ∼35 Å at the wide opening and ∼5 Å at the small opening and ∼40 Å in length. The active sites are situated at the interfaces between the monomers, so that every two neighbouring monomers participate in the formation of each of the three active sites of the trimer. They are located near the small opening of the cone tunnel, all facing the centre of the cavity. The biological relevance of this trimeric structure is supported by independent results obtained from gel-permeation chromatography. These data and their comparison to the structural data of related GH42 enzymes are used for a more general discussion concerning structure-activity aspects in this GH family.
Collapse
Affiliation(s)
- Hodaya V Solomon
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Orly Tabachnikov
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hadar Feinberg
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
22
|
Torpenholt S, De Maria L, Olsson MHM, Christensen LH, Skjøt M, Westh P, Jensen JH, Lo Leggio L. Effect of mutations on the thermostability of Aspergillus aculeatus β-1,4-galactanase. Comput Struct Biotechnol J 2015; 13:256-64. [PMID: 25941560 PMCID: PMC4412966 DOI: 10.1016/j.csbj.2015.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/27/2015] [Accepted: 03/31/2015] [Indexed: 11/17/2022] Open
Abstract
New variants of β-1,4-galactanase from the mesophilic organism Aspergillus aculeatus were designed using the structure of β-1,4-galactanase from the thermophile organism Myceliophthora thermophila as a template. Some of the variants were generated using PROPKA 3.0, a validated pKa prediction tool, to test its usefulness as an enzyme design tool. The PROPKA designed variants were D182N and S185D/Q188T, G104D/A156R. Variants Y295F and G306A were designed by a consensus approach, as a complementary and validated design method. D58N was a stabilizing mutation predicted by both methods. The predictions were experimentally validated by measurements of the melting temperature (Tm ) by differential scanning calorimetry. We found that the Tm is elevated by 1.1 °C for G306A, slightly increased (in the range of 0.34 to 0.65 °C) for D182N, D58N, Y295F and unchanged or decreased for S185D/Q188T and G104D/A156R. The Tm changes were in the range predicted by PROPKA. Given the experimental errors, only the D58N and G306A show significant increase in thermodynamic stability. Given the practical importance of kinetic stability, the kinetics of the irreversible enzyme inactivation process were also investigated for the wild-type and three variants and found to be biphasic. The half-lives of thermal inactivation were approximately doubled in G306A, unchanged for D182N and, disappointingly, a lot lower for D58N. In conclusion, this study tests a new method for estimating Tm changes for mutants, adds to the available data on the effect of substitutions on protein thermostability and identifies an interesting thermostabilizing mutation, which may be beneficial also in other galactanases.
Collapse
Key Words
- AZCL-galactan, azurine-crosslinked galactan
- AaGal, β-1,4-galactanase from Aspergillus aculeatus
- CAZY, carbohydrate active enzyme database
- Computational prediction
- DSC, differential scanning calorimetry
- GH53
- MtGal, β-1,4-galactanase from Myceliophthora thermophila
- Protein design
- Thermostability
- Tm, melting temperature
- TsGal, Talaromyces stipitatus galactanase
- WT, wild type
- β-1,4-galactanase
Collapse
Affiliation(s)
- Søs Torpenholt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | | - Mats H M Olsson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | | - Michael Skjøt
- Novozymes A/S, Smørmosevej 25, 2880 Bagsværd, Denmark
| | - Peter Westh
- NSM, Research Unit for Functional Biomaterials, University of Roskilde, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Jan H Jensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Viborg AH, Katayama T, Abou Hachem M, Andersen MC, Nishimoto M, Clausen MH, Urashima T, Svensson B, Kitaoka M. Distinct substrate specificities of three glycoside hydrolase family 42 -galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697. Glycobiology 2013; 24:208-16. [DOI: 10.1093/glycob/cwt104] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
24
|
Solomon HV, Tabachnikov O, Feinberg H, Govada L, Chayen NE, Shoham Y, Shoham G. Crystallization and preliminary crystallographic analysis of GanB, a GH42 intracellular β-galactosidase from Geobacillus stearothermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1114-9. [PMID: 24100561 PMCID: PMC3792669 DOI: 10.1107/s1744309113023609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/21/2013] [Indexed: 11/11/2022]
Abstract
Geobacillus stearothermophilus T-6 is a Gram-positive thermophilic soil bacterium that contains a multi-enzyme system for the utilization of plant cell-wall polysaccharides, including xylan, arabinan and galactan. The bacterium uses a number of endo-acting extracellular enzymes that break down the high-molecular-weight polysaccharides into decorated oligosaccharides. These oligosaccharides enter the cell and are further hydrolyzed into sugar monomers by a set of intracellular glycoside hydrolases. One of these intracellular degrading enzymes is GanB, a glycoside hydrolase family 42 β-galactosidase capable of hydrolyzing short β-1,4-galactosaccharides to galactose. GanB and related enzymes therefore play an important part in the hemicellulolytic utilization system of many microorganisms which use plant biomass for growth. The interest in the biochemical characterization and structural analysis of these enzymes stems from their potential biotechnological applications. GanB from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory as part of its complete structure-function study. The best crystals obtained for this enzyme belong to the primitive orthorhombic space group P2₁2₁2₁, with average crystallographic unit-cell parameters of a=71.84, b=181.35, c=196.57 Å. Full diffraction data sets to 2.45 and 2.50 Å resolution have been collected for both the wild-type enzyme and its E323A nucleophile catalytic mutant, respectively, as measured from flash-cooled crystals at 100 K using synchrotron radiation. These data are currently being used for the full three-dimensional crystal structure determination of GanB.
Collapse
Affiliation(s)
- Hodaya V. Solomon
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Orly Tabachnikov
- Department of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Hadar Feinberg
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lata Govada
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, England
| | - Naomi E. Chayen
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, England
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Gil Shoham
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
25
|
Sakamoto T, Ishimaru M. Peculiarities and applications of galactanolytic enzymes that act on type I and II arabinogalactans. Appl Microbiol Biotechnol 2013; 97:5201-13. [PMID: 23666442 DOI: 10.1007/s00253-013-4946-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/20/2013] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
Abstract
Arabinogalactans (AGs) are branched galactans to which arabinose residues are bound as side chains and are widely distributed in plant cell walls. They can be grouped into two types based on the structures of their backbones. Type I AGs have β-1,4-galactan backbones and are often covalently linked to the rhamnogalacturonan-I region of pectins. Type II AGs have β-1,3-galactan backbones and are often covalently linked to proteins. The main enzymes involved in the degradation of AGs are endo-β-galactanases, exo-β-galactanases, and β-galactosidases, although other enzymes such as α-L-arabinofuranosidases, β-L-arabinopyranosidases, and β-D-glucuronidases are required to remove the side chains for efficient degradation of the polysaccharides. Galactanolytic enzymes have a wide variety of potential uses, including the bioconversion of AGs to fermentable sugars for production of commodity chemicals like ethanol, biobleaching of cellulose pulp, modulation of pectin properties, improving animal feed, and determining the chemical structure of AGs. This review summarizes our current knowledge about the biochemical properties and potential applications of AG-degrading enzymes.
Collapse
Affiliation(s)
- Tatsuji Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | |
Collapse
|
26
|
Andersen JM, Barrangou R, Abou Hachem M, Lahtinen SJ, Goh YJ, Svensson B, Klaenhammer TR. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genomics 2013; 14:312. [PMID: 23663691 PMCID: PMC3684542 DOI: 10.1186/1471-2164-14-312] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/18/2013] [Indexed: 02/02/2023] Open
Abstract
Background Probiotic bifidobacteria in combination with prebiotic carbohydrates have documented positive effects on human health regarding gastrointestinal disorders and improved immunity, however the selective routes of uptake remain unknown for most candidate prebiotics. The differential transcriptomes of Bifidobacterium animalis subsp. lactis Bl-04, induced by 11 potential prebiotic oligosaccharides were analyzed to identify the genetic loci involved in the uptake and catabolism of α- and β-linked hexoses, and β-xylosides. Results The overall transcriptome was modulated dependent on the type of glycoside (galactosides, glucosides or xylosides) utilized. Carbohydrate transporters of the major facilitator superfamily (induced by gentiobiose and β-galacto-oligosaccharides (GOS)) and ATP-binding cassette (ABC) transporters (upregulated by cellobiose, GOS, isomaltose, maltotriose, melibiose, panose, raffinose, stachyose, xylobiose and β-xylo-oligosaccharides) were differentially upregulated, together with glycoside hydrolases from families 1, 2, 13, 36, 42, 43 and 77. Sequence analysis of the identified solute-binding proteins that determine the specificity of ABC transporters revealed similarities in the breadth and selectivity of prebiotic utilization by bifidobacteria. Conclusion This study identified the differential gene expression for utilization of potential prebiotics highlighting the extensive capabilities of Bifidobacterium lactis Bl-04 to utilize oligosaccharides. Results provide insights into the ability of this probiotic microbe to utilize indigestible carbohydrates in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Joakim M Andersen
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads Building 224, Kgs. Lyngby DK-2800, Denmark
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant.
Collapse
|
28
|
Belda E, Sekowska A, Le Fèvre F, Morgat A, Mornico D, Ouzounis C, Vallenet D, Médigue C, Danchin A. An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology (Reading) 2013; 159:757-770. [DOI: 10.1099/mic.0.064691-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Eugeni Belda
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | | | - François Le Fèvre
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Anne Morgat
- Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Genève 4, Switzerland
| | - Damien Mornico
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Christos Ouzounis
- Department of Biochemistry, Li KaShing Faculty of Medicine, The University of Hong Kong, 21, Sassoon Road, Hong Kong SAR, China
- Institute of Applied Biosciences, Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - David Vallenet
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Claudine Médigue
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Antoine Danchin
- Department of Biochemistry, Li KaShing Faculty of Medicine, The University of Hong Kong, 21, Sassoon Road, Hong Kong SAR, China
- AMAbiotics SAS, Bldg G1, 2 rue Gaston Crémieux, 91000 Evry, France
| |
Collapse
|
29
|
Karan R, Capes MD, DasSarma P, DasSarma S. Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 2013; 13:3. [PMID: 23320757 PMCID: PMC3556326 DOI: 10.1186/1472-6750-13-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/14/2013] [Indexed: 01/18/2023] Open
Abstract
Background Halorubrum lacusprofundi is a cold-adapted halophilic archaeon isolated from Deep Lake, a perennially cold and hypersaline lake in Antarctica. Its genome sequencing project was recently completed, providing access to many genes predicted to encode polyextremophilic enzymes active in both extremely high salinity and cold temperatures. Results Analysis of the genome sequence of H. lacusprofundi showed a gene cluster for carbohydrate utilization containing a glycoside hydrolase family 42 β-galactosidase gene, named bga. In order to study the biochemical properties of the β-galactosidase enzyme, the bga gene was PCR amplified, cloned, and expressed in the genetically tractable haloarchaeon Halobacterium sp. NRC-1 under the control of a cold shock protein (cspD2) gene promoter. The recombinant β-galactosidase protein was produced at 20-fold higher levels compared to H. lacusprofundi, purified using gel filtration and hydrophobic interaction chromatography, and identified by SDS-PAGE, LC-MS/MS, and ONPG hydrolysis activity. The purified enzyme was found to be active over a wide temperature range (−5 to 60°C) with an optimum of 50°C, and 10% of its maximum activity at 4°C. The enzyme also exhibited extremely halophilic character, with maximal activity in either 4 M NaCl or KCl. The polyextremophilic β-galactosidase was also stable and active in 10–20% alcohol-aqueous solutions, containing methanol, ethanol, n-butanol, or isoamyl alcohol. Conclusion The H. lacusprofundi β-galactosidase is a polyextremophilic enzyme active in high salt concentrations and low and high temperature. The enzyme is also active in aqueous-organic mixed solvents, with potential applications in synthetic chemistry. H. lacuprofundi proteins represent a significant biotechnology resource and for developing insights into enzyme catalysis under water limiting conditions. This study provides a system for better understanding how H. lacusprofundi is successful in a perennially cold, hypersaline environment, with relevance to astrobiology.
Collapse
Affiliation(s)
- Ram Karan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland, 701 E Pratt Street, Baltimore, MD 21202, USA
| | | | | | | |
Collapse
|
30
|
Tabachnikov O, Shoham Y. Functional characterization of the galactan utilization system of Geobacillus stearothermophilus. FEBS J 2013; 280:950-64. [PMID: 23216604 DOI: 10.1111/febs.12089] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/22/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022]
Abstract
UNLABELLED Type I galactan is a pectic polysaccharide composed of β-1,4 linked units of d-galactose and is part of the main plant cell wall polysaccharides, which are the most abundant sources of renewable carbon in the biosphere. The thermophilic bacterium Geobacillus stearothermophilus T-6 possesses an extensive system for the utilization of plant cell wall polysaccharides, including a 9.4-kb gene cluster, ganREFGBA, which encodes galactan-utilization elements. Based on enzyme activity assays, the ganEFGBA genes, which probably constitute an operon, are induced by short galactosaccharides but not by galactose. GanA is a glycoside hydrolase family 53 β-1,4-galactanase, active on high molecular weight galactan, producing galactotetraose as the main product. Homology modelling of the active site residues suggests that the enzyme can accommodate at least eight galactose molecules (at subsites -4 to +4) in the active site. GanB is a glycoside hydrolase family 42 β-galactosidase capable of hydrolyzing short β-1,4 galactosaccharides into galactose. Applying both GanA and GanB on galactan resulted in the full degradation of the polymer into galactose. The ganEFG genes encode an ATP-binding cassette sugar transport system whose sugar-binding lipoprotein, GanE, was shown to bind galacto-oligosaccharides. The utilization of galactan by G. stearothermophilus involves the extracellular galactanase GanA cleaving galactan into galacto-oligosaccharides that enter the cell via a specific transport system GanEFG. The galacto-oligosaccharides are further degraded by the intracellular β-galactosidase GanB into galactose, which is then metabolized into UDP-glucose via the Leloir pathway by the galKET gene products. DATABASE Nucleotide sequence data have been deposited in the GenBank database under the accession number JF327803.
Collapse
Affiliation(s)
- Orly Tabachnikov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
31
|
Gupta R, Govil T, Capalash N, Sharma P. Characterization of a glycoside hydrolase family 1 β-galactosidase from hot spring metagenome with transglycosylation activity. Appl Biochem Biotechnol 2012; 168:1681-93. [PMID: 23015191 DOI: 10.1007/s12010-012-9889-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/30/2012] [Indexed: 11/29/2022]
Abstract
A novel, thermostable, alkalophilic β-D-galactosidase (Mbgl) was isolated from a metagenome of geothermal springs in northern Himalayan region of India. Mbgl was 447 amino acids in size and had conserved catalytic residues E170 and E358, indicating that it belonged to family 1 of glycosyl hydrolases showing maximum homology (89 %) with uncharacterized β-galactosidase of Eubacterium, Meiothermus ruber DSM1279. Temperature and pH optima of Mbgl were 65 °C and 8.0 respectively, and it retained 80 % activity even at pH 10.0. Mbgl was active as a homotetramer, recognized β-(1,4)-D-galactoside as the preferred glycosidic bond, and preferentially hydrolyzed pNPgal with K(m) 3.33 mM and k(cat) 2,000 s(-1). It displayed high transglycosylation activity with wide acceptor specificity including hexoses and pentoses leading to the formation of prebiotic galacto-oligosaccharides whereas its lactose hydrolysis potential was low.
Collapse
Affiliation(s)
- Richa Gupta
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | | | | | | |
Collapse
|
32
|
Abstract
Galactose is a common monosaccharide that can be utilized by all living organisms via the activities of three main enzymes that make up the Leloir pathway: GalK, GalT, and GalE. In Bacillus subtilis, the absence of GalE causes sensitivity to exogenous galactose, leading to rapid cell lysis. This effect can be attributed to the accumulation of toxic galactose metabolites, since the galE mutant is blocked in the final step of galactose catabolism. In a screen for suppressor mutants restoring viability to a galE null mutant in the presence of galactose, we identified mutations in sinR, which is the major biofilm repressor gene. These mutations caused an increase in the production of the exopolysaccharide (EPS) component of the biofilm matrix. We propose that UDP-galactose is the toxic galactose metabolite and that it is used in the synthesis of EPS. Thus, EPS production can function as a shunt mechanism for this toxic molecule. Additionally, we demonstrated that galactose metabolism genes play an essential role in B. subtilis biofilm formation and that the expressions of both the gal and eps genes are interrelated. Finally, we propose that B. subtilis and other members of the Bacillus genus may have evolved to utilize naturally occurring polymers of galactose, such as galactan, as carbon sources. Bacteria switch from unicellular to multicellular states by producing extracellular matrices that contain exopolysaccharides. In such aggregates, known as biofilms, bacteria are more resistant to antibiotics. This makes biofilms a serious problem in clinical settings. The resilience of biofilms makes them very useful in industrial settings. Thus, understanding the production of biofilm matrices is an important problem in microbiology. In studying the synthesis of the biofilm matrix of Bacillus subtilis, we provide further understanding of a long-standing microbiological observation that certain mutants defective in the utilization of galactose became sensitive to it. In this work, we show that the toxicity observed before was because cells were grown under conditions that were not propitious to produce the exopolysaccharide component of the matrix. When cells are grown under conditions that favor matrix production, the toxicity of galactose is relieved. This allowed us to demonstrate that galactose metabolism is essential for the synthesis of the extracellular matrix.
Collapse
|
33
|
Modified mariner transposons for random inducible-expression insertions and transcriptional reporter fusion insertions in Bacillus subtilis. Appl Environ Microbiol 2011; 78:778-85. [PMID: 22113911 DOI: 10.1128/aem.07098-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transposons are mobile genetic elements bounded by insertion sequences that are recognized by a specific mobilizing transposase enzyme. The transposase may mobilize not only the insertion sequences but also intervening DNA. mariner is a particularly efficient transposon for the random chromosomal integration of genes and insertional mutagenesis. Here, we modify an existing mariner transposon, TnYLB, such that it can easily be genetically manipulated and introduced into Bacillus subtilis. We generate a series of three new mariner derivatives that mobilize spectinomycin, chloramphenicol, and kanamycin antibiotic resistance cassettes. Furthermore, we generate a series of transposons with a strong, outward-oriented, optionally isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible promoter for the random overexpression of neighboring genes and a series of transposons with a promoterless lacZ gene for the random generation of transcriptional reporter fusions. We note that the modification of the base transposon is not restricted to B. subtilis and should be applicable to any mariner-compatible host organism, provided that in vitro mutagenesis or an in vivo species-specific delivery vector is employed.
Collapse
|
34
|
Dong YN, Liu XM, Chen HQ, Xia Y, Zhang HP, Zhang H, Chen W. Enhancement of the hydrolysis activity of β-galactosidase from Geobacillus stearothermophilus by saturation mutagenesis. J Dairy Sci 2011; 94:1176-84. [PMID: 21338783 DOI: 10.3168/jds.2010-3775] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/08/2010] [Indexed: 11/19/2022]
Abstract
Thermostable β-galactosidase (BgaB) from Geobacillus stearothermophilus is characterized by its thermoactivity in the hydrolysis of lactose to produce lactose-free milk products. However, BgaB has limited activity toward lactose. We established a method for screening evolved mutants with high hydrolysis activity based on prediction of substrate binding sites. Seven amino acid residues were identified as candidates for substrate binding to galactose. To study the hydrolysis activity of these residues, we constructed mutants by site-saturation mutagenesis of these residue sites, and each variant was screened for its hydrolysis activity. The first round of mutagenesis showed that changes in amino acid residues of Arg109, Tyr272, and Glu351 resulted in altered hydrolysis activity, including greater activity toward ortho-nitrophenyl-β-d-galactopyranoside (oNPG). The mutants R109V and R109L displayed changes in the optimum pH from 7.0 to 6.5, and the mutant R109V/L displayed different substrate affinity and catalytic efficiency (k(cat)/K(m)). Mutant R109G showed complete loss of BgaB enzymatic activity, suggesting that Arg109 plays a significant role in maintaining hydrolysis activity. The optimum pH of mutant E351R increased from 7.0 to 7.5 and this mutant showed a prominent increase in catalytic efficiency with oNPG and lactose as substrates.
Collapse
Affiliation(s)
- Y-N Dong
- State Key Laboratory of Food Science and Technology, Hohhot 010018, P. R. China
| | | | | | | | | | | | | |
Collapse
|
35
|
Katrolia P, Zhang M, Yan Q, Jiang Z, Song C, Li L. Characterisation of a thermostable family 42 β-galactosidase (BgalC) family from Thermotoga maritima showing efficient lactose hydrolysis. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.08.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Schwab C, Sørensen KI, Gänzle MG. Heterologous expression of glycoside hydrolase family 2 and 42 β-galactosidases of lactic acid bacteria in Lactococcus lactis. Syst Appl Microbiol 2010; 33:300-7. [DOI: 10.1016/j.syapm.2010.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/02/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022]
|
37
|
Comparative analysis of four beta-galactosidases from Bifidobacterium bifidum NCIMB41171: purification and biochemical characterisation. Appl Microbiol Biotechnol 2008; 82:1079-88. [PMID: 19099301 DOI: 10.1007/s00253-008-1795-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
Four different beta-galactosidases (previously named BbgI, BbgII, BbgIII and BbgIV) from Bifidobacterium bifidum NCIMB41171 were overexpressed in Escherichia coli, purified to homogeneity and their biochemical properties and substrate preferences comparatively analysed. BbgI was forming a hexameric protein complex of 875 kDa, whereas BbgII, BbgIII and BbgIV were dimers with native molecular masses of 178, 351 and 248 kDa, respectively. BbgII was the only enzyme that preferred acidic conditions for optimal activity (pH 5.4-5.8), whereas the other three exhibited optima in more neutral pH ranges (pH 6.4-6.8). Na(+) and/or K(+) ions were prerequisite for BbgI and BbgIV activity in Bis-Tris-buffered solutions, whereas Mg(++) was strongly activating them in phosphate-buffered solutions. BbgII and BbgIII were slightly influenced from the presence or absence of cations, with Mg(++), Mn(++) and Ca(++) ions exerting the most positive effect. Determination of the specificity constants (k(cat)/K(m)) clearly indicated that BbgI (6.11 x 10(4) s(-1) M(-1)), BbgIII (2.36 x 10(4) s(-1) M(-1)) and especially BbgIV (4.01 x 10(5) s(-1) M(-1)) are highly specialised in the hydrolysis of lactose, whereas BbgII is more specific for beta-D-(1-->6) galactobiose (5.59 x 10(4) s(-1) M(-1)) than lactose (1.48 x 10(3) s(-1) M(-1)). Activity measurements towards other substrates (e.g. beta-D-(1-->6) galactobiose, beta-D-(1-->4) galactobiose, beta-D-(1-->4) galactosyllactose, N-acetyllactosamine, etc.) indicated that the beta-galactosidases were complementary to each other by hydrolysing different substrates and thus contributing in a different way to the bacterial physiology.
Collapse
|
38
|
Di Lauro B, Strazzulli A, Perugino G, La Cara F, Bedini E, Corsaro MM, Rossi M, Moracci M. Isolation and characterization of a new family 42 beta-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius: identification of the active site residues. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1784:292-301. [PMID: 18068682 DOI: 10.1016/j.bbapap.2007.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 10/22/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
Abstract
The thermoacidophilic bacterium Alicyclobacillus acidocaldarius is a rich source of glycoside hydrolases enabling its growth on several di- and polysaccharides. We report here the purification and the characterization of a beta-galactosidase from this source, the cloning of its gene, and the expression and the characterization of the recombinant enzyme (Aabeta-gal). The enzyme was purified 46-fold from A. acidocaldarius extracts; the gene for Aabeta-gal encoded a new member of the glycoside hydrolase family 42 (GH42) and it is flanked by a putative AraC/XylS regulator, however, the two genes were transcribed independently. The recombinant Aabeta-gal was characterized in detail revealing that it is optimally active and stable at 65 degrees C. Aabeta-gal is very specific for glycosides with an axial C4-OH at their non-reducing end, with kcat/KM values of 484, 186, and 332 s(-1) mM(-1) for 2-nitrophenyl-beta-d-galactoside, -fucoside, and 4-nitrophenyl-alpha-l-arabinoside, respectively. Finally, the characterization of the site-directed mutants Glu157Gly and Glu313Gly confirmed the latter as the nucleophile of the reaction and gave experimental evidence, for the first time in GH42, of the role of Glu157 as the acid/base of the catalyzed reaction.
Collapse
Affiliation(s)
- Barbara Di Lauro
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Delangle A, Prouvost AF, Cogez V, Bohin JP, Lacroix JM, Cotte-Pattat NH. Characterization of the Erwinia chrysanthemi Gan locus, involved in galactan catabolism. J Bacteriol 2007; 189:7053-61. [PMID: 17644603 PMCID: PMC2045229 DOI: 10.1128/jb.00845-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 07/12/2007] [Indexed: 11/20/2022] Open
Abstract
beta-1,4-Galactan is a major component of the ramified regions of pectin. Analysis of the genome of the plant pathogenic bacteria Erwinia chrysanthemi revealed the presence of a cluster of eight genes encoding proteins potentially involved in galactan utilization. The predicted transport system would comprise a specific porin GanL and an ABC transporter made of four proteins, GanFGK(2). Degradation of galactans would be catalyzed by the periplasmic 1,4-beta-endogalactanase GanA, which released oligogalactans from trimer to hexamer. After their transport through the inner membrane, oligogalactans would be degraded into galactose by the cytoplasmic 1,4-beta-exogalactanase GanB. Mutants affected for the porin or endogalactanase were unable to grow on galactans, but they grew on galactose and on a mixture of galactotriose, galactotetraose, galactopentaose, and galactohexaose. Mutants affected for the periplasmic galactan binding protein, the transporter ATPase, or the exogalactanase were only able to grow on galactose. Thus, the phenotypes of these mutants confirmed the functionality of the gan locus in transport and catabolism of galactans. These mutations did not affect the virulence of E. chrysanthemi on chicory leaves, potato tubers, or Saintpaulia ionantha, suggesting an accessory role of galactan utilization in the bacterial pathogeny.
Collapse
Affiliation(s)
- Aurélie Delangle
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR USTL-CNRS 8576 IFR147, Université des Sciences et Technologies de Lille, Bâtiment C9, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
40
|
Kim YW, Chen HM, Kim JH, Müllegger J, Mahuran D, Withers SG. Thioglycoligase-based assembly of thiodisaccharides: screening as beta-galactosidase inhibitors. Chembiochem 2007; 8:1495-9. [PMID: 17661304 PMCID: PMC2910745 DOI: 10.1002/cbic.200700263] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Indexed: 11/12/2022]
Affiliation(s)
- Young-Wan Kim
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Shaikh FA, Müllegger J, He S, Withers SG. Identification of the catalytic nucleophile in Family 42 beta-galactosidases by intermediate trapping and peptide mapping: YesZ from Bacillus subtilis. FEBS Lett 2007; 581:2441-6. [PMID: 17485082 DOI: 10.1016/j.febslet.2007.04.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/18/2007] [Accepted: 04/21/2007] [Indexed: 11/26/2022]
Abstract
The mechanism-based inhibitor 2,4-dinitrophenyl 2-deoxy-2-fluoro-beta-d-galactopyranoside (DNP2FGal) was used to inactivate the Family 42 beta-galactosidase (YesZ) from Bacillus subtilis via the trapping of a glycosyl-enzyme intermediate, thereby tagging the catalytic nucleophile in the active site. Proteolytic digestion of the inactivated enzyme and of a control sample of unlabeled enzyme, followed by comparative high-performance liquid chromatography and mass spectrometric analysis identified a labelled peptide of the sequence ETSPSYAASL. These data, combined with sequence alignments of this region with representative members of Family 42, unequivocally identify the catalytic nucleophile in this enzyme as Glu-295, thereby providing the first direct experimental proof of the identity of this residue within Family 42.
Collapse
Affiliation(s)
- Fathima Aidha Shaikh
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada
| | | | | | | |
Collapse
|