1
|
Lima RAT, Garay AV, Frederico TD, de Oliveira GM, Quirino BF, Barbosa JARG, Freitas SMD, Krüger RH. Biochemical and structural characterization of a family-9 glycoside hydrolase bioprospected from the termite Syntermes wheeleri gut bacteria metagenome. Enzyme Microb Technol 2025; 189:110654. [PMID: 40262434 DOI: 10.1016/j.enzmictec.2025.110654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/24/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
Glycosyl hydrolases (GH) are enzymes involved in the degradation of plant biomass. They are important for biorefineries that aim at the sustainable utilization of lignocellulosic residues to generate value-added products. The termite Syntermes wheeleri gut microbiota showed an abundance of bacteria from the phylum Firmicutes, a phylum with enzymes capable of breaking down cellulose and degrading lignin, facilitating the use of plant materials as a food source for termites. Using bioinformatics techniques, cellobiohydrolases were searched for in the gut metagenome of the termite Syntermes wheeleri, endemic to the Cerrado. After selecting sequences of the target enzymes, termite gut microbiome metatranscriptome data were used as the criteria to choose the GH9 enzyme sequence Exo8574. Here we present the biochemical and structural characterization of Exo8574, a GH9 enzyme that showed activity with the substrate p-nitrophenyl-D-cellobioside (pNPC), consistent with cellobiohydrolase activity. Bioinformatics tools were used to perform phylogeny studies of Exo8574 and to identify conserved families and domains. Exo8574 showed 48.8 % homology to a protein from a bacterium belonging to the phylum Firmicutes. The high-quality three-dimensional (3D) model of Exo8574 was obtained by protein structure prediction AlphaFold 2, a neural network-based method. After the heterologous expression of Exo8574 and its purification, biochemical experiments showed that the optimal activity of the enzyme was at a temperature of 55 ºC and pH 6.0, which was enhanced in the presence of metal ions, especially Fe2 +. The estimated kinetic parameters of Exo8574 using the synthetic substrate p-nithrophenyl-beta-D-cellobioside (pNPC) were: Vmax = 9.14 ± 0.2 x10-5 μmol/min and Km = 248.27 ± 26.35 μmol/L. The thermostability test showed a 50 % loss of activity after 1 h incubation at 55 °C. The secondary structure contents of Exo8574 evaluated by Circular Dichroism were pH dependent, with greater structuring of protein in β-antiparallel and α-helices at pH 6.0. The similarity between the CD results and the Ramachandran plot of the 3D model suggests that a reliable model has been obtained. Altogether, the results of the biochemical and structural characterization showed that Exo8574 is capable of acting on p-nithrophenyl-beta-D-cellobioside (pNPC), a substrate that mimics bonds cleaved by cellobiohydrolases. These findings have significant implications for advancing in the field of biomass conversion while also contributing to efforts aimed at overcoming challenges in developing more efficient cellulase cocktails.
Collapse
Affiliation(s)
| | - Aisel Valle Garay
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Tayná Diniz Frederico
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Gideane Mendes de Oliveira
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Betania Ferraz Quirino
- Embrapa-Agroenegy, Genetics and Biotechnology Laboratory, Brasília, DF 70770-901, Brazil
| | | | - Sonia Maria de Freitas
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - Ricardo Henrique Krüger
- Department of Cell Biology, Darcy Ribeiro Campus, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
2
|
Jia M, Chen Y, Wang J, Wang J, Ma Y, Wang Y, Ma Q, Zhang Y, Liu W, Liu K. His 70 of Acetivibrio alkalicellulosi Cel5A is important for efficient hydrolysis of short cellodextrins. AMB Express 2025; 15:53. [PMID: 40111668 PMCID: PMC11926323 DOI: 10.1186/s13568-025-01858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
Cellulose, a linear glucan linked by β-1,4 glycosidic bonds, is the most abundant renewable polysaccharide on earth. Complete enzymatic hydrolysis of cellulose liberates the readily metabolizable glucose that could be further converted to valuable biocommodities, and essential to this process are cellulases that hydrolyze the β-1,4 glycosidic bonds. Cellulases are among the most intensively studied and best understood enzymes, and many key residues have been uncovered and interrogated with respect to their functions in catalysis and/or substrate binding. However, it remains to be explored whether additional residues, especially in many poorly characterized cellulases such as processive endoglucanases, might also be functionally important. Here, we investigated a processive endoglucanase from an alkaliphilic bacterium Acetivibrio alkalicellulosi AaCel5A that consists of a glycohydrolase family 5 (GH5) domain and two tandem carbohydrate-binding module family 6 (CBM6) domains. Via structure-guided engineering, we uncovered the functional importance of a previously underexplored but relatively conserved histidine (histidine70 or His70). His70 itself appears to be largely dispensable for hydrolyzing β-1,4 glycosidic bonds, but it is important for efficient hydrolysis of short cellodextrins such as cellotriose, cellotetraose, and cellopentaose, likely through its ability to coordinate substrate binding. Our work thus provides important mechanistic insights into how processive endoglucanases may act on short cellodextrins.
Collapse
Affiliation(s)
- Mengxiang Jia
- Department of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yangyang Chen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jingting Wang
- in vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Jiahan Wang
- in vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yihua Ma
- in vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yujiao Wang
- Cosychem Technology (Tianjin) Co., Ltd., Tianjin, China
| | - Qian Ma
- Department of Bioengineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yiheng Zhang
- in vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, China.
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Kuanqing Liu
- in vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
3
|
Yilmaz AA, Gurkok S. Biotechnological uses of purified and characterized alkaline cellulase from extremophilic Bacillus pumilus VLC7 from Lake Van. World J Microbiol Biotechnol 2025; 41:60. [PMID: 39900841 PMCID: PMC11790762 DOI: 10.1007/s11274-025-04271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025]
Abstract
The present study focuses on the isolation and characterization of a bacterium from Lake Van adapted to an alkaline pH environment with significant cellulase production potential. The identified isolate, Bacillus pumilus VLC7 (GenBank Acc No: OR415888.1), exhibited the highest cellulase activity among other alkaliphilic isolates. The purification employing protein precipitation by ammonium sulfate, ultrafiltration, and ion exchange chromatography resulted in 20-fold purification with a specific activity of 16 U/mg protein. Cellulase had a molecular weight of 76 kDa, 3.13 mM Km and 0.160 U/mg Vmax values. The enzyme displayed maximum activity at pH 9.0 and 40 °C and retained at least 80% of its activity at temperatures of 25-60 °C for 90 min and pH 4-12 for one hour. Stability tests also revealed the enzyme's resilience to various reagents, metal ions, organic solvents, and detergents. Furthermore, the biotechnological applications of cellulase were explored, demonstrating its effectiveness in fabric biopolishing (removing pilling), as well as in the removal of fabric dyes. The research findings underscore the potential of B. pumilus VLC7 as a valuable source for eco-friendly industrial biotechnology applications.
Collapse
Affiliation(s)
- Aysun Ayse Yilmaz
- Institute of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Sumeyra Gurkok
- Department of Biology, Science Faculty, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
4
|
Zhao L, Zhang L, Qin Y, Li W, Li Y, Cao H, Cao P, Ding K, He W. Screening, characterization, and optimization of the fermentation conditions of a novel cellulase-producing microorganism from soil of Qinghai-Tibet Plateau. Biotechnol Appl Biochem 2024; 71:1211-1225. [PMID: 38845151 DOI: 10.1002/bab.2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 12/09/2024]
Abstract
Cellulases play an important role in the bioconversion of lignocellulose. Microorganisms found in extreme environments are a potentially rich source of cellulases with unique properties. Due to the uniqueness of the environment, the abundant microbial resources in the Qinghai-Tibet Plateau (QTP) are worth being explored. The aim of this study was to isolate and characterize an acidic, mesophilic cellulase-producing microorganism from QTP. Moreover, the fermentation conditions for cellulase production were optimized for future application of cellulase in the development of lignocellulose biomass. A novel cellulase-producing strain, Penicillium oxalicum XC10, was isolated from the soil of QTP. The cellulase produced by XC10 was a mesophilic cellulase that exhibited good acid resistance and some cold-adaptation properties, with maximum activity at pH 4.0 and 40°C. Cellulase activity was significantly enhanced by Na+ (p < 0.05) and inhibited by Mg2+, Ca2+, Cu2+, and Fe3+ (p < 0.05). After optimization, maximum cellulase activity (8.56 U/mL) was increased nearly 10-fold. Optimal fermentation conditions included an inoculum size of 3% (v/v) in a mixture of corn straw (40 g/L), peptone (5 g/L), and Mg2+ (4 g/L), at pH 4.0, 33°C, and shaking at 200 rpm. The specific properties of the P. oxalicum XC10 cellulase suggest the enzyme may serve as an excellent candidate for the bioconversion and utilization of lignocellulose biomass generated as agricultural and food-processing wastes.
Collapse
Affiliation(s)
- Longmei Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, P. R. China
| | - Lan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, P. R. China
- College of Life Science and Technology, Southwest Minzu University, Chengdu, P. R. China
| | - Yaning Qin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, P. R. China
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Wang Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, P. R. China
| | - Yuanxiao Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, P. R. China
| | - Hui Cao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, P. R. China
| | - Pinghua Cao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, P. R. China
| | - Ke Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, P. R. China
| | - Wanling He
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, P. R. China
| |
Collapse
|
5
|
Castaño JD, El Khoury IV, Goering J, Evans JE, Zhang J. Unlocking the distinctive enzymatic functions of the early plant biomass deconstructive genes in a brown rot fungus by cell-free protein expression. Appl Environ Microbiol 2024; 90:e0012224. [PMID: 38567954 PMCID: PMC11205865 DOI: 10.1128/aem.00122-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/10/2024] [Indexed: 05/22/2024] Open
Abstract
Saprotrophic fungi that cause brown rot of woody biomass evolved a distinctive mechanism that relies on reactive oxygen species (ROS) to kick-start lignocellulosic polymers' deconstruction. These ROS agents are generated at incipient decay stages through a series of redox relays that shuttle electrons from fungus's central metabolism to extracellular Fenton chemistry. A list of genes has been suggested encoding the enzyme catalysts of the redox processes involved in ROS's function. However, navigating the functions of the encoded enzymes has been challenging due to the lack of a rapid method for protein synthesis. Here, we employed cell-free expression system to synthesize four redox or degradative enzymes, which were identified, by transcriptomic data, as conserved players of the ROS oxidation phase across brown rot fungal species. All four enzymes were successfully expressed and showed activities that enable confident assignment of function, namely, benzoquinone reductase (BQR), ferric reductase, α-L-arabinofuranosidase (ABF), and heme-thiolate peroxidase (HTP). Detailed analysis of their catalytic features within the context of brown rot environments allowed us to interpret their roles during ROS-driven wood decomposition. Specifically, we validated the functions of BQR as the driver redox enzyme of Fenton cycles and reconstructed its interactions with the co-occurring HTP or laccase and ABF. Taken together, this research demonstrated that the cell-free expression platform is adequate for synthesizing functional fungal enzymes and provided an alternative route for the rapid characterization of fungal proteins, escalating our understanding of the distinctive biocatalyst system for plant biomass conversion.IMPORTANCEBrown rot fungi are efficient wood decomposers in nature, and their unique degradative systems harbor untapped catalysts pursued by the biorefinery and bioremediation industries. While the use of "omics" platforms has recently uncovered the key "oxidative-hydrolytic" mechanisms that allow these fungi to attack lignocellulose, individual protein characterization is lagging behind due to the lack of a robust method for rapid synthesis of crucial fungal enzymes. This work delves into the studies of biochemical functions of brown rot enzymes using a rapid, cell-free expression platform, which allowed the successful depictions of enzymes' catalytic features, their interactions with Fenton chemistry, and their roles played during the incipient stage of brown rot when fungus sets off the reactive oxygen species for oxidative degradation. We expect this research could illuminate cell-free protein expression system's use to fulfill the increasing need for functional studies of fungal enzymes, advancing the discoveries of novel biomass-converting catalysts.
Collapse
Affiliation(s)
- Jesus D. Castaño
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - Irina V. El Khoury
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Joshua Goering
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| | - James E. Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Jiwei Zhang
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
6
|
Liu H, Xiong C, Wang S, Yang H, Sun Y. Biodegradation of the strobilurin fungicide pyraclostrobin by Burkholderia sp. Pyr-1: Characteristics, degradation pathway, water remediation, and toxicity assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123833. [PMID: 38522608 DOI: 10.1016/j.envpol.2024.123833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Pyraclostrobin, a widely used fungicide, poses significant risks to both the environment and human health. However, research on the microbial degradation process of pyraclostrobin was scarce. Here, a pyraclostrobin-degrading strain, identified as Burkholderia sp. Pyr-1, was isolated from activated sludge. Pyraclostrobin was efficiently degraded by strain Pyr-1, and completely eliminated within 6 d in the presence of glucose. Additionally, pyraclostrobin degradation was significantly enhanced by the addition of divalent metal cations (Mn2+ and Cu2+). The degradation pathway involving ether bond and N-O bond cleavage was proposed by metabolite identification. The sodium alginate-immobilized strain Pyr-1 had a higher pyraclostrobin removal rate from contaminated lake water than the free cells. Moreover, the toxicity evaluation demonstrated that the metabolite 1-(4-chlorophenyl)-1H-pyrazol-3-ol significantly more effectively inhibited Chlorella ellipsoidea than pyraclostrobin, while its degradation products by strain Pyr-1 alleviated the growth inhibition of C. ellipsoidea, which confirmed that the low-toxic metabolites were generated from pyraclostrobin by strain Pyr-1. The study provides a potential strain Pyr-1 for the bioremediation in pyraclostrobin-contaminated aquatic environments.
Collapse
Affiliation(s)
- Hongming Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, PR China; Anhui Basic Discipline Research Center of Artificial Intelligence Biotechnology and Synthetic Biology, Anhui Normal University, Wuhu, 241000, Anhui, PR China.
| | - Chengcheng Xiong
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, PR China; Anhui Basic Discipline Research Center of Artificial Intelligence Biotechnology and Synthetic Biology, Anhui Normal University, Wuhu, 241000, Anhui, PR China
| | - Siwen Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, PR China; Anhui Basic Discipline Research Center of Artificial Intelligence Biotechnology and Synthetic Biology, Anhui Normal University, Wuhu, 241000, Anhui, PR China
| | - Hao Yang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, PR China; Anhui Basic Discipline Research Center of Artificial Intelligence Biotechnology and Synthetic Biology, Anhui Normal University, Wuhu, 241000, Anhui, PR China
| | - Yang Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, PR China; Anhui Basic Discipline Research Center of Artificial Intelligence Biotechnology and Synthetic Biology, Anhui Normal University, Wuhu, 241000, Anhui, PR China
| |
Collapse
|
7
|
Tan R, Sun Q, Yan Y, Chen T, Wang Y, Li J, Guo X, Fan Z, Zhang Y, Chen L, Wu G, Wu N. Co-production of pigment and high value-added bacterial nanocellulose from Suaeda salsa biomass with improved efficiency of enzymatic saccharification and fermentation. Front Bioeng Biotechnol 2023; 11:1307674. [PMID: 38098970 PMCID: PMC10720727 DOI: 10.3389/fbioe.2023.1307674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
This study evaluated the co-production of pigment and bacterial nanocellulose (BNC) from S. salsa biomass. The extraction of the beet red pigment reduced the salts and flavonoids contents by 82.7%-100%, promoting the efficiencies of enzymatic saccharification of the biomass and the fermentation of BNC from the hydrolysate. SEM analysis revealed that the extraction process disrupted the lignocellulosic fiber structure, and the chemical analysis revealed the lessened cellulase inhibitors, consequently facilitating enzymatic saccharification for 10.4 times. BNC producing strains were found to be hyper-sensitive to NaCl stress, produced up to 400.4% more BNC from the hydrolysate after the extraction. The fermentation results of BNC indicated that the LDU-A strain yielded 2.116 g/L and 0.539 g/L in ES-M and NES-M, respectively. In comparison to the control, the yield in ES-M increased by approximately 20.0%, while the enhancement in NES-M was more significant, reaching 292.6%. After conducting a comprehensive characterization of BNC derived from S. salsa through Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Thermogravimetric Analysis (TGA), the average fiber diameter distribution of these four BNC materials ranges from 22.23 to 33.03 nanometers, with a crystallinity range of 77%-90%. Additionally, they exhibit a consistent trend during the thermal degradation process, further emphasizing their stability in high-temperature environments and similar thermal properties. Our study found an efficient co-production approach of pigment and BNC from S. salsa biomass. Pigment extraction made biomass more physically and chemically digestible to cellulase, and significantly improved BNC productivity and quality.
Collapse
Affiliation(s)
- Ran Tan
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Qiwei Sun
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Yiran Yan
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Tao Chen
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Yifei Wang
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Jiakun Li
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
| | - Xiaohong Guo
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| | - Zuoqing Fan
- Shandong Institute of Sericulture, Yantai, China
| | - Yao Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, China
| | - Linxu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guochao Wu
- Shandong Key Laboratory of Edible Mushroom Technology, School of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China
| | - Nan Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
8
|
Iyyappan J, Pravin R, Al-Ghanim KA, Govindarajan M, Nicoletti M, Baskar G. Dual strategy for bioconversion of elephant grass biomass into fermentable sugars using Trichoderma reesei towards bioethanol production. BIORESOURCE TECHNOLOGY 2023; 374:128804. [PMID: 36849101 DOI: 10.1016/j.biortech.2023.128804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
In this study, biodelignification and enzymatic hydrolysis of elephant grass were performed by recombinant and native strain of Trichoderma reesei, respectively. Initially, rT. reesei displaying Lip8H and MnP1 gene was used for biodelignification with NiO nanoparticles. Saccharification was performed by combining hydrolytic enzyme produced with NiO nanoparticles. Elephant grass hydrolysate was used for bioethanol production using Kluyveromyces marxianus. Maximum lignolytic enzyme production was obtained with 15 µg/L of NiO nanoparticles and initial pH of 5 at 32 °C. Subsequently, about 54% of lignin degradation was achieved after 192 h. Hydrolytic enzymes showed elevated enzyme activity and resulted in 84.52 ± 3.5 g/L of total reducing sugar at 15 µg/mL NiO NPs. About 14.65 ± 1.75 g/L of ethanol was produced using K. marxianus after 24 h. Thus, dual strategy employed for conversion of elephant grass biomass into fermentable sugar and subsequent biofuel production could become potential platform for commercialization.
Collapse
Affiliation(s)
- Jayaraj Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602107, India
| | - Ravichandran Pravin
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, Tamil Nadu, India
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Rome 00185, Italy
| | - Gurunathan Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, Tamil Nadu, India.
| |
Collapse
|
9
|
Full-Chain FeCl 3 Catalyzation Is Sufficient to Boost Cellulase Secretion and Cellulosic Ethanol along with Valorized Supercapacitor and Biosorbent Using Desirable Corn Stalk. Molecules 2023; 28:molecules28052060. [PMID: 36903307 PMCID: PMC10004197 DOI: 10.3390/molecules28052060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Cellulosic ethanol is regarded as a perfect additive for petrol fuels for global carbon neutralization. As bioethanol conversion requires strong biomass pretreatment and overpriced enzymatic hydrolysis, it is increasingly considered in the exploration of biomass processes with fewer chemicals for cost-effective biofuels and value-added bioproducts. In this study, we performed optimal liquid-hot-water pretreatment (190 °C for 10 min) co-supplied with 4% FeCl3 to achieve the near-complete biomass enzymatic saccharification of desirable corn stalk for high bioethanol production, and all the enzyme-undigestible lignocellulose residues were then examined as active biosorbents for high Cd adsorption. Furthermore, by incubating Trichoderma reesei with the desired corn stalk co-supplied with 0.05% FeCl3 for the secretion of lignocellulose-degradation enzymes in vivo, we examined five secreted enzyme activities elevated by 1.3-3.0-fold in vitro, compared to the control without FeCl3 supplementation. After further supplying 1:2 (w/w) FeCl3 into the T. reesei-undigested lignocellulose residue for the thermal-carbonization process, we generated highly porous carbon with specific electroconductivity raised by 3-12-fold for the supercapacitor. Therefore, this work demonstrates that FeCl3 can act as a universal catalyst for the full-chain enhancement of biological, biochemical, and chemical conversions of lignocellulose substrates, providing a green-like strategy for low-cost biofuels and high-value bioproducts.
Collapse
|
10
|
Maloney KM, Schiffbauer JD, Halverson GP, Xiao S, Laflamme M. Preservation of early Tonian macroalgal fossils from the Dolores Creek Formation, Yukon. Sci Rep 2022; 12:6222. [PMID: 35418588 PMCID: PMC9007953 DOI: 10.1038/s41598-022-10223-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
The rise of eukaryotic macroalgae in the late Mesoproterozoic to early Neoproterozoic was a critical development in Earth’s history that triggered dramatic changes in biogeochemical cycles and benthic habitats, ultimately resulting in ecosystems habitable to animals. However, evidence of the diversification and expansion of macroalgae is limited by a biased fossil record. Non-mineralizing organisms are rarely preserved, occurring only in exceptional environments that favor fossilization. Investigating the taphonomy of well-preserved macroalgae will aid in identifying these target environments, allowing ecological trends to be disentangled from taphonomic overprints. Here we describe the taphonomy of macroalgal fossils from the Tonian Dolores Creek Formation (ca. 950 Ma) of northwestern Canada (Yukon Territory) that preserves cm-scale macroalgae. Analytical microscopy, including scanning electron microscopy and tomographic x-ray microscopy, was used to investigate fossil preservation, which was the result of a combination of pyritization and aluminosilicification, similar to accessory mineralization observed in Paleozoic Burgess Shale-type fossils. These new Neoproterozoic fossils help to bridge a gap in the fossil record of early algae, offer a link between the fossil and molecular record, and provide new insights into evolution during the Tonian Period, when many eukaryotic lineages are predicted to have diversified.
Collapse
Affiliation(s)
- Katie M Maloney
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - James D Schiffbauer
- Department of Geological Sciences, University of Missouri, Columbia, MO, 65211, USA.,X-Ray Microanalysis Core, University of Missouri, Columbia, MO, 65211, USA
| | - Galen P Halverson
- Department of Earth and Planetary Sciences/GEOTOP, McGill University, Montréal, QC, H3A 0E8, Canada
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Marc Laflamme
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
11
|
Metagenomic mining and structure-function studies of a hyper-thermostable cellobiohydrolase from hot spring sediment. Commun Biol 2022; 5:247. [PMID: 35318423 PMCID: PMC8940973 DOI: 10.1038/s42003-022-03195-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Enzymatic breakdown is an attractive cellulose utilisation method with a low environmental load. Its high temperature operation could promote saccharification and lower contamination risk. Here we report a hyper-thermostable cellobiohydrolase (CBH), named HmCel6A and its variant HmCel6A-3SNP that were isolated metagenomically from hot spring sediments and expressed in Escherichia coli. They are classified into glycoside hydrolases family 6 (GH6). HmCel6A-3SNP had three amino acid replacements to HmCel6A (P88S/L230F/F414S) and the optimum temperature at 95 °C, while HmCel6A did it at 75 °C. Crystal structure showed conserved features among GH6, a (β/α)8-barrel core and catalytic residues, and resembles TfCel6B, a bacterial CBH II of Thermobifida fusca, that had optimum temperature at 60 °C. From structure-function studies, we discuss unique structural features that allow the enzyme to reach its high thermostability level, such as abundance of hydrophobic and charge-charge interactions, characteristic metal bindings and disulphide bonds. Moreover, structure and surface plasmon resonance analysis with oligosaccharides suggested that the contribution of an additional tryptophan located at the tunnel entrance could aid in substrate recognition and thermostability. These results may help to design efficient enzymes and saccharification methods for cellulose working at high temperatures. Bacteria from hot springs are known for highly thermostable enzymes, which may have industrial potential. Here, a unique thermostable cellobiohydrolase is reported that can breakdown cellulose at temperature up to 95 degrees Celsius.
Collapse
|
12
|
Kim M, Elbahrawi M, Aryaei A, Nakhla G, Santoro D, Batstone DJ. Kinetics of aerobic cellulose degradation in raw municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149852. [PMID: 34461471 DOI: 10.1016/j.scitotenv.2021.149852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Cellulose contributes approximately one third of the influent suspended solids to wastewater treatment plants and is a key target for resource recovery. This study investigated the temperature impact on biological aerobic degradation of cellulose in laboratory-scale sequencing batch reactors (SBR) at four different temperatures (10-33 °C) and two different solids retention times (SRT) of 15 days and 3 days. The degradation efficiency of cellulose was observed to increase with temperature and was slightly dependent on SRT (80%-90% at an SRT of 15 days, and 78%-85% at an SRT of 3 days). Hydrolysis followed 1st order kinetics, rather than the biomass dependent Contois kinetics (default in the activated sludge models), with a hydrolysis coefficient at 20 °C of 1.14 ± 0.01 day-1.
Collapse
Affiliation(s)
- Mingu Kim
- Chemical and Biochemical Engineering, University of Western Ontario, London, ON, Canada
| | - Moustafa Elbahrawi
- Civil and Environmental Engineering, University of Western Ontario, London, ON, Canada
| | - Azardokht Aryaei
- Chemical and Biochemical Engineering, University of Western Ontario, London, ON, Canada
| | - George Nakhla
- Chemical and Biochemical Engineering, University of Western Ontario, London, ON, Canada; Civil and Environmental Engineering, University of Western Ontario, London, ON, Canada.
| | | | - Damien J Batstone
- Advanced Water Management Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Yan C, Hao C, Jin W, Dong WW, Quan LH. Biotransformation of Ginsenoside Rb1 to Ginsenoside F2 by Recombinant β-glucosidase from Rat Intestinal Enterococcus gallinarum. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0008-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Lv X, Yang G, Gong Z, Cheng X, Shuai L, Huang L, Chen L, Luo X, Liu J. Using poly(N-Vinylcaprolactam) to Improve the Enzymatic Hydrolysis Efficiency of Phenylsulfonic Acid-Pretreated Bamboo. Front Bioeng Biotechnol 2021; 9:804456. [PMID: 34917604 PMCID: PMC8668804 DOI: 10.3389/fbioe.2021.804456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/18/2021] [Indexed: 11/20/2022] Open
Abstract
Chemical pretreatment followed by enzymatic hydrolysis has been regarded as a viable way to produce fermentable sugars. Phenylsulfonic acid (PSA) pretreatment could efficiently fractionate the non-cellulosic components (hemicelluloses and lignin) from bamboo and result in increased cellulose accessibility that was 10 times that of untreated bamboo. However, deposited lignin could trigger non-productive adsorption to enzymes, which therefore significantly decreased the enzymatic hydrolysis efficiency of PSA-pretreated bamboo substrates. Herein, poly(N-vinylcaprolactam) (PNVCL), a non-ionic surfactant, was developed as a novel additive for overcoming the non-productive adsorption of lignin during enzymatic hydrolysis. PNVCL was found to be not only more effective than those of commonly used lignosulfonate and polyvinyl alcohol for overcoming the negative effect of lignin, but also comparable to the robust Tween 20 and bovine serum albumin additives. A PNVCL loading at 1.2 g/L during enzymatic hydrolysis of PSA pretreated bamboo substrate could achieve an 80% cellulosic enzymatic conversion and meanwhile reduce the cellulase loading by three times as compared to that without additive. Mechanistic investigations indicated that PNVCL could block lignin residues through hydrophobic interactions and the resultant PNVCL coating resisted the adsorption of cellulase via electrostatic repulsion and/or hydration. This practical method can improve the lignocellulosic enzymatic hydrolysis efficiency and thereby increase the productivity and profitability of biorefinery.
Collapse
Affiliation(s)
- Xianqing Lv
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guangxu Yang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenggang Gong
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Cheng
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Shuai
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liulian Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lihui Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolin Luo
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing, China
| | - Jing Liu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Vaz JE, Rabelo L, Zaiter MA, Pereira WES, Metzker G, Boscolo M, da Silva R, Gomes E, da Silva RR. Functional properties and potential application of ethanol tolerant β-glucosidases from Pichia ofunaensis and Trichosporon multisporum yeasts. 3 Biotech 2021; 11:467. [PMID: 34745818 PMCID: PMC8531188 DOI: 10.1007/s13205-021-03027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022] Open
Abstract
β-Glucosidases have been extensively investigated to integrate the enzyme complex for cellulose fiber saccharification and for improving the aroma of wine. To produce these enzymes, greater attention has been given to filamentous fungi and bacteria, and few investigations have targeted the potential applications of enzymes secreted by yeasts. Addressing this issue, in this study, β-glucosidases were produced by the Pichia ofunaensis and Trichosporon multisporum yeasts, via solid state fermentation with wheat bran as a substrate. When using p-Nitrophenyl β-d-glucopyranoside (pNPG) as an enzyme substrate, maximum β-glucosidase activities were detected at pH 5.5-6.0 and 50-60 °C for P. ofunaensis, and pH 5-6 and 55 °C for T. multisporum. Both enzymes were able to hydrolyze cellobiose and exhibited stability over a wide range of pH (3.5-9.0) for 24 h at 4 °C, thermostability up to 50 °C for 1 h and tolerance to 10 mM phenolic compounds. Negative modulation on enzyme activity was observed in the presence of Cu2+, Fe3+, Zn2+, Al3+ and Hg2+, while both β-glucosidases were tolerant to 30% methanol, isopropanol and acetone. In the presence of ethanol and glucose, enzymes from P. ofunaensis were the more active and stable of the two. These enzymes, especially the P. ofunaensis β-glucosidases, could be tested in enology for improving the aroma of wine and for integrating a cellulolytic complex to produce 2G ethanol.
Collapse
Affiliation(s)
- Jaqueline Elaine Vaz
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/Cristóvão Colombo, 2265, Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Lacan Rabelo
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/Cristóvão Colombo, 2265, Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Mohammed Anas Zaiter
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/Cristóvão Colombo, 2265, Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Waldir Eduardo Simioni Pereira
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/Cristóvão Colombo, 2265, Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Gustavo Metzker
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/Cristóvão Colombo, 2265, Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Maurício Boscolo
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/Cristóvão Colombo, 2265, Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Roberto da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/Cristóvão Colombo, 2265, Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Eleni Gomes
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/Cristóvão Colombo, 2265, Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| | - Ronivaldo Rodrigues da Silva
- Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R/Cristóvão Colombo, 2265, Jd Nazareth, Ibilce-Unesp, São José do Rio Preto, São Paulo Brazil
| |
Collapse
|
16
|
Chen A, Wang D, Ji R, Li J, Gu S, Tang R, Ji C. Structural and Catalytic Characterization of TsBGL, a β-Glucosidase From Thermofilum sp. ex4484_79. Front Microbiol 2021; 12:723678. [PMID: 34659150 PMCID: PMC8517440 DOI: 10.3389/fmicb.2021.723678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Beta-glucosidase is an enzyme that catalyzes the hydrolysis of the glycosidic bonds of cellobiose, resulting in the production of glucose, which is an important step for the effective utilization of cellulose. In the present study, a thermostable β-glucosidase was isolated and purified from the Thermoprotei Thermofilum sp. ex4484_79 and subjected to enzymatic and structural characterization. The purified β-glucosidase (TsBGL) exhibited maximum activity at 90°C and pH 5.0 and displayed maximum specific activity of 139.2μmol/min/mgzne against p-nitrophenyl β-D-glucopyranoside (pNPGlc) and 24.3μmol/min/mgzen against cellobiose. Furthermore, TsBGL exhibited a relatively high thermostability, retaining 84 and 47% of its activity after incubation at 85°C for 1.5h and 90°C for 1.5h, respectively. The crystal structure of TsBGL was resolved at a resolution of 2.14Å, which revealed a classical (α/β)8-barrel catalytic domain. A structural comparison of TsBGL with other homologous proteins revealed that its catalytic sites included Glu210 and Glu414. We provide the molecular structure of TsBGL and the possibility of improving its characteristics for potential applications in industries.
Collapse
Affiliation(s)
- Anke Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Dan Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Rui Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Rong Tang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Chaoneng Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Chanda K, Mozumder AB, Chorei R, Gogoi RK, Prasad HK. A Lignocellulolytic Colletotrichum sp. OH with Broad-Spectrum Tolerance to Lignocellulosic Pretreatment Compounds and Derivatives and the Efficiency to Produce Hydrogen Peroxide and 5-Hydroxymethylfurfural Tolerant Cellulases. J Fungi (Basel) 2021; 7:785. [PMID: 34682207 PMCID: PMC8540663 DOI: 10.3390/jof7100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 10/25/2022] Open
Abstract
Fungal endophytes are an emerging source of novel traits and biomolecules suitable for lignocellulosic biomass treatment. This work documents the toxicity tolerance of Colletotrichum sp. OH toward various lignocellulosic pretreatment-derived inhibitors. The effects of aldehydes (vanillin, p-hydroxybenzaldehyde, furfural, 5-hydroxymethylfurfural; HMF), acids (gallic, formic, levulinic, and p-hydroxybenzoic acid), phenolics (hydroquinone, p-coumaric acid), and two pretreatment chemicals (hydrogen peroxide and ionic liquid), on the mycelium growth, biomass accumulation, and lignocellulolytic enzyme activities, were tested. The reported Colletotrichum sp. OH was naturally tolerant to high concentrations of single inhibitors like HMF (IC50; 17.5 mM), levulinic acid (IC50; 29.7 mM), hydroquinone (IC50; 10.76 mM), and H2O2 (IC50; 50 mM). The lignocellulolytic enzymes displayed a wide range of single and mixed inhibitor tolerance profiles. The enzymes β-glucosidase and endoglucanase showed H2O2- and HMF-dependent activity enhancements. The enzyme β-glucosidase activity was 34% higher in 75 mM and retained 20% activity in 125 mM H2O2. Further, β-glucosidase activity increased to 24 and 32% in the presence of 17.76 and 8.8 mM HMF. This research suggests that the Colletotrichum sp. OH, or its enzymes, can be used to pretreat plant biomass, hydrolyze it, and remove inhibitory by-products.
Collapse
Affiliation(s)
| | | | | | | | - Himanshu Kishore Prasad
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India; (K.C.); (A.B.M.); (R.C.); (R.K.G.)
| |
Collapse
|
18
|
Enhanced fungal delignification and enzymatic digestibility of poplar wood by combined CuSO4 and MnSO4 supplementation. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Jia H, Sun W, Li X, Zhao J. Cellulose induced protein 1 (Cip1) from Trichoderma reesei enhances the enzymatic hydrolysis of pretreated lignocellulose. Microb Cell Fact 2021; 20:136. [PMID: 34281536 PMCID: PMC8287770 DOI: 10.1186/s12934-021-01625-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Trichoderma reesei is currently the main strain for the commercial production of cellulase. Cellulose induced protein 1 (Cip1) is one of the most abundant proteins in extracellular proteins of T. reesei. Reported literatures about Cip1 mainly focused on the regulation of Cip1 and its possible enzyme activities, but the effect of Cip1 on the enzymatic hydrolysis of lignocellulose and possible mechanism have not still been reported. Results In this study, Cip1 from T. reesei was cloned, expressed and purified, and its effects on enzymatic hydrolysis of several different pretreated lignocellulose were investigated. It was found that Cip1 could promote the enzymatic hydrolysis of pretreated lignocellulose, and the promoting effect was significantly better than that of bovine serum albumin (BSA). And especially for the lignocellulosic substrate with high lignin content such as liquid hot water pretreated corn stover and corncob residue, the promoting effect of Cip1 was even better than that of the commercial cellulase when adding equal amount protein. It was also showed that the metal ions Zn2+ and Cu2+ influenced the promoting effect on enzymatic hydrolysis. The Cip1 protein had no lyase activity, but it could destroy the crystal structure of cellulose and reduce the non-productive adsorption of cellulase on lignin, which partly interpreted the promoting effect of Cip1 on enzymatic hydrolysis of lignocellulose. Conclusion The Cip1 from T. reesei could significantly promote the enzymatic hydrolysis of pretreated lignocellulose, and the promotion of Cip1 was even higher than that of commercial cellulase in the enzymatic hydrolysis of the substrates with high lignin content. This study will help us to better optimize cellulase to improve its ability to degrade lignocellulose, thereby reducing the cost of enzymes required for enzymatic hydrolysis. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01625-z.
Collapse
Affiliation(s)
- Hexue Jia
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China
| | - Wan Sun
- National Glycoengineering Research Center, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China.
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China.
| |
Collapse
|
20
|
Agrawal R, Verma A, Singhania RR, Varjani S, Di Dong C, Kumar Patel A. Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. BIORESOURCE TECHNOLOGY 2021; 332:125042. [PMID: 33813178 DOI: 10.1016/j.biortech.2021.125042] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Biorefining of lignocellulosic biomass is a relatively new concept but it has strong potential to develop and partially replace the fossil derived fuels and myriad of value products to subsequently reduce the greenhouse gas emissions. However, the energy and cost intensive process of releasing the entrapped fermentable sugars is a major challenge for its commercialization. Various factors playing a detrimental role during enzymatic hydrolysis of biomass are inherent recalcitrance of lignocellulosic biomass, expensive enzymes, sub-optimal enzyme composition, lack of synergistic activity and enzyme inhibition caused by various inhibitors. The current study investigated the mechanism of enzyme inhibition during lignocellulosic biomass saccharification especially at high solid loadings. These inhibition factors are categorized into physio-chemical factors, water-soluble and -insoluble enzyme inhibitors, oligomers and enzyme-lignin binding. Furthermore, different approaches are proposed to alleviate the challenges and improve the enzymatic hydrolysis efficiency such as supplementation with surfactants, synergistic catalytic/non-catalytic proteins, and bioprocess modifications.
Collapse
Affiliation(s)
- Ruchi Agrawal
- The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India
| | - Amit Verma
- College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385506 (Banaskantha), Gujarat, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
21
|
Chandrasekaran S, Castaing R, Cruz-Izquierdo A, Scott LJ. Influence of Calcium Silicate and Hydrophobic Agent Coatings on Thermal, Water Barrier, Mechanical and Biodegradation Properties of Cellulose. NANOMATERIALS 2021; 11:nano11061488. [PMID: 34199769 PMCID: PMC8226986 DOI: 10.3390/nano11061488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
Thin films of cellulose and cellulose–CaSiO3 composites were prepared using 1-ethyl-3-methylimidazolium acetate (EMIMAc) as the dissolution medium and the composites were regenerated from an anti-solvent. The surface hydrophilicity of the resultant cellulose composites was lowered by coating them with three different hydrophobizing agents, specifically, trichloro(octadecyl)silane (TOS), ethyl 2-cyanoacrylate (E2CA) and octadecylphosphonic acid (ODPA), using a simple dip-coating technique. The prepared materials were subjected to flame retardancy, water barrier, thermal, mechanical and biodegradation properties analyses. The addition of CaSiO3 into the cellulose increased the degradation temperature and flame retardant properties of the cellulose. The water barrier property of cellulose–CaSiO3 composites under long term water exposure completely depends on the nature of the hydrophobic agents used for the surface modification process. All of the cellulose composites behaved mechanically as a pure elastic material with a glassy state from room temperature to 250 °C, and from 20% to 70% relative humidity (RH). The presence of the CaSiO3 filler had no effect on the elastic modulus, but it seemed to increase after the TOS surface treatment. Biodegradability of the cellulose was evaluated by enzyme treatments and the influence of CaSiO3 and hydrophobic agents was also derived.
Collapse
Affiliation(s)
- Saravanan Chandrasekaran
- Centre for Sustainable Chemical Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK;
- Department of Chemistry, School of Engineering, Presidency University, Rajanukunte, Itgalpura, Bangalore 560064, India
- Correspondence: (S.C.); (J.L.S.)
| | - Remi Castaing
- Material and Chemical Characterisation Facility (MC2), University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | - Alvaro Cruz-Izquierdo
- Centre for Sustainable Chemical Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | - L. Janet Scott
- Centre for Sustainable Chemical Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK;
- Correspondence: (S.C.); (J.L.S.)
| |
Collapse
|
22
|
Zafar A, Aftab MN, Asif A, Karadag A, Peng L, Celebioglu HU, Afzal MS, Hamid A, Iqbal I. Efficient biomass saccharification using a novel cellobiohydrolase from Clostridium clariflavum for utilization in biofuel industry. RSC Adv 2021; 11:9246-9261. [PMID: 35423428 PMCID: PMC8695235 DOI: 10.1039/d1ra00545f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022] Open
Abstract
The present study describes the cloning of the cellobiohydrolase gene from a thermophilic bacterium Clostridium clariflavum and its expression in Escherichia coli BL21(DE3) utilizing the expression vector pET-21a(+). The optimization of various parameters (pH, temperature, isopropyl β-d-1-thiogalactopyranoside (IPTG) concentration, time of induction) was carried out to obtain the maximum enzyme activity (2.78 ± 0.145 U ml-1) of recombinant enzyme. The maximum expression of recombinant cellobiohydrolase was obtained at pH 6.0 and 70 °C respectively. Enzyme purification was performed by heat treatment and immobilized metal anionic chromatography. The specific activity of the purified enzyme was 57.4 U mg-1 with 35.17% recovery and 3.90 purification fold. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the molecular weight of cellobiohydrolase was 78 kDa. Among metal ions, Ca2+ showed a positive impact on the cellobiohydrolase enzyme with increased activity by 115%. Recombinant purified cellobiohydrolase enzyme remained stable and exhibited 77% and 63% residual activity in comparison to control in the presence of n-butanol and after incubation at 80 °C for 1 h, respectively. Our results indicate that our purified recombinant cellobiohydrolase can be used in the biofuel industry.
Collapse
Affiliation(s)
- Asma Zafar
- Faculty of Life Sciences, University of Central Punjab Lahore Pakistan
| | | | - Anam Asif
- Institute of Industrial Biotechnology, GC University Lahore Pakistan +92-3444704190
| | - Ahmet Karadag
- Department of Chemistry, Faculty of Arts and Sciences, Yozgat Bozok University 66200 Yozgat Turkey
| | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture University Wuhan China
| | | | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT) Lahore Pakistan
| | - Attia Hamid
- Institute of Industrial Biotechnology, GC University Lahore Pakistan +92-3444704190
| | - Irfana Iqbal
- Department of Zoology, Lahore College for Women University Lahore Pakistan
| |
Collapse
|
23
|
Pabbathi NPP, Velidandi A, Tavarna T, Gupta S, Raj RS, Gandam PK, Baadhe RR. Role of metagenomics in prospecting novel endoglucanases, accentuating functional metagenomics approach in second-generation biofuel production: a review. BIOMASS CONVERSION AND BIOREFINERY 2021; 13:1371-1398. [PMID: 33437563 PMCID: PMC7790359 DOI: 10.1007/s13399-020-01186-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/30/2020] [Accepted: 12/01/2020] [Indexed: 05/02/2023]
Abstract
As the fossil fuel reserves are depleting rapidly, there is a need for alternate fuels to meet the day to day mounting energy demands. As fossil fuel started depleting, a quest for alternate forms of fuel was initiated and biofuel is one of its promising outcomes. First-generation biofuels are made from edible sources like vegetable oils, starch, and sugars. Second-generation biofuels (SGB) are derived from lignocellulosic crops and the third-generation involves algae for biofuel production. Technical challenges in the production of SGB are hampering its commercialization. Advanced molecular technologies like metagenomics can help in the discovery of novel lignocellulosic biomass-degrading enzymes for commercialization and industrial production of SGB. This review discusses the metagenomic outcomes to enlighten the importance of unexplored habitats for novel cellulolytic gene mining. It also emphasizes the potential of different metagenomic approaches to explore the uncultivable cellulose-degrading microbiome as well as cellulolytic enzymes associated with them. This review also includes effective pre-treatment technology and consolidated bioprocessing for efficient biofuel production.
Collapse
Affiliation(s)
- Ninian Prem Prashanth Pabbathi
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Aditya Velidandi
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Tanvi Tavarna
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Shreyash Gupta
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Ram Sarvesh Raj
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Pradeep Kumar Gandam
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| | - Rama Raju Baadhe
- Integrated Biorefinery Research Lab, Department of Biotechnology, National Institute of Technology, Warangal, Telangana 506004 India
| |
Collapse
|
24
|
Massarente VS, de Araujo Zanoni J, Gomes E, Bonilla-Rodriguez GO. Biochemical characterization of endoglucanases produced by Myceliophthora thermophila M.7.7 in solid-state culture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Novel strategy to improve the colonizing ability of Irpex lacteus in non-sterile wheat straw for enhanced rumen and enzymatic digestibility. Appl Microbiol Biotechnol 2019; 104:1347-1355. [PMID: 31858194 DOI: 10.1007/s00253-019-10315-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 12/25/2022]
Abstract
Pretreatment with white rot fungi is a promising method to enhance the digestibility of lignocelluloses; however, sterilization of feedstocks prior to inoculation is one of the costliest steps. To improve the colonizing ability of white rot fungi under non-sterile condition, Irpex lacteus, Pleurotus ostreatus, and Phanerochaete chrysosporium were inoculated in the wheat straw ensiled for 28 days and incubated for 56 days to determine the changes in microbe counts, organic acid content, chemical composition, and rumen and enzymatic digestibility. Results showed that ensiling produced abundant organic acids and suppressed most microbes in wheat straw. Significant growth of I. lacteus was observed after 3 days of incubation, and molds were only detectable at day 7 in the group. At the end of incubation, aerobic bacteria and lactic acid bacteria decreased by 18% and 38% in the wheat straw treated with I. lacteus, but molds, aerobic bacteria, and lactic acid bacteria thrived in those treated with P. ostreatus and P. chrysosporium. Even more, P. ostreatus and P. chrysosporium increased the lignin content of the ensiled wheat straw by 34% and 65%. However, I. lacteus selectively degraded lignin by 28% and improved the rumen and enzymatic digestibility by 18% and 34%. The finding indicates that ensiling prior to fermentation with I. lacteus is an effective method to control spoilage microbes and to enhance the rumen and enzymatic digestibility of wheat straw.
Collapse
|
26
|
Gama AR, Brito-Cunha CCQ, Campos ITN, de Souza GRL, Carneiro LC, Bataus LAM. Streptomyces thermocerradoensis I3 secretes a novel bifunctional xylanase/endoglucanase under solid-state fermentation. Biotechnol Prog 2019; 36:e2934. [PMID: 31642208 DOI: 10.1002/btpr.2934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 11/08/2022]
Abstract
Lignocellulosic wastes can be potentially converted into several bioproducts such as glucose, xylo-oligosaccharides, and bioethanol. Certain processes, such as enzymatic hydrolysis, are generally needed to convert biomass into bioproducts. The present study investigated the production of xylanases and cellulases by Streptomyces thermocerradoensis I3 under solid-state fermentation (SSF), using wheat bran as a low-cost medium. The activities of xylanase and carboxymethyl cellulase (CMCase) were evaluated until 96 hr of incubation. The highest enzyme activity was observed after 72 hr of incubation. The crude enzyme extract was sequentially filtered, first using a 50 kDa filter, followed by a 30 kDa filter. Fraction 3 (F3) exhibited activities of both xylanase and CMCase. Xylanase and CMCase showed optimum activity at 70°C and pH 6.0 and 55°C and pH 6.0, respectively. The zymogram analysis showed a single activity band with a molecular mass of approximately 17 kDa. These findings provide strong evidence that the enzyme is a bifunctional xylanase/endoglucanase. This enzyme improved the saccharification of sugarcane bagasse by 1.76 times that of commercial cellulase. This enzyme has potential applications in various biotechnological procedures.
Collapse
Affiliation(s)
- Aline Rodrigues Gama
- Departament of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, Brazil
| | | | - Ivan T N Campos
- Departament of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, Brazil
| | | | - Lilian Carla Carneiro
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | | |
Collapse
|
27
|
Yin Y, Wang J. Mechanisms of enhanced biohydrogen production from macroalgae by ferrous ion: Insights into correlations of microbes and metabolites. BIORESOURCE TECHNOLOGY 2019; 291:121808. [PMID: 31326684 DOI: 10.1016/j.biortech.2019.121808] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
This study explored the mechanisms of the enhanced hydrogen production from macroalgae by Fe2+ supplementation. Highest hydrogen yield of 19.47 mL/g VSadded was achieved at Fe2+ supplementation of 400 mg/L, which was 6.25 times of the control test. In depth analysis of substrate degradation, microbial distribution and metabolites formation was conducted. The results showed that Fe2+-supplemented group was dominated by Clostridium butyricum (67.2%) and Ruminococcus gnavus (24.2%), which stimulated hydrogen generation and volatile organic acids accumulation. In contrast, Fe2+-deficient group had a microbial community dominated by Exiguobacterium sp. (29.0%), Acinetobacter lwoffii (24.5%) and Clostridium stricto 13 (23.4%), which induced higher efficiency of both biomass hydrolysis and mineralization. Microbes from a single system were mutually cooperative, while microbes from Fe2+-deficient and those from Fe2+-supplemented systems were mutually exclusive. This study suggested that Fe2+ is critical in macroalgae fermentation system to affect the microbial community structure and subsequently switch the metabolic pathways.
Collapse
Affiliation(s)
- Yanan Yin
- Tsinghua University - Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Tsinghua University - Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
28
|
Yin Y, Wang J. Enhanced biohydrogen production from macroalgae by zero-valent iron nanoparticles: Insights into microbial and metabolites distribution. BIORESOURCE TECHNOLOGY 2019; 282:110-117. [PMID: 30852330 DOI: 10.1016/j.biortech.2019.02.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
In this work, effect of Fe0 nanoparticles (Fe0 NPs) on macroalgae fermentation was explored. Hydrogen production was significantly enhanced by 6.5 times comparing with control test, achieving 20.25 mL H2/g VSadded with addition of 200 mg/L Fe0 NPs. In-depth analysis of substrate conversion showed that both hydrogen generation and acids accumulation were promoted with Fe0 NPs supplementation. Microbial analysis demonstrated that both hydrogen-producing strains belonging to genus Clostridium and Terrisporobacter sp. favorable for acids formation were enriched with Fe0 NPs supplementation, while species Acinetobacter lwoffii beneficial to organics mineralization was eliminated. Complex substrate compositions resulted in more prevalent cooperative relationships among species in the system. This study suggested that Fe0 NPs plays a crucial role in macroalgae fermentation by affecting the microbial distribution, subsequently influencing the products distribution and energy conversion.
Collapse
Affiliation(s)
- Yanan Yin
- Tsinghua University - Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Tsinghua University - Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing 100084, PR China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
29
|
Wyman V, Serrano A, Fermoso FG, Villa Gomez DK. Trace elements effect on hydrolytic stage towards biogas production of model lignocellulosic substrates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 234:320-325. [PMID: 30634124 DOI: 10.1016/j.jenvman.2019.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
The effect and the response of several trace elements (TE) addition to the anaerobic degradation of key compounds of lignocellulosic biomass were evaluated. Lignin, cellulose and xylose were selected as principal compounds of lignocellulosic biomass. Lignin degradation was only improved by the addition of 1000 mg Fe/L, which allowed an improvement on the methane yield coefficient of 28% compared to control. SEM images from an abiotic assay showed that this effect is more likely related with a chemical effect induced by the Fe solution, instead of an enzymatic response. Pre-treatments focused on breaking the recalcitrant structure of the lignin could be more promising than TE addition for rich lignin-content substrates. Unlike to the response observed with lignin, cellulose showed a clear effect of the TE addition on methane production rate, indicating a higher preponderance of the enzymatic activity compared to the lignin biomethanization. Experiments with xylose resulted in a strong accumulation of volatile fatty acids. TE addition should be adapted to the substrate composition given the different response of each lignocellulosic compound to the different TE addition.
Collapse
Affiliation(s)
- Valentina Wyman
- School of Civil Engineering, The University of Queensland, Campus St. Lucia - AEB Ed 49, St Lucia, 4067, QLD, Australia; Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida Vicuña Mackenna, 3939, Santiago, Chile
| | - Antonio Serrano
- School of Civil Engineering, The University of Queensland, Campus St. Lucia - AEB Ed 49, St Lucia, 4067, QLD, Australia; Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, km. 1, Seville, Spain.
| | - Fernando G Fermoso
- Instituto de Grasa, Spanish National Research Council (CSIC), Ctra. de Utrera, km. 1, Seville, Spain
| | - Denys K Villa Gomez
- School of Civil Engineering, The University of Queensland, Campus St. Lucia - AEB Ed 49, St Lucia, 4067, QLD, Australia
| |
Collapse
|
30
|
Naresh S, Kunasundari B, Gunny AAN, Teoh YP, Shuit SH, Ng QH, Hoo PY. Isolation and Partial Characterisation of Thermophilic Cellulolytic Bacteria from North Malaysian Tropical Mangrove Soil. Trop Life Sci Res 2019; 30:123-147. [PMID: 30847037 PMCID: PMC6396887 DOI: 10.21315/tlsr2019.30.1.8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study reports the biodiversity of thermophilic cellulolytic bacterial strains that present in the north Malaysian mangrove ecosystem. Soil samples were collected at the four most northern state of Malaysia (Perak, Pulau Pinang, Kedah and Perlis). The samples obtained were first enriched in nutrient broth at 45°C and 55°C prior culturing in the carboxymethylcellulose (CMC) agar medium. Repeated streaking was performed on the CMC agar to obtain a pure culture of each isolate prior subjecting it to hydrolysis capacity testing. The isolates that showing the cellulolytic zone (halozone) were sent for 16S rRNA sequencing. Total seven isolates (two from Perak, three from Kedah, another two were from Perlis and Penang each) showed halozone. The isolate (KFX-40) from Kedah exhibited highest halozone of 3.42 ± 0.58, meanwhile, the one obtained from Perak (AFZ-0) showed the lowest hydrolysis capacity (2.61 ± 0.10). Based on 16S rRNA sequencing results, 5 isolates (AFY-40, AFZ-0, KFX-40, RFY-20, and PFX-40) were determined to be Anoxybacillus sp. The other two isolates were identified as Bacillus subtilis (KFY-40) and Paenibacillus dendritiformis (KFX-0). Based on growth curve, doubling time of Anoxybacillus sp. UniMAP-KB06 was calculated to be 32.3 min. Optimal cellulose hydrolysis temperature and pH of this strain were determined to be 55°C and 6.0 respectively. Addition of Mg2+ and Ca2+ were found to enhance the cellulase activity while Fe3+ acted as an enzyme inhibitor.
Collapse
Affiliation(s)
- Sandrasekaran Naresh
- Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), P.O Box 77, D/A Pejabat Pos Besar Kangar, 01000, Perlis, Malaysia
| | - Balakrishnan Kunasundari
- Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), P.O Box 77, D/A Pejabat Pos Besar Kangar, 01000, Perlis, Malaysia
| | - Ahmad Anas Nagoor Gunny
- Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), P.O Box 77, D/A Pejabat Pos Besar Kangar, 01000, Perlis, Malaysia
| | - Yi Peng Teoh
- Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), P.O Box 77, D/A Pejabat Pos Besar Kangar, 01000, Perlis, Malaysia
| | - Siew Hoong Shuit
- Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), P.O Box 77, D/A Pejabat Pos Besar Kangar, 01000, Perlis, Malaysia
| | - Qi Hwa Ng
- Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), P.O Box 77, D/A Pejabat Pos Besar Kangar, 01000, Perlis, Malaysia
| | - Peng Yong Hoo
- Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), P.O Box 77, D/A Pejabat Pos Besar Kangar, 01000, Perlis, Malaysia
| |
Collapse
|
31
|
Overexpression and biochemical characterization of a recombinant psychrophilic endocellulase from Pseudoalteromonas sp. DY3. Int J Biol Macromol 2018; 116:100-105. [PMID: 29733934 DOI: 10.1016/j.ijbiomac.2018.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 10/17/2022]
Abstract
Cold-active cellulases have received great attention for both industrial applications and fundamental research because of their high activity at low temperatures and their unique structural characters. In this study, the cold-active endoglucanase CelX from psychrotrophic Pseudoalteromonas sp. DY3 was successfully overexpressed in E. coli, partly purified and characterized in detail. CelX showed the highest activity at pH 5.5, and exhibited moderate activity and superior pH stability over a wide pH range (pH 5.0-pH 9.0). It displayed the highest activity at 45 °C, and kept 34.7% residual activity even at 5 °C. It was stable below 35 °C and lost activity very quickly above 45 °C, which is consistent with its cold adaptability. The apparent kinetic parameters CelX against CMC (carboxymethyl cellulose) were determined, with the Km and kcat values of 6.4 mg/ml and 4.2 s-1 respectively. Mn2+ and Co2+ enhanced the cellulolytic activity of CelX by 28.8% and 20.6% respectively, whereas Pb2+ and Cu2+ inhibited its activity by 14.9% and 6.5% separately. The cold adaptation of CelX is possibly due to the presence of the unusually long linker between the catalytic module and the cellulose-binding domain.
Collapse
|
32
|
Biochemical characterization of an isolated 50 kDa beta-glucosidase from the thermophilic fungus Myceliophthora thermophila M.7.7. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Woon JSK, Mackeen MM, Illias RM, Mahadi NM, Broughton WJ, Murad AMA, Abu Bakar FD. Cellobiohydrolase B of Aspergillus niger over-expressed in Pichia pastoris stimulates hydrolysis of oil palm empty fruit bunches. PeerJ 2017; 5:e3909. [PMID: 29038760 PMCID: PMC5641429 DOI: 10.7717/peerj.3909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/19/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Aspergillus niger, along with many other lignocellulolytic fungi, has been widely used as a commercial workhorse for cellulase production. A fungal cellulase system generally includes three major classes of enzymes i.e., β-glucosidases, endoglucanases and cellobiohydrolases. Cellobiohydrolases (CBH) are vital to the degradation of crystalline cellulose present in lignocellulosic biomass. However, A. niger naturally secretes low levels of CBH. Hence, recombinant production of A. niger CBH is desirable to increase CBH production yield and also to allow biochemical characterisation of the recombinant CBH from A. niger. METHODS In this study, the gene encoding a cellobiohydrolase B (cbhB) from A. niger ATCC 10574 was cloned and expressed in the methylotrophic yeast Pichia pastoris X-33. The recombinant CBHB was purified and characterised to study its biochemical and kinetic characteristics. To evaluate the potential of CBHB in assisting biomass conversion, CBHB was supplemented into a commercial cellulase preparation (Cellic® CTec2) and was used to hydrolyse oil palm empty fruit bunch (OPEFB), one of the most abundant lignocellulosic waste from the palm oil industry. To attain maximum saccharification, enzyme loadings were optimised by response surface methodology and the optimum point was validated experimentally. Hydrolysed OPEFB samples were analysed using attenuated total reflectance FTIR spectroscopy (ATR-FTIR) to screen for any compositional changes upon enzymatic treatment. RESULTS Recombinant CBHB was over-expressed as a hyperglycosylated protein attached to N-glycans. CBHB was enzymatically active towards soluble substrates such as 4-methylumbelliferyl-β-D-cellobioside (MUC), p-nitrophenyl-cellobioside (pNPC) and p-nitrophenyl-cellobiotrioside (pNPG3) but was not active towards crystalline substrates like Avicel® and Sigmacell cellulose. Characterisation of purified CBHB using MUC as the model substrate revealed that optimum catalysis occurred at 50 °C and pH 4 but the enzyme was stable between pH 3 to 10 and 30 to 80 °C. Although CBHB on its own was unable to digest crystalline substrates, supplementation of CBHB (0.37%) with Cellic® CTec2 (30%) increased saccharification of OPEFB by 27%. Compositional analyses of the treated OPEFB samples revealed that CBHB supplementation reduced peak intensities of both crystalline cellulose Iα and Iβ in the treated OPEFB samples. DISCUSSION Since CBHB alone was inactive against crystalline cellulose, these data suggested that it might work synergistically with other components of Cellic® CTec2. CBHB supplements were desirable as they further increased hydrolysis of OPEFB when the performance of Cellic® CTec2 was theoretically capped at an enzyme loading of 34% in this study. Hence, A. niger CBHB was identified as a potential supplementary enzyme for the enzymatic hydrolysis of OPEFB.
Collapse
Affiliation(s)
- James Sy-Keen Woon
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.,Present address: Newcastle University Medicine Malaysia, Iskandar Puteri, Johor, Malaysia
| | - Mukram M Mackeen
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.,Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Rosli M Illias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nor M Mahadi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.,Malaysia Genome Institute, Kajang, Selangor, Malaysia
| | - William J Broughton
- Department 4 (Materials & Environment), Federal Institute of Materials Research and Testing, Berlin, Germany
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
34
|
Meehnian H, Jana AK, Jana MM. Variation in Particle Size, Moisture Content and Supplements for Improvement of Cotton Stalks’ Lignin Degradation by Phlebia radiata and Saccharification. INDIAN CHEMICAL ENGINEER 2017. [DOI: 10.1080/00194506.2017.1350826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Harmanpreet Meehnian
- Department of Biotechnology, Dr B R A National Institute of Technology Jalandhar, Punjab 144011, India
| | - Asim K. Jana
- Department of Biotechnology, Dr B R A National Institute of Technology Jalandhar, Punjab 144011, India
| | - Mithu Maiti Jana
- Department of Chemistry, Dr B R A National Institute of Technology Jalandhar, Punjab 144011, India
| |
Collapse
|
35
|
Pimentel AC, Ematsu GC, Liberato MV, Paixão DA, Franco Cairo JPL, Mandelli F, Tramontina R, Gandin CA, de Oliveira Neto M, Squina FM, Alvarez TM. Biochemical and biophysical properties of a metagenome-derived GH5 endoglucanase displaying an unconventional domain architecture. Int J Biol Macromol 2017; 99:384-393. [DOI: 10.1016/j.ijbiomac.2017.02.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 11/15/2022]
|
36
|
Mishra V, Jana AK, Jana MM, Gupta A. Fungal pretreatment of sweet sorghum bagasse with supplements: improvement in lignin degradation, selectivity and enzymatic saccharification. 3 Biotech 2017; 7:110. [PMID: 28567622 DOI: 10.1007/s13205-017-0719-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/06/2017] [Indexed: 10/19/2022] Open
Abstract
Sweet sorghum bagasse (SSB) from food processing and agricultural industry has attracted the attention for uses in production of biofuel, enzymes and other products. The alteration in lignocellulolytic enzymes by use of supplements in fungal pretreatment of SSB to achieve higher lignin degradation, selectivity value and enzymatic hydrolysis to fermentable sugar was studied. Fungal strain Coriolus versicolor was selected for pretreatment due to high ligninolytic and low cellulolytic enzyme production resulting in high lignin degradation and selectivity value. SSB was pretreated with supplements of veratryl alcohol, syringic acid, catechol, gallic acid, vanillin, guaiacol, CuSO4 and MnSO4. The best results were obtained with CuSO4, gallic acid and syringic acid supplements. CuSO4 increased the activities of laccase (4.9-fold) and polyphenol oxidase (1.9-fold); gallic acid increased laccase (3.5-fold) and manganese peroxidase (2.5-fold); and syringic acid increased laccase (5.6-fold), lignin peroxidase (13-fold) and arylalcohol oxidase (2.8-fold) resulting in enhanced lignin degradations and selectivity values than the control. Reduced cellulolytic enzyme activities resulted in high cellulose recovery. Enzymatic hydrolysis of pretreated SSB yielded higher sugar due to degradation of lignin and reduced the crystallinity of cellulose. The study showed that supplements could be used to improve the pretreatment process. The results were confirmed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric/differential thermogravimetric analysis of SSB.
Collapse
|
37
|
Mishra V, Jana AK, Jana MM, Gupta A. Improvement of selective lignin degradation in fungal pretreatment of sweet sorghum bagasse using synergistic CuSO 4-syringic acid supplements. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 193:558-566. [PMID: 28262421 DOI: 10.1016/j.jenvman.2017.02.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/23/2017] [Accepted: 02/21/2017] [Indexed: 05/28/2023]
Abstract
Sweet sorghum bagasse (SSB) generated in large quantities could be hydrolyzed to sugar and then fermented to green fuels. The hydrolysis of SSB polysaccharides interlocked in recalcitrant lignin network is the major problem. Pretreatment of SSB in SSF by using Coriolus versicolor with CuSO4-syringic acid supplements for effects on production of ligninocellulolytic enzymes, lignin degradation and selectivity values (SV) were studied. C. versicolor was selected based on high ligninolytic and low cellulolytic abilily. Individually, CuSO4 increased the activities of laccase (4.9 folds) and PPO (1.9 folds); syringic acid increased LiP (13 folds), AAO (2.8 folds) and laccase (5.6 folds) resulting in increased lignin degradation and SVs. Combined syringic acid (4.4 μmol g-1 SSB) and CuSO4 (4.4 μmol g-1 SSB) increased the activities of laccase, LiP, MnP, PPO and AAO by 11.2, 17.6, 2.8, 2.4 and 2.3 folds respectively due to synergistic effect, resulting in maximum lignin degradation 35.9 ± 1.3% (w w-1) (1.86 fold) and highest SV 3.07 (4.7 fold). Enzymatic hydrolysis of pretreated SSB yielded higher (∼2.2 times) fermentable sugar. Pretreated SSB was characterized by XRD, SEM, FTIR and TGA/DTG analysis to confirm results. It is possible to improve fungal pretreatment of agricultural waste by combination of supplements.
Collapse
Affiliation(s)
- Vartika Mishra
- Department of Biotechnology, Dr B R A National Institute of Technology, Jalandhar, 144011, Punjab, India
| | - Asim K Jana
- Department of Biotechnology, Dr B R A National Institute of Technology, Jalandhar, 144011, Punjab, India.
| | - Mithu Maiti Jana
- Department of Chemistry, Dr B R A National Institute of Technology, Jalandhar, 144011, Punjab, India
| | - Antriksh Gupta
- Department of Biotechnology, Dr B R A National Institute of Technology, Jalandhar, 144011, Punjab, India
| |
Collapse
|
38
|
Metal accumulation by sunflower (Helianthus annuus L.) and the efficacy of its biomass in enzymatic saccharification. PLoS One 2017; 12:e0175845. [PMID: 28437478 PMCID: PMC5402931 DOI: 10.1371/journal.pone.0175845] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
Accumulation of metal contaminants in soil as a result of various industrial and anthropogenic activities has reduced soil fertility significantly. Phytoextraction of metal contaminants can improve soil fertility and provide inexpensive feedstock for biorefineries. We investigated the hyperaccumulation capacity of sunflower (Helianthus annuus) biomass by cultivating these plants in various concentrations of metal contaminants. Sunflowers were grown in soils contaminated with various levels of heavy metals (10–2,000 mg/kg dry soil). The degree of metal uptake by different parts of the biomass and the residual concentration in the soil were estimated through inductively coupled plasma mass spectrometry. An almost 2.5-fold hyperaccumulation of Zn2+ was observed in the leaf and flower biomass compared with the concentration in the soil. For the subsequent saccharification of biomass with hyperaccumulated contaminants, a fungal lignocellulosic consortium was used. The fungal consortium cocktail retained more than 95% filter paper activity with 100 mM Ni2+ ions even after 36 h. The highest saccharification yield (SY, 87.4%) was observed with Ni2+ as the contaminant (10 mg/kg dry wt), whereas Pb2+ (251.9 mg/kg dry wt) was the strongest inhibitor of biomass hydrolysis, resulting in only a 30% SY. Importantly, the enzyme cocktail produced by the fungal consortium resulted in almost the same SY (%) as that obtained from a combination of commercial cellulase and β-glucosidase. Significant sugar conversion (61.7%) from H. annuus biomass hydrolysate occurred, resulting in the production of 11.4 g/L of bioethanol. This is the first study to assess the suitability of phytoremediated sunflower biomass for bioethanol production.
Collapse
|
39
|
Mishra V, Jana AK. Fungal Pretreatment of Sweet Sorghum Bagasse with Combined CuSO4-Gallic Acid Supplement for Improvement in Lignin Degradation, Selectivity, and Enzymatic Saccharification. Appl Biochem Biotechnol 2017; 183:200-217. [DOI: 10.1007/s12010-017-2439-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 11/29/2022]
|
40
|
Schwaminger SP, Fraga-García P, Selbach F, Hein FG, Fuß EC, Surya R, Roth HC, Blank-Shim SA, Wagner FE, Heissler S, Berensmeier S. Bio-nano interactions: cellulase on iron oxide nanoparticle surfaces. ADSORPTION 2016. [DOI: 10.1007/s10450-016-9849-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Kille P, Morgan AJ, Powell K, Mosselmans JFW, Hart D, Gunning P, Hayes A, Scarborough D, McDonald I, Charnock JM. 'Venus trapped, Mars transits': Cu and Fe redox chemistry, cellular topography and in situ ligand binding in terrestrial isopod hepatopancreas. Open Biol 2016; 6:rsob.150270. [PMID: 26935951 PMCID: PMC4821242 DOI: 10.1098/rsob.150270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Woodlice efficiently sequester copper (Cu) in ‘cuprosomes' within hepatopancreatic ‘S' cells. Binuclear ‘B’ cells in the hepatopancreas form iron (Fe) deposits; these cells apparently undergo an apocrine secretory diurnal cycle linked to nocturnal feeding. Synchrotron-based µ-focus X-ray spectroscopy undertaken on thin sections was used to characterize the ligands binding Cu and Fe in S and B cells of Oniscus asellus (Isopoda). Main findings were: (i) morphometry confirmed a diurnal B-cell apocrine cycle; (ii) X-ray fluorescence (XRF) mapping indicated that Cu was co-distributed with sulfur (mainly in S cells), and Fe was co-distributed with phosphate (mainly in B cells); (iii) XRF mapping revealed an intimate morphological relationship between the basal regions of adjacent S and B cells; (iv) molecular modelling and Fourier transform analyses indicated that Cu in the reduced Cu+ state is mainly coordinated to thiol-rich ligands (Cu–S bond length 2.3 Å) in both cell types, while Fe in the oxidized Fe3+ state is predominantly oxygen coordinated (estimated Fe–O bond length of approx. 2 Å), with an outer shell of Fe scatterers at approximately 3.05 Å; and (v) no significant differences occur in Cu or Fe speciation at key nodes in the apocrine cycle. Findings imply that S and B cells form integrated unit-pairs; a functional role for secretions from these cellular units in the digestion of recalcitrant dietary components is hypothesized.
Collapse
Affiliation(s)
- P Kille
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK
| | - A J Morgan
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK
| | - K Powell
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK
| | - J F W Mosselmans
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK
| | - D Hart
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK
| | - P Gunning
- Smith and Nephew, Heslington, York Science Park, York YO10 5DF, UK
| | - A Hayes
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK
| | - D Scarborough
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK
| | - I McDonald
- School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - J M Charnock
- School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Williamson Building, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
42
|
Effect of particle size, moisture content, and supplements on selective pretreatment of cotton stalks by Daedalea flavida and enzymatic saccharification. 3 Biotech 2016; 6:235. [PMID: 28330307 PMCID: PMC5095101 DOI: 10.1007/s13205-016-0548-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/12/2016] [Indexed: 11/30/2022] Open
Abstract
A large amount of cotton stalk waste biomass with high cellulose content are incinerated by the farmers causing air pollution. The high cellulose content of cotton stalks can be converted to fermentable sugars by fungal delignification pretreatment of lignocellulosic biomass and enzymatic saccharification. The effect of particle size, moisture content, and media supplements was studied for delignification of cotton stalks by Daedalea flavida MTCC 145 (DF-2) in solid-state fermentation. The highest lignolytic enzyme activities, optimal lignin degradation 29.88 ± 0.97% (w/w) with cellulose loss 11.70 ± 1.30% (w/w), were observed in cotton stalks at particle size 5 mm with 75% moisture content after 20 days. Cellulolytic enzyme activity increased with decrease in particle size and increased moisture content. The addition of Cu2+, gallic acid, and veratryl alcohol enhanced the lignolytic enzyme production and the lignin degradation. In addition to increased laccase activity, Cu2+ inhibited the cellulolytic activity. Supplements Cu2+ at 0.5 mM/g gave the best results of lignin degradation 33.74 ± 1.17% (w/w) and highest selectivity value (SV) 3.15 after pretreatment. The glucose yield increased to 127.44 ± 4.56 mg/g from 20 day pretreated cotton stalks with Cu2+ supplements, ~threefolds higher than untreated cotton stalks. The study is important for the production of fermentable sugars from cotton stalks residues which can further be utilized in production of bioethanol and other applications.
Collapse
|
43
|
Hua B, Dai J, Liu B, Zhang H, Yuan X, Wang X, Cui Z. Pretreatment of non-sterile, rotted silage maize straw by the microbial community MC1 increases biogas production. BIORESOURCE TECHNOLOGY 2016; 216:699-705. [PMID: 27289062 DOI: 10.1016/j.biortech.2016.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Using microbial community MC1 to pretreat lignocellulosic materials increased the yield of biogas production, and the substrate did not need to be sterilized, lowering the cost. Rotted silage maize straw carries many microbes. To determine whether such contamination affects MC1, rotted silage maize straw was pretreated with MC1 prior to biogas production. The decreases in the weights of unsterilized and sterilized rotted silage maize straw were similar, as were their carboxymethyl cellulase activities. After 5d pretreatment, denaturing gradient gel electrophoresis and quantitative polymerase chain reaction results indicated that the proportions of five key strains in MC1 were the same in the unsterilized and sterilized groups; thus, MC1 was resistant to microbial contamination. However, its resistance to contamination decreased as the degradation time increased. Following pretreatment, volatile fatty acids, especially acetic acid, were detected, and MC1 enhanced biogas yields by 74.7% compared with the untreated group.
Collapse
Affiliation(s)
- Binbin Hua
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Jiali Dai
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Bin Liu
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Huan Zhang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Xufeng Yuan
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| | - Xiaofen Wang
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China.
| | - Zongjun Cui
- Center of Biomass Engineering, College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, PR China
| |
Collapse
|
44
|
Seman-Kamarulzaman AF, Mohamed-Hussein ZA, Ng CL, Hassan M. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant. PLoS One 2016; 11:e0161707. [PMID: 27560927 PMCID: PMC4999093 DOI: 10.1371/journal.pone.0161707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/10/2016] [Indexed: 12/05/2022] Open
Abstract
Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold) to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that’s highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate specificity towards farnesal. Thus, it was suggested that this novel enzyme may be functioning specifically to oxidize farnesal in the later steps of JH III pathway. This report provides a basic understanding for recombinant production of this particular enzyme. Other strategies such as adding His-tag to the protein makes easy the purification of the protein which is completely different to the native protein. Complete sequence, structure and functional analysis of the enzyme will be important for developing insect-resistant crop plants by deployment of transgenic plant.
Collapse
Affiliation(s)
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM, Bangi, Selangor, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM, Bangi, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM, Bangi, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
45
|
Teixeira da Silva VDC, de Souza Coto AL, de Carvalho Souza R, Bertoldi Sanchez Neves M, Gomes E, Bonilla-Rodriguez GO. Effect of pH, Temperature, and Chemicals on the Endoglucanases and β-Glucosidases from the Thermophilic Fungus Myceliophthora heterothallica F.2.1.4. Obtained by Solid-State and Submerged Cultivation. Biochem Res Int 2016; 2016:9781216. [PMID: 27242927 PMCID: PMC4875970 DOI: 10.1155/2016/9781216] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/03/2016] [Accepted: 04/12/2016] [Indexed: 01/13/2023] Open
Abstract
This work reports endoglucanase and beta-glucosidase production by the thermophilic fungus Myceliophthora heterothallica in solid-state (SSC) and submerged (SmC) cultivation. Wheat bran and sugarcane bagasse were used for SSC and cardboard for SmC. Highest endoglucanase production in SSC occurred after 192 hours: 1,170.6 ± 0.8 U/g, and in SmC after 168 hours: 2,642 ± 561 U/g. The endoglucanases and beta-glucosidases produced by both cultivation systems showed slight differences concerning their optimal pH and temperature. The number of endoglucanases was also different: six isoforms in SSC and ten in SmC. Endoglucanase activity remained above 50% after incubation between pH 3.0 and 9.0 for 24 h for both cultivation systems. The effect of several chemicals displayed variation between SSC and SmC isoenzymes. Manganese activated the enzymes from SmC but inhibited those from SSC. For β-glucosidases, maximum production on SmC was 244 ± 48 U/g after 168 hours using cardboard as carbon source. In SSC maximum production reached 10.9 ± 0.3 U/g after 240 h with 1 : 1 wheat bran and sugarcane bagasse. Manganese exerted a significant activation on SSC β-glucosidases, and glucose inhibited the enzymes from both cultivation systems. FeCl3 exerted the strongest inhibition for endoglucanases and β-glucosidases.
Collapse
Affiliation(s)
- Vanessa de Cássia Teixeira da Silva
- Laboratório de Bioquímica de Proteínas, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (UNESP), Rua Cristovão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Amanda Lais de Souza Coto
- Laboratório de Bioquímica de Proteínas, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (UNESP), Rua Cristovão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Rafael de Carvalho Souza
- Laboratório de Bioquímica de Proteínas, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (UNESP), Rua Cristovão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Marcello Bertoldi Sanchez Neves
- Laboratório de Bioquímica de Proteínas, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (UNESP), Rua Cristovão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Eleni Gomes
- Laboratório de Bioquímica e Microbiologia Aplicadas, Departamento de Biologia, Universidade Estadual Paulista (UNESP), Rua Cristovão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| | - Gustavo Orlando Bonilla-Rodriguez
- Laboratório de Bioquímica de Proteínas, Departamento de Química e Ciências Ambientais, Universidade Estadual Paulista (UNESP), Rua Cristovão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil
| |
Collapse
|
46
|
Akimkulova A, Zhou Y, Zhao X, Liu D. Improving the enzymatic hydrolysis of dilute acid pretreated wheat straw by metal ion blocking of non-productive cellulase adsorption on lignin. BIORESOURCE TECHNOLOGY 2016; 208:110-116. [PMID: 26930032 DOI: 10.1016/j.biortech.2016.02.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 05/08/2023]
Abstract
Eleven salts were selected to screen the possible metal ions for blocking the non-productive adsorption of cellulase onto the lignin of dilute acid pretreated wheat straw. Mg(2+) was screened finally as the promising candidate. The optimal concentration of MgCl2 was 1 mM, but the beneficial action was also dependent on pH, hydrolysis time and cellulase loading. Significant improvement of glucan conversion (19.3%) was observed at low cellulase loading (5 FPU/g solid). Addition of isolated lignins, tannic acid and lignin model compounds to pure cellulose hydrolysis demonstrated that phenolic hydroxyl group (Ph-OH) was the main active site blocked by Mg(2+). The interaction between Mg(2+) and Ph-OH of lignin monomeric moieties followed an order of p-hydroxyphenyl (H)>guaiacyl (G)>syringyl (S). Mg(2+) blocking made the lignin surface less negatively charged, which might weaken the hydrogen bonding and electrostatically attractive interaction between lignin and cellulase enzymes.
Collapse
Affiliation(s)
- Ardak Akimkulova
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yan Zhou
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuebing Zhao
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan 523808, China.
| | - Dehua Liu
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
| |
Collapse
|
47
|
Vasconcellos V, Tardioli P, Giordano R, Farinas C. Addition of metal ions to a (hemi)cellulolytic enzymatic cocktail produced in-house improves its activity, thermostability, and efficiency in the saccharification of pretreated sugarcane bagasse. N Biotechnol 2016; 33:331-7. [DOI: 10.1016/j.nbt.2015.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/29/2015] [Accepted: 12/08/2015] [Indexed: 11/28/2022]
|
48
|
Loaces I, Bottini G, Moyna G, Fabiano E, Martínez A, Noya F. EndoG: A novel multifunctional halotolerant glucanase and xylanase isolated from cow rumen. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Mahajan C, Basotra N, Singh S, Di Falco M, Tsang A, Chadha BS. Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes. BIORESOURCE TECHNOLOGY 2016; 200:55-63. [PMID: 26476165 DOI: 10.1016/j.biortech.2015.09.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 05/11/2023]
Abstract
This study reports thermophilic fungus Malbranchea cinnamomea as an important source of lignocellulolytic enzymes. The secretome analysis using LC-MS/MS orbitrap showed that fungus produced a spectrum of glycosyl hydrolases (cellulase/hemicellulase), polysaccharide lyases (PL) and carbohydrate esterases (CE) in addition to cellobiose dehydrogenase (CDH) indicating the presence of functional classical and oxidative cellulolytic mechanisms. The protein fractions in the secretome resolved by ion exchange chromatography were analyzed for ability to hydrolyze alkali treated carrot grass (ATCG) in the presence of Mn(2+)/Cu(2+). This strategy in tandem with peptide mass fingerprinting led to identification of metal dependent protein hydrolases with no apparent hydrolytic activity, however, showed 5.7 folds higher saccharification in presence of Mn(2+). Furthermore, adding different protein fractions to commercial cellulase (Novozymes: Cellic CTec2) resulted in enhanced hydrolysis of ATCG ranging between 1.57 and 3.43 folds indicating the enzymes from M. cinnamomea as catalytically efficient.
Collapse
Affiliation(s)
- Chhavi Mahajan
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Surender Singh
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Marcos Di Falco
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.
| | - B S Chadha
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
50
|
Optimisation of enzymatic hydrolysis of apple pomace for production of biofuel and biorefinery chemicals using commercial enzymes. 3 Biotech 2015; 5:1075-1087. [PMID: 28324415 PMCID: PMC4624128 DOI: 10.1007/s13205-015-0312-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/06/2015] [Indexed: 11/02/2022] Open
Abstract
Apple pomace, a waste product from the apple juice industry is a potential feedstock for biofuel and biorefinery chemical production. Optimisation of hydrolysis conditions for apple pomace hydrolysis using Viscozyme L and Celluclast 1.5L was investigated using 1 L reaction volumes. The effects of temperature, pH, β-glucosidase supplementation and substrate feeding regimes were determined. Hydrolysis at room temperature using an unbuffered system gave optimal performance. Reactors in batch mode resulted in a better performance (4.2 g/L glucose and 16.8 g/L reducing sugar, 75 % yield for both) than fed-batch (3.2 g/L glucose and 14.6 g/L reducing sugar, 65.5 and 73.1 % yield respectively) in 72 h. The addition of Novozyme 188 to the core mixture of Viscozyme L and Celluclast 1.5L resulted in the doubling of glucose released. The main products (yield %) released from apple pomace hydrolysis were galacturonic acid (78 %), glucose (75 %), arabinose (90 %) and galactose (87 %). These products are potential raw materials for biofuel and biorefinery chemical production.
Collapse
|