1
|
Klopper KB, Bester E, van Schalkwyk M, Wolfaardt GM. Mixed species biofilms act as planktonic cell factories despite isothiazolinone exposure under continuous-flow conditions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70010. [PMID: 39351641 PMCID: PMC11443163 DOI: 10.1111/1758-2229.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
The primary approach to managing biofouling in industrial water systems involves the large-scale use of biocides. It is well-established that biofilms are 'cell factories' that release planktonic cells even when challenged with antimicrobials. The effect of isothiazolinone on the metabolic activity and biomass of mixed Pseudomonas biofilms was monitored in real-time using the CEMS-BioSpec system. The exposure of biofilms to the minimum inhibitory concentration (1.25 mg L-1) of biocide did not impact planktonic cell production (log 7.5 CFU mL-1), while whole-biofilm metabolic activity and biomass accumulation increased. Only the maximum biocide concentration (80 mg L-1) resulted in a change in planktonic cell yields and temporal inhibition of biofilm activity and biomass, a factor that needs due consideration in view of dilution in industrial settings. Interfacing the real-time measurement of metabolic activity and biomass with dosing systems is especially relevant to optimizing the use of biocides in industrial water systems.
Collapse
Affiliation(s)
- Kyle B. Klopper
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | - Elanna Bester
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | | | - Gideon M. Wolfaardt
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
| |
Collapse
|
2
|
Hu S, Zhang Y, Meng H, Yang Y, Chen G, Wang Q, Cheng K, Guo C, Li X, Liu T. Transformation and migration of Hg in a polluted alkaline paddy soil during flooding and drainage processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123471. [PMID: 38336140 DOI: 10.1016/j.envpol.2024.123471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Mercury (Hg) contamination in paddy soils poses a health risk to rice consumers and the environmental behavior of Hg determines its toxicity. Thus, the variations of Hg speciation are worthy of exploring. In this study, microcosm and pot experiments were conducted to elucidate Hg transformation, methylation, bioaccumulation, and risk coupled with biogeochemical cycling of key elements in a Hg-polluted alkaline paddy soil. In microcosm and pot experiments, organic- and sulfide-bound and residual Hg accounted for more than 98% of total Hg, and total contents of dissolved, exchangeable, specifically adsorbed, and fulvic acid-bound Hg were less than 2% of total Hg, indicating a low mobility and environmental risk of Hg. The decrease of pH aroused from Fe(III), SO42-, and NO3- reduction promoted Hg mobility, whereas the increase of pH caused by Fe(II), S2-, and NH4+ oxidation reduced available Hg contents. Moreover, Fe-bearing minerals reduction and organic matter consumption promoted Hg mobility, whereas the produced HgS and Fe(II) oxidation increased Hg stability. During flooding, a fraction of inorganic Hg (IHg) could be transported into methylmercury (MeHg), and during drainage, MeHg would be converted back into IHg. After planting rice in an alkaline paddy soil, available Hg was below 0.3 mg kg-1. During rice growth, a portion of available Hg transport from paddy soil to rice, promoting Hg accumulation in rice grains. After rice ripening, IHg levels in rice tissues followed the trend: root > leaf > stem > grain, and IHg content in rice grain exceed 0.02 mg kg-1, but MeHg content in rice grain meets daily intake limit (37.45 μg kg-1). These results provide a basis for assessing the environmental risks and developing remediation strategies for Hg-contaminated redox-changing paddy fields as well as guaranteeing the safe production of rice grains.
Collapse
Affiliation(s)
- Shiwen Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yufan Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hanbing Meng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Kuan Cheng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chao Guo
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environ. Pollut. Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
3
|
Klopper KB, Bester E, van Schalkwyk M, Wolfaardt GM. Highlighting the limitations of static microplate biofilm assays for industrial biocide effectiveness compared to dynamic flow conditions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13214. [PMID: 38015101 PMCID: PMC10866068 DOI: 10.1111/1758-2229.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
The minimal inhibitory concentration of an antimicrobial required to inhibit the growth of planktonic populations (minimum inhibitory concentration [MIC]) remains the 'gold standard' even though biofilms are acknowledged to be recalcitrant to concentrations that greatly exceed the MIC. As a result, most studies focus on biofilm tolerance to high antimicrobial concentrations, whereas the effect of environmentally relevant sub-MIC on biofilms is neglected. The effect of the MIC and sub-MIC of an isothiazolinone biocide on a microbial community isolated from an industrial cooling system was assessed under static and flow conditions. The differential response of planktonic and sessile populations to these biocide concentrations was discerned by modifying the broth microdilution assay. However, the end-point analysis of biofilms cultivated in static microplates obscured the effect of sub-MIC and MIC on biofilms. A transition from batch to the continuous flow system revealed a more nuanced response of biofilms to these biocide concentrations, where biofilm-derived planktonic cell production was maintained despite an increase in the frequency and extent of biofilm sloughing. A holistic, 'best of both worlds' approach that combines the use of static and continuous flow systems is useful to investigate the potential for the development of persistent biofilms under conditions where exposure to sub-MIC and MIC may occur.
Collapse
Affiliation(s)
- Kyle B. Klopper
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | - Elanna Bester
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | | | - Gideon M. Wolfaardt
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
| |
Collapse
|
4
|
Klopper KB, Bester E, Wolfaardt GM. Listeria monocytogenes Biofilms Are Planktonic Cell Factories despite Peracetic Acid Exposure under Continuous Flow Conditions. Antibiotics (Basel) 2023; 12:antibiotics12020209. [PMID: 36830120 PMCID: PMC9952409 DOI: 10.3390/antibiotics12020209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Listeria monocytogenes biofilms are ubiquitous in the food-processing environment, where they frequently show resistance against treatment with disinfectants such as peracetic acid (PAA) due to sub-lethal damage resulting in biofilm persistence or the formation of secondary biofilms. L. monocytogenes serovar ½a EGD-e biofilms were cultivated under continuous flow conditions at 10 °C, 22 °C, and 37 °C and exposed to industrially relevant PAA concentrations. The effect of PAA on biofilm metabolic activity and biomass was monitored in real-time using the CEMS-BioSpec system, in addition to daily measurement of biofilm-derived planktonic cell production. Biofilm-derived planktonic cell yields proved to be consistent with high yields during biofilm establishment (≥106 CFU.mL-1). The exposure of biofilms to the minimum inhibitory PAA concentration (0.16%) resulted in only a brief disruption in whole-biofilm metabolic activity and biofilm biomass accumulation. The recovered biofilm accumulated more biomass and greater activity, but cell yields remained similar. Increasing concentrations of PAA (0.50%, 1.5%, and 4.0%) had a longer-lasting inhibitory effect. Only the maximum dose resulted in a lasting inhibition of biofilm activity and biomass-a factor that needs due consideration in view of dilution in industrial settings. Better disinfection monitoring tools and protocols are required to adequately address the problem of Listeria biofilms in the food-processing environment, and more emphasis should be placed on biofilms serving as a "factory" for cell proliferation rather than only a survival mechanism.
Collapse
Affiliation(s)
- Kyle B. Klopper
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Elanna Bester
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Gideon M. Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Correspondence:
| |
Collapse
|
5
|
Ronan E, Kroukamp O, Liss SN, Wolfaardt G. Evaluating CO 2 emissions from continuous flow and batch growth systems under autotrophic mode: Implications for GHG accounting of biological nutrient removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112928. [PMID: 34116306 DOI: 10.1016/j.jenvman.2021.112928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/15/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The oxidation of ammonia by autotrophic bacteria is a central part of the nitrogen cycle and a fundamental aspect of biological nutrient removal (BNR) during wastewater treatment. Autotrophic ammonia oxidation produces protons and results in net-CO2 production due to the neutralizing effect of bicarbonate alkalinity. Attention must be paid to the propensity for this produced CO2 to be transferred to the atmosphere where it can act as a greenhouse gas (GHG). In the context of BNR systems, bicarbonate-derived CO2 emissions should be considered distinct from the biogenic CO2 that arises from cellular respiration, though this distinction is not made in current GHG accounting practices. The aim of this study was to evaluate the performance of two experimental systems operated under autotrophic mode and buffered with bicarbonate, to investigate the relationship between ammonia removal and gaseous CO2 emissions. The first system consisted of continuously aerated lab-scale batch reactors, which were effective in demonstrating the important link between ammonia oxidizer activity, pH, and gaseous CO2 production. Depletion of the buffer system always led to a rapid decline in system pH and cessation of CO2 emissions when the pH fell below 7.0. The second system was a tubular continuous-flow biofilm reactor which permitted comparison of ammonia removal and CO2 emission rates. A linear relationship between ammonia removal and CO2 emissions was demonstrated and the quantified CO2 production was relatively close to that which was predicted based on the stoichiometry of nitrification, with this CO2 being detected in the gas phase. It was apparent that this system offered minimal resistance to the mass transfer of CO2 from the liquid to gas, which is an important factor that determines how much of the bicarbonate-derived CO2 may contribute to greenhouse gas emissions in engineered systems such as those used for BNR.
Collapse
Affiliation(s)
- Evan Ronan
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada.
| | - Otini Kroukamp
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada.
| | - Steven N Liss
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada; Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | - Gideon Wolfaardt
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada; Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
6
|
Ronan P, Kroukamp O, Liss SN, Wolfaardt G. Interaction between CO2-consuming autotrophy and CO2-producing heterotrophy in non-axenic phototrophic biofilms. PLoS One 2021; 16:e0253224. [PMID: 34129611 PMCID: PMC8205120 DOI: 10.1371/journal.pone.0253224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
As the effects of climate change become increasingly evident, the need for effective CO2 management is clear. Microalgae are well-suited for CO2 sequestration, given their ability to rapidly uptake and fix CO2. They also readily assimilate inorganic nutrients and produce a biomass with inherent commercial value, leading to a paradigm in which CO2-sequestration, enhanced wastewater treatment, and biomass generation could be effectively combined. Natural non-axenic phototrophic cultures comprising both autotrophic and heterotrophic fractions are particularly attractive in this endeavour, given their increased robustness and innate O2-CO2 exchange. In this study, the interplay between CO2-consuming autotrophy and CO2-producing heterotrophy in a non-axenic phototrophic biofilm was examined. When the biofilm was cultivated under autotrophic conditions (i.e. no organic carbon), it grew autotrophically and exhibited CO2 uptake. After amending its growth medium with organic carbon (0.25 g/L glucose and 0.28 g/L sodium acetate), the biofilm rapidly toggled from net-autotrophic to net-heterotrophic growth, reaching a CO2 production rate of 60 μmol/h after 31 hours. When the organic carbon sources were provided at a lower concentration (0.125 g/L glucose and 0.14 g/L sodium acetate), the biofilm exhibited distinct, longitudinally discrete regions of heterotrophic and autotrophic metabolism in the proximal and distal halves of the biofilm respectively, within 4 hours of carbon amendment. Interestingly, this upstream and downstream partitioning of heterotrophic and autotrophic metabolism appeared to be reversible, as the position of these regions began to flip once the direction of medium flow (and hence nutrient availability) was reversed. The insight generated here can inform new and important research questions and contribute to efforts aimed at scaling and industrializing algal growth systems, where the ability to understand, predict, and optimize biofilm growth and activity is critical.
Collapse
Affiliation(s)
- Patrick Ronan
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Otini Kroukamp
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Steven N. Liss
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Gideon Wolfaardt
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- * E-mail:
| |
Collapse
|
7
|
Vashchenko AO, Voronkova YS, Kulyk EE, Snisar OS, Sidashenko OI, Voronkova OS. Influence of sugars on biofilm formation of Staphylococcus epidermidis. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The problem of biofilm formation by clinical strains of opportunistic bacteria is one of the most significant for medicine, because in a state of biofilm bacteria become more resistant to environmental factors, including antibiotics, a situation that can cause failure of treatment. Among opportunistic pathogens staphylococci are of special interest. Knowledge about the peculiarities of biofilm formation of these strains, in particular the polysaccharide biosynthesis, can be used for creation of a strategy of prophylaxis of different lesions that bind with staphylococci. The effect of different concentrations of the most widespread sugars (glucose, sucrose, lactose, galactose) on the activity of biofilm formation by strains of Staphylococcus epidermidis was investigated. Strains of S. epidermidis (n = 7) were isolated from the reproductive tract of women with dysbiosis. The cultures were grown in universal synthetic media with concentration of one of the listed sugars (0.5–3.0%) during 72 h. Results were obtained colorimetrically. We studied the number of cells in biofilm and the index of biofilm formation. The largest number of cells in the biofilm was observed when the culture incubated in a medium with 2.0% of glucose (increase of 25.3 times compared to control). The amount of CFU in the control biofilm was 9.96 lg CFU/mL. The glucose concentration of 3.0% inhibited the biofilm formation: the number of cells in the biofilm was 569 times less compared to the control. The highest value of biofilm formation index was 7.2, which was 1.3 times higher than the control (5.4). In the presence of lactose and galactose in nutrient medium in concentrations from 1.0% a decrease in the number of cells and biofilm formation index were observed. The received data show that process of biofilm formation is significantly dependent on external sources of sugars, which can indicate the possibility of their use as antibiofilm drug compounds, which inhibit membrane transport of sugars in bacteria.
Collapse
|
8
|
Stone W, Louw TM, Booysen MJ, Wolfaardt GM. Canary in the coliform mine: Exploring the industrial application limits of a microbial respiration alarm system. PLoS One 2021; 16:e0247910. [PMID: 33661997 PMCID: PMC7932117 DOI: 10.1371/journal.pone.0247910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/16/2021] [Indexed: 11/18/2022] Open
Abstract
Fundamental ecological principles of ecosystem-level respiration are extensively applied in greenhouse gas and elemental cycle studies. A laboratory system termed CEMS (Carbon Dioxide Evolution Measurement System), developed to explore microbial biofilm growth and metabolic responses, was evaluated as an early-warning system for microbial disturbances in industrial settings: in (a) potable water system contamination, and (b) bioreactor inhibition. Respiration was detected as CO2 production, rather than O2 consumption, including aerobic and anaerobic metabolism. Design, thresholds, and benefits of the remote CO2 monitoring technology were described. Headspace CO2 correlated with contamination levels, as well as chemical (R2 > 0.83-0.96) and microbiological water quality indicators (R2 > 0.78-0.88). Detection thresholds were limiting factors in monitoring drinking water to national and international standards (0 CFU/100 mL fecal coliforms) in both open- (>1500 CFU/mL) and closed-loop CO2 measuring regimes (>100 CFU/100 mL). However, closed-loop detection thresholds allow for the detection of significant contamination events, and monitoring less stringent systems such as irrigation water (<100 CFU/mL). Whole-system respiration was effectively harnessed as an early-warning system in bioreactor performance monitoring. Models were used to deconvolute biological CO2 fluctuations from chemical CO2 dynamics, to optimize this real-time, sustainable, low-waste technology, facilitating timeous responses to biological disturbances in bioreactors.
Collapse
Affiliation(s)
- Wendy Stone
- Water Institute and Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- * E-mail:
| | - Tobi M. Louw
- Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Marthinus J. Booysen
- Department of E&E Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Gideon M. Wolfaardt
- Water Institute and Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| |
Collapse
|
9
|
Liew FJ, Schilling JS. High-efficiency methane capture by living fungi and dried fungal hyphae (necromass). JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:1467-1476. [PMID: 33118202 DOI: 10.1002/jeq2.20136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Fungi can hasten microbial degradation of hydrophobic compounds by enhancing capture and dissolution into biofilms. For methane (CH4 ) released from natural soils and agricultural systems, prokaryotes are ultimately responsible for oxidation and degradation; however, in many cases Henry's law of gas dissolution, not oxidation, is rate-limiting. Given that fungi can improve capture and bioremediation of other hydrophobic compounds (e.g., toluene), we tested fungi for CH4 capture. We used a batch system of CH4 -flooded vials to screen candidate fungi. We found 79% removal efficiency by Ganoderma lucidum relative to activated carbon. In a follow-up, we found comparable efficiency in other Ganoderma species (G. applanatum, G. meredithae). However, these efficiency gains by Ganoderma species could not be sustained when inoculated wood substrates were placed in "live" soils. Substrates colonized naturally, without preinoculations, performed similarly to those deployed with (native) test strains, likely because inoculated fungi were outcompeted and displaced by native colonizers. Instead of rescreening using more combative fungi, we tested an alternative way to present fungi with high single-strain efficiencies for filtration: in dried form as dead biomass (necromass). In dried biomass trials, dried G. lucidum biomass performed better than when testing living biomass, again with the highest strain-specific removal efficiencies (84% of activated carbon). These results demonstrate the potential for G. lucidum, commonly used in biomaterial production, in a variety of indoor and outdoor biofiltration scenarios. It also implies an overlooked, potentially large role for fungi and their soil necromass in capturing and reducing CH4 emissions from soils in nature.
Collapse
Affiliation(s)
- Feng Jin Liew
- Dep. of Bioproducts and Biosystems Engineering, Univ. of Minnesota, 2004 Folwell Ave, Saint Paul, MN, 55108, USA
| | - Jonathan S Schilling
- Dep. of Plant and Microbial Biology, Univ. of Minnesota, 1500 Gortner Ave., Saint Paul, MN, 55108, USA
| |
Collapse
|
10
|
Klopper KB, de Witt RN, Bester E, Dicks LMT, Wolfaardt GM. Biofilm dynamics: linking in situ biofilm biomass and metabolic activity measurements in real-time under continuous flow conditions. NPJ Biofilms Microbiomes 2020; 6:42. [PMID: 33087727 PMCID: PMC7578832 DOI: 10.1038/s41522-020-00153-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022] Open
Abstract
The tools used to study biofilms generally involve either destructive, end-point analyses or periodic measurements. The advent of the internet of things (IoT) era allows circumvention of these limitations. Here we introduce and detail the development of the BioSpec; a modular, nondestructive, real-time monitoring system, which accurately and reliably track changes in biofilm biomass over time. The performance of the system was validated using a commercial spectrophotometer and produced comparable results for variations in planktonic and sessile biomass. BioSpec was combined with the previously developed carbon dioxide evolution measurement system (CEMS) to allow simultaneous measurement of biofilm biomass and metabolic activity and revealed a differential response of these interrelated parameters to changing environmental conditions. The application of this system can facilitate a greater understanding of biofilm mass-function relationships and aid in the development of biofilm control strategies.
Collapse
Affiliation(s)
- Kyle B Klopper
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Riaan N de Witt
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Elanna Bester
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Gideon M Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.
| |
Collapse
|
11
|
Ronan P, Kroukamp O, Liss SN, Wolfaardt G. A Novel System for Real-Time, In Situ Monitoring of CO 2 Sequestration in Photoautotrophic Biofilms. Microorganisms 2020; 8:microorganisms8081163. [PMID: 32751859 PMCID: PMC7464137 DOI: 10.3390/microorganisms8081163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 01/26/2023] Open
Abstract
Climate change brought about by anthropogenic CO2 emissions has created a critical need for effective CO2 management solutions. Microalgae are well suited to contribute to efforts aimed at addressing this challenge, given their ability to rapidly sequester CO2 coupled with the commercial value of their biomass. Recently, microalgal biofilms have garnered significant attention over the more conventional suspended algal growth systems, since they allow for easier and cheaper biomass harvesting, among other key benefits. However, the path to cost-effectiveness and scaling up is hindered by a need for new tools and methodologies which can help evaluate, and in turn optimize, algal biofilm growth. Presented here is a novel system which facilitates the real-time in situ monitoring of algal biofilm CO2 sequestration. Utilizing a CO2-permeable membrane and a tube-within-a-tube design, the CO2 sequestration monitoring system (CSMS) was able to reliably detect slight changes in algal biofilm CO2 uptake brought about by light–dark cycling, light intensity shifts, and varying amounts of phototrophic biomass. This work presents an approach to advance our understanding of carbon flux in algal biofilms, and a base for potentially useful innovations to optimize, and eventually realize, algae biofilm-based CO2 sequestration.
Collapse
Affiliation(s)
- Patrick Ronan
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada; (P.R.); (O.K.); (S.N.L.)
| | - Otini Kroukamp
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada; (P.R.); (O.K.); (S.N.L.)
| | - Steven N. Liss
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada; (P.R.); (O.K.); (S.N.L.)
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Gideon Wolfaardt
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada; (P.R.); (O.K.); (S.N.L.)
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Correspondence:
| |
Collapse
|
12
|
Brethauer S, Shahab RL, Studer MH. Impacts of biofilms on the conversion of cellulose. Appl Microbiol Biotechnol 2020; 104:5201-5212. [PMID: 32337627 PMCID: PMC7275028 DOI: 10.1007/s00253-020-10595-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 12/02/2022]
Abstract
Abstract Lignocellulose is a widely available renewable carbon source and a promising feedstock for the production of various chemicals in biorefineries. However, its recalcitrant nature is a major hurdle that must be overcome to enable economic conversion processes. Deconstruction of lignocellulose is part of the global carbon cycle, and efficient microbial degradation systems have evolved that might serve as models to improve commercial conversion processes. Biofilms—matrix encased, spatially organized clusters of microbial cells and the predominating lifestyle in nature—have been recognized for their essential role in the degradation of cellulose in nature, e.g., in soils or in the digestive tracts of ruminant animals. Cellulolytic biofilms allow for a high concentration of enzymes at the boundary layer between the solid substrate and the liquid phase and the more complete capture of hydrolysis products directly at the hydrolysis site, which is energetically favorable. Furthermore, enhanced expression of genes for carbohydrate active enzymes as a response to the attachment on solid substrate has been demonstrated for cellulolytic aerobic fungi and anerobic bacteria. In natural multispecies biofilms, the vicinity of different microbial species allows the creation of efficient food webs and synergistic interactions thereby, e.g., avoiding the accumulation of inhibiting metabolites. In this review, these topics are discussed and attempts to realize the benefits of biofilms in targeted applications such as the consolidated bioprocessing of lignocellulose are highlighted. Key Points Multispecies biofilms enable efficient lignocellulose destruction in the biosphere. Cellulose degradation by anaerobic bacteria often occurs by monolayered biofilms. Fungal biofilms immobilize enzymes and substrates in an external digestion system. Surface attached cultures typically show higher expression of cellulolytic enzymes.
Collapse
Affiliation(s)
- Simone Brethauer
- School of Agricultural, Forest and Food Sciences, Laboratory of Biofuels and Biochemicals, Bern University of Applied Sciences (BFH), 3052, Zollikofen, Switzerland
| | - Robert L Shahab
- School of Agricultural, Forest and Food Sciences, Laboratory of Biofuels and Biochemicals, Bern University of Applied Sciences (BFH), 3052, Zollikofen, Switzerland
| | - Michael H Studer
- School of Agricultural, Forest and Food Sciences, Laboratory of Biofuels and Biochemicals, Bern University of Applied Sciences (BFH), 3052, Zollikofen, Switzerland.
| |
Collapse
|
13
|
Jackson LMD, Kroukamp O, Yeung WC, Ronan E, Liss SN, Wolfaardt GM. Species Interaction and Selective Carbon Addition During Antibiotic Exposure Enhances Bacterial Survival. Front Microbiol 2019; 10:2730. [PMID: 31849882 PMCID: PMC6895500 DOI: 10.3389/fmicb.2019.02730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
Biofilms are multifaceted and robust microbiological systems that enable microorganisms to withstand a multitude of environmental stresses and expand their habitat range. We have shown previously that nutritional status alters antibiotic susceptibility in a mixed-species biofilm. To further elucidate the effects of nutrient addition on inter-species dynamics and whole-biofilm susceptibility to high-dose streptomycin exposures, a CO2 Evolution Measurement System was used to monitor the metabolic activity of early steady state pure-culture and mixed-species biofilms containing Pseudomonas aeruginosa and Stenotrophomonas maltophilia, with and without added carbon. Carbon supplementation was needed for biofilm recovery from high-dose streptomycin exposures when P. aeruginosa was either the dominant community member in a mixed-species biofilm (containing predominantly P. aeruginosa and S. maltophilia) or as a pure culture. By contrast, S. maltophilia biofilms could recover from high-dose streptomycin exposures without the need for carbon addition during antibiotic exposure. Metagenomic analysis revealed that even when inocula were dominated by Pseudomonas, the relative abundance of Stenotrophomonas increased upon biofilm development to ultimately become the dominant species post-streptomycin exposure. The combined metabolic and metagenomic results demonstrated the relevance of inter-species influence on survival and that nutritional status has a strong influence on the survival of P. aeruginosa dominated biofilms.
Collapse
Affiliation(s)
- Lindsay M D Jackson
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Otini Kroukamp
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - William C Yeung
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Evan Ronan
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Steven N Liss
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.,Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Gideon M Wolfaardt
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.,Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
14
|
Jang H, Eom Y. Repurposing auranofin to combat uropathogenic
Escherichia coli
biofilms. J Appl Microbiol 2019; 127:459-471. [DOI: 10.1111/jam.14312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022]
Affiliation(s)
- H.‐I. Jang
- Department of Medical Sciences, College of Medical Sciences Soonchunhyang University Asan Republic of Korea
| | - Y.‐B. Eom
- Department of Medical Sciences, College of Medical Sciences Soonchunhyang University Asan Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences Soonchunhyang University Asan Republic of Korea
| |
Collapse
|
15
|
Pousti M, Zarabadi MP, Abbaszadeh Amirdehi M, Paquet-Mercier F, Greener J. Microfluidic bioanalytical flow cells for biofilm studies: a review. Analyst 2019; 144:68-86. [PMID: 30394455 DOI: 10.1039/c8an01526k] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacterial biofilms are among the oldest and most prevalent multicellular life forms on Earth and are increasingly relevant in research areas related to industrial fouling, medicine and biotechnology. The main hurdles to obtaining definitive experimental results include time-varying biofilm properties, structural and chemical heterogeneity, and especially their strong sensitivity to environmental cues. Therefore, in addition to judicious choice of measurement tools, a well-designed biofilm study requires strict control over experimental conditions, more so than most chemical studies. Due to excellent control over a host of physiochemical parameters, microfluidic flow cells have become indispensable in microbiological studies. Not surprisingly, the number of lab-on-chip studies focusing on biofilms and other microbiological systems with expanded analytical capabilities has expanded rapidly in the past decade. In this paper, we comprehensively review the current state of microfluidic bioanalytical research applied to bacterial biofilms and offer a perspective on new approaches that are expected to drive continued advances in this field.
Collapse
Affiliation(s)
- Mohammad Pousti
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada
| | - Mir Pouyan Zarabadi
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada
| | - Mehran Abbaszadeh Amirdehi
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada
| | - François Paquet-Mercier
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada
| | - Jesse Greener
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec City, Québec G1 V 0A6, Canada and CHU de Quebec Research Centre, Laval University, 10 rue de l'Espinay, Quebec City, (QC) G1L 3L5, Canada
| |
Collapse
|
16
|
Bordoloi A, Gostomski PA. Fate of degraded pollutants in waste gas biofiltration: An overview of carbon end-points. Biotechnol Adv 2018; 37:579-588. [PMID: 30308222 DOI: 10.1016/j.biotechadv.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
The fate of the carbon from degraded pollutants in biofiltration is not well understood. The issue of missing carbon needs to be addressed quantitatively to better understand and model biofilter performance. Elucidating the various carbon end-points in various phases should contribute to the fundamental understanding of the degradation kinetics and metabolic pathways as a function of various environmental parameters. This article reviews the implications of key environmental parameters on the carbon end-points. Various studies are evaluated reporting carbon recovery over a multitude of parameters and operational conditions with respect to the analytical measurements and reported distribution of the carbon end-points.
Collapse
Affiliation(s)
- Achinta Bordoloi
- Department of Chemical and Process Engineering, University of Canterbury, New Zealand
| | - Peter A Gostomski
- Department of Chemical and Process Engineering, University of Canterbury, New Zealand.
| |
Collapse
|
17
|
Klopper KB, Bester E, Deane SM, Wolfaardt GM, Dicks LMT. Survival of Planktonic and Sessile Cells of Lactobacillus rhamnosus and Lactobacillus reuteri upon Exposure to Simulated Fasting-State Gastrointestinal Conditions. Probiotics Antimicrob Proteins 2018; 11:594-603. [DOI: 10.1007/s12602-018-9426-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Lirtsman V, Golosovsky M, Davidov D. Surface plasmon excitation using a Fourier-transform infrared spectrometer: Live cell and bacteria sensing. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:103105. [PMID: 29092505 DOI: 10.1063/1.4997388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report an accessory for beam collimation to be used as a plug-in for a conventional Fourier-Transform Infrared (FTIR) spectrometer. The beam collimator makes use of the built-in focusing mirror of the FTIR spectrometer which focuses the infrared beam onto the pinhole mounted in the place usually reserved for the sample. The beam is collimated by a small parabolic mirror and is redirected to the sample by a pair of plane mirrors. The reflected beam is conveyed by another pair of plane mirrors to the built-in detector of the FTIR spectrometer. This accessory is most useful for the surface plasmon excitation. We demonstrate how it can be employed for label-free and real-time sensing of dynamic processes in bacterial and live cell layers. In particular, by measuring the intensity of the CO2 absorption peak one can assess the cell layer metabolism, while by measuring the position of the surface plasmon resonance one assesses the cell layer morphology.
Collapse
Affiliation(s)
- Vladislav Lirtsman
- The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Michael Golosovsky
- The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Dan Davidov
- The Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
19
|
Stone W, Kroukamp O, Korber DR, McKelvie J, Wolfaardt GM. Microbes at Surface-Air Interfaces: The Metabolic Harnessing of Relative Humidity, Surface Hygroscopicity, and Oligotrophy for Resilience. Front Microbiol 2016; 7:1563. [PMID: 27746774 PMCID: PMC5043023 DOI: 10.3389/fmicb.2016.01563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022] Open
Abstract
The human environment is predominantly not aqueous, and microbes are ubiquitous at the surface-air interfaces with which we interact. Yet microbial studies at surface-air interfaces are largely survival-oriented, whilst microbial metabolism has overwhelmingly been investigated from the perspective of liquid saturation. This study explored microbial survival and metabolism under desiccation, particularly the influence of relative humidity (RH), surface hygroscopicity, and nutrient availability on the interchange between these two phenomena. The combination of a hygroscopic matrix (i.e., clay or 4,000 MW polyethylene glycol) and high RH resulted in persistent measurable microbial metabolism during desiccation. In contrast, no microbial metabolism was detected at (a) hygroscopic interfaces at low RH, and (b) less hygroscopic interfaces (i.e., sand and plastic/glass) at high or low RH. Cell survival was conversely inhibited at high RH and promoted at low RH, irrespective of surface hygroscopicity. Based on this demonstration of metabolic persistence and survival inhibition at high RH, it was proposed that biofilm metabolic rates might inversely influence whole-biofilm resilience, with ‘resilience’ defined in this study as a biofilm’s capacity to recover from desiccation. The concept of whole-biofilm resilience being promoted by oligotrophy was supported in desiccation-tolerant Arthrobacter spp. biofilms, but not in desiccation-sensitive Pseudomonas aeruginosa biofilms. The ability of microbes to interact with surfaces to harness water vapor during desiccation was demonstrated, and potentially to harness oligotrophy (the most ubiquitous natural condition facing microbes) for adaptation to desiccation.
Collapse
Affiliation(s)
- Wendy Stone
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| | - Otini Kroukamp
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| | - Darren R Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK Canada
| | - Jennifer McKelvie
- Environmental Geoscience, Nuclear Waste Management Organization, Toronto, ON Canada
| | - Gideon M Wolfaardt
- Department of Microbiology, University of Stellenbosch, Cape TownSouth Africa; Department of Chemistry and Biology, Ryerson University, Toronto, ONCanada
| |
Collapse
|
20
|
Silva CR, Oliveira E, Zagatto EA, Henriquez C. A novel flow-based procedure for automation of respirometric assays in soils. Talanta 2016; 158:14-20. [DOI: 10.1016/j.talanta.2016.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022]
|
21
|
Ronan E, Edjiu N, Kroukamp O, Wolfaardt G, Karshafian R. USMB-induced synergistic enhancement of aminoglycoside antibiotics in biofilms. ULTRASONICS 2016; 69:182-190. [PMID: 27111871 DOI: 10.1016/j.ultras.2016.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
This study evaluated the effect of combining antibiotics with ultrasound and microbubbles (USMB) toward the eradication of biofilms. Pseudomonas aeruginosa PAO1 biofilms were treated with the antibiotics gentamicin sulfate or streptomycin sulfate, or a combination of USMB with the respective antibiotics. Biofilm structure was quantified using confocal laser scanning microscopy with COMSTAT analysis, while activity was measured as whole-biofilm CO2 production in a continuous-flow biofilm model. The combined antibiotic-USMB treatment significantly impacted biofilm biomass, thickness and surface roughness compared to antibiotics alone (p<0.05). USMB exposure caused the formation of craters (5-20μm in diameter) in the biofilms, and when combined with gentamicin, activity was significantly lower, compared to gentamicin, USMB or untreated controls, respectively. Interestingly, the CO2 production rate following combined streptomycin-USMB treatment was higher than after streptomycin alone, but significantly lower than USMB alone and untreated control. These results show strong evidence of a synergistic effect between antibiotics and USMB, although the varied response to different antibiotics emphasize the need to optimize the USMB exposure conditions to maximize this synergism and ultimately transfer this technology into clinical or industrial practice.
Collapse
Affiliation(s)
- Evan Ronan
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Narbeh Edjiu
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Otini Kroukamp
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Gideon Wolfaardt
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Raffi Karshafian
- Department of Physics, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Measuring microbial metabolism in atypical environments: Bentonite in used nuclear fuel storage. J Microbiol Methods 2016; 120:79-90. [DOI: 10.1016/j.mimet.2015.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 11/19/2022]
|
23
|
Jackson LMD, Kroukamp O, Wolfaardt GM. Effect of carbon on whole-biofilm metabolic response to high doses of streptomycin. Front Microbiol 2015; 6:953. [PMID: 26441887 PMCID: PMC4566048 DOI: 10.3389/fmicb.2015.00953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/28/2015] [Indexed: 01/10/2023] Open
Abstract
Biofilms typically exist as complex communities comprising multiple species with the ability to adapt to a variety of harsh conditions. In clinical settings, antibiotic treatments based on planktonic susceptibility tests are often ineffective against biofilm infections. Using a CO2 evolution measurement system we delineated the real-time metabolic response in continuous flow biofilms to streptomycin doses much greater than their planktonic susceptibilities. Stable biofilms from a multispecies culture (containing mainly Pseudomonas aeruginosa and Stenotrophomonas maltophilia), Gram-negative environmental isolates, and biofilms formed by pure culture P. aeruginosa strains PAO1 and PAO1 ΔMexXY (minimum planktonic inhibitory concentrations between 1.5 and 3.5 mg/l), were exposed in separate experiments to 4000 mg/l streptomycin for 4 h after which growth medium resumed. In complex medium, early steady state multispecies biofilms were susceptible to streptomycin exposure, inferred by a cessation of CO2 production. However, multispecies biofilms survived high dose exposures when there was extra carbon in the antibiotic medium, or when they were grown in defined citrate medium. The environmental isolates and PAO1 biofilms showed similar metabolic profiles in response to streptomycin; ceasing CO2 production after initial exposure, with CO2 levels dropping toward baseline levels prior to recovery back to steady state levels, while subsequent antibiotic exposure elicited increased CO2 output. Monitoring biofilm metabolic response in real-time allowed exploration of conditions resulting in vulnerability after antibiotic exposure compared to the resistance displayed following subsequent exposures.
Collapse
Affiliation(s)
| | - Otini Kroukamp
- Department of Chemistry and Biology, Ryerson University, Toronto ON, Canada
| | - Gideon M Wolfaardt
- Department of Chemistry and Biology, Ryerson University, Toronto ON, Canada ; Department of Microbiology, Stellenbosch University Stellenbosch, South Africa
| |
Collapse
|
24
|
Dumitrache A, Eberl HJ, Allen DG, Wolfaardt GM. Mathematical modeling to validate on-line CO2 measurements as a metric for cellulolytic biofilm activity in continuous-flow bioreactors. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Sousa AJ, Droppo IG, Liss SN, Warren L, Wolfaardt G. Influence of wave action on the partitioning and transport of unattached and floc-associated bacteria in fresh water. Can J Microbiol 2015; 61:584-96. [PMID: 26168283 DOI: 10.1139/cjm-2014-0815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dynamic interaction of bacteria within bed sediment and suspended sediment (i.e., floc) in a wave-dominated beach environment was assessed using a laboratory wave flume. The influence of shear stress (wave energy) on bacterial concentrations and on the partitioning and transport of unattached and floc-associated bacteria was investigated. The study showed that increasing wave energy (0.60 and 5.35 N/s) resulted in a 0.5 to 1.5 log increase in unattached cells of the test bacterium Pseudomonas sp. strain CTO7::gfp-2 in the water column. There was a positive correlation between the bacterial concentrations in water and the total suspended solids, with the latter increasing from values of near 0 to up to 200 mg/L over the same wave energy increase. The median equivalent spherical diameter of flocs in suspension also increased by an order of magnitude in all experimental trials. Under both low (0.60 N/s) and high (5.35 N/s) energy regime, bacteria were shown to preferentially associate with flocs upon cessation of wave activity. The results suggest that collecting water samples during periods of low wave action for the purpose of monitoring the microbiological quality of water may underestimate bacterial concentrations partly because of an inability to account for the effect of shear stress on the erosion and mobilization of bacteria from bed sediment to the water column. This highlights the need to develop a more comprehensive beach analysis strategy that not only addresses presently uncharacterized shores and sediments but also recognizes the importance of eroded flocs as a vector for the transport of bacteria in aquatic environments.
Collapse
Affiliation(s)
- Andrew J Sousa
- a Ryerson University, Department of Chemistry and Biology, Toronto, ON M5B 2K3, Canada
| | - Ian G Droppo
- a Ryerson University, Department of Chemistry and Biology, Toronto, ON M5B 2K3, Canada.,b Environment Canada, P.O. Box 5050, Burlington, ON L7R 4A6, Canada
| | - Steven N Liss
- c Queen's University, Department of Chemical Engineering, Kingston, ON K7L 3N6, Canada
| | - Lesley Warren
- d McMaster University, School of Geography and Earth Sciences, Hamilton, ON L8S 4K1, Canada
| | - Gideon Wolfaardt
- a Ryerson University, Department of Chemistry and Biology, Toronto, ON M5B 2K3, Canada.,e Stellenbosch University, Department of Microbiology, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
26
|
Martin NL, Bass P, Liss SN. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide. PLoS One 2015; 10:e0131345. [PMID: 26154263 PMCID: PMC4496041 DOI: 10.1371/journal.pone.0131345] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/01/2015] [Indexed: 11/18/2022] Open
Abstract
Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8 mg/L(-1)) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K(+)) and divalent (Ca(+2)) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of ionic silver (50- 375 ppb) had a negligible effect, demonstrating that the microbiocidal activity of HSP was due to peroxide rather than silver. Overall, it was found that the antimicrobial activity of HSP is enhanced over that of hydrogen peroxide; the presence of the ionic silver enhances interactions of HSP with the bacterial cell surface rather than acting directly as a biocide at the tested concentrations.
Collapse
Affiliation(s)
- Nancy L. Martin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Paul Bass
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Steven N. Liss
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
27
|
An Integrated Modeling and Experimental Approach to Study the Influence of Environmental Nutrients on Biofilm Formation of Pseudomonas aeruginosa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:506782. [PMID: 25954752 PMCID: PMC4411446 DOI: 10.1155/2015/506782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
Abstract
The availability of nutrient components in the environment was identified as a critical regulator of virulence and biofilm formation in Pseudomonas aeruginosa. This work proposes the first systems-biology approach to quantify microbial biofilm formation upon the change of nutrient availability in the environment. Specifically, the change of fluxes of metabolic reactions that were positively associated with P. aeruginosa biofilm formation was used to monitor the trend for P. aeruginosa to form a biofilm. The uptake rates of nutrient components were changed according to the change of the nutrient availability. We found that adding each of the eleven amino acids (Arg, Tyr, Phe, His, Iso, Orn, Pro, Glu, Leu, Val, and Asp) to minimal medium promoted P. aeruginosa biofilm formation. Both modeling and experimental approaches were further developed to quantify P. aeruginosa biofilm formation for four different availability levels for each of the three ions that include ferrous ions, sulfate, and phosphate. The developed modeling approach correctly predicted the amount of biofilm formation. By comparing reaction flux change upon the change of nutrient concentrations, metabolic reactions used by P. aeruginosa to regulate its biofilm formation are mainly involved in arginine metabolism, glutamate production, magnesium transport, acetate metabolism, and the TCA cycle.
Collapse
|
28
|
Dumitrache A, Wolfaardt GM, Allen DG, Liss SN, Lynd LR. Tracking the cellulolytic activity of Clostridium thermocellum biofilms. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:175. [PMID: 24286524 PMCID: PMC4176736 DOI: 10.1186/1754-6834-6-175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/02/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND Microbial cellulose conversion by Clostridium thermocellum 27405 occurs predominantly through the activity of substrate-adherent bacteria organized in thin, primarily single cell-layered biofilms. The importance of cellulosic surface exposure to microbial hydrolysis has received little attention despite its implied impact on conversion kinetics. RESULTS We showed the spatial heterogeneity of fiber distribution in pure cellulosic sheets, which made direct measurements of biofilm colonization and surface penetration impossible. Therefore, we utilized on-line measurements of carbon dioxide (CO2) production in continuous-flow reactors, in conjunction with confocal imaging, to observe patterns of biofilm invasion and to indirectly estimate microbial accessibility to the substrate's surface and the resulting limitations on conversion kinetics. A strong positive correlation was found between cellulose consumption and CO2 production (R2 = 0.996) and between surface area and maximum biofilm activity (R2 = 0.981). We observed an initial biofilm development rate (0.46 h-1, 0.34 h-1 and 0.33 h-1) on Whatman sheets (#1, #598 and #3, respectively) that stabilized when the accessible surface was maximally colonized. The results suggest that cellulose conversion kinetics is initially subject to a microbial limitation period where the substrate is in excess, followed by a substrate limitation period where cellular mass, in the form of biofilms, is not limiting. Accessible surface area acts as an important determinant of the respective lengths of these two distinct periods. At end-point fermentation, all sheets were digested predominantly under substrate accessibility limitations (e.g., up to 81% of total CO2 production for Whatman #1). Integration of CO2 production rates over time showed Whatman #3 underwent the fastest conversion efficiency under microbial limitation, suggestive of best biofilm penetration, while Whatman #1 exhibited the least recalcitrance and the faster degradation during the substrate limitation period. CONCLUSION The results showed that the specific biofilm development rate of cellulolytic bacteria such as C. thermocellum has a notable effect on overall reactor kinetics during the period of microbial limitation, when ca. 20% of cellulose conversion occurs. The study further demonstrated the utility of on-line CO2 measurements as a method to assess biofilm development and substrate digestibility pertaining to microbial solubilization of cellulose, which is relevant when considering feedstock pre-treatment options.
Collapse
Affiliation(s)
- Alexandru Dumitrache
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E1, Canada
| | - Gideon M Wolfaardt
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON M5B 2K3, Canada
- Stellenbosch Institute for Advanced Study Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| | - David Grant Allen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E1, Canada
| | - Steven N Liss
- School of Environmental Studies and Department of Chemical Engineering, Queen’s University, 99 University Ave., Kingston, ON K7L 3N6, Canada
| | - Lee R Lynd
- Thayer School of Engineering, Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
29
|
Xu Z, Fang X, Wood TK, Huang ZJ. A systems-level approach for investigating Pseudomonas aeruginosa biofilm formation. PLoS One 2013; 8:e57050. [PMID: 23451140 PMCID: PMC3579789 DOI: 10.1371/journal.pone.0057050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/16/2013] [Indexed: 12/14/2022] Open
Abstract
Prevention of the initiation of biofilm formation is the most important step for combating biofilm-associated pathogens, as the ability of pathogens to resist antibiotics is enhanced 10 to 1000 times once biofilms are formed. Genes essential to bacterial growth in the planktonic state are potential targets to treat biofilm-associated pathogens. However, the biofilm formation capability of strains with mutations in these essential genes must be evaluated, since the pathogen might form a biofilm before it is eliminated. In order to address this issue, this work proposes a systems-level approach to quantifying the biofilm formation capability of mutants to determine target genes that are essential for bacterial metabolism in the planktonic state but do not induce biofilm formation in their mutants. The changes of fluxes through the reactions associated with the genes positively related to biofilm formation are used as soft sensors in the flux balance analysis to quantify the trend of biofilm formation upon the mutation of an essential gene. The essential genes whose mutants are predicted not to induce biofilm formation are regarded as gene targets. The proposed approach was applied to identify target genes to treat Pseudomonas aeruginosa infections. It is interesting to find that most essential gene mutants exhibit high potential to induce the biofilm formation while most non-essential gene mutants do not. Critically, we identified four essential genes, lysC, cysH, adk, and galU, that constitute gene targets to treat P. aeruginosa. They have been suggested by existing experimental data as potential drug targets for their crucial role in the survival or virulence of P. aeruginosa. It is also interesting to find that P. aeruginosa tends to survive the essential-gene mutation treatment by mainly enhancing fluxes through 8 metabolic reactions that regulate acetate metabolism, arginine metabolism, and glutamate metabolism.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Chemical Engineering, Villanova University, Villanova, Pennsylvania, United States of America
| | | | | | | |
Collapse
|
30
|
Cao B, Majors PD, Ahmed B, Renslow RS, Silvia CP, Shi L, Kjelleberg S, Fredrickson JK, Beyenal H. Biofilm shows spatially stratified metabolic responses to contaminant exposure. Environ Microbiol 2012; 14:2901-10. [PMID: 22925136 DOI: 10.1111/j.1462-2920.2012.02850.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/16/2012] [Accepted: 07/21/2012] [Indexed: 11/29/2022]
Abstract
Biofilms are core to a range of biological processes, including the bioremediation of environmental contaminants. Within a biofilm population, cells with diverse genotypes and phenotypes coexist, suggesting that distinct metabolic pathways may be expressed based on the local environmental conditions in a biofilm. However, metabolic responses to local environmental conditions in a metabolically active biofilm interacting with environmental contaminants have never been quantitatively elucidated. In this study, we monitored the spatiotemporal metabolic responses of metabolically active Shewanella oneidensis MR-1 biofilms to U(VI) (uranyl, UO(2)(2+)) and Cr(VI) (chromate, CrO(4) (2-)) using non-invasive nuclear magnetic resonance imaging (MRI) and spectroscopy (MRS) approaches to obtain insights into adaptation in biofilms during biofilm-contaminant interactions. While overall biomass distribution was not significantly altered upon exposure to U(VI) or Cr(VI), MRI and spatial mapping of the diffusion revealed localized changes in the water diffusion coefficients in the biofilms, suggesting significant contaminant-induced changes in structural or hydrodynamic properties during bioremediation. Finally, we quantitatively demonstrated that the metabolic responses of biofilms to contaminant exposure are spatially stratified, implying that adaptation in biofilms is custom-developed based on local microenvironments.
Collapse
Affiliation(s)
- Bin Cao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Babauta JT, Nguyen HD, Harrington TD, Renslow R, Beyenal H. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer. Biotechnol Bioeng 2012; 109:2651-62. [PMID: 22549331 DOI: 10.1002/bit.24538] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/10/2012] [Accepted: 04/20/2012] [Indexed: 11/07/2022]
Abstract
The limitation of pH inside electrode-respiring biofilms is a well-known concept. However, little is known about how pH and redox potential are affected by increasing current inside biofilms respiring on electrodes. Quantifying the variations in pH and redox potential with increasing current is needed to determine how electron transfer is tied to proton transfer within the biofilm. In this research, we quantified pH and redox potential variations in electrode-respiring Geobacter sulfurreducens biofilms as a function of respiration rates, measured as current. We also characterized pH and redox potential at the counter electrode. We concluded that (1) pH continued to decrease in the biofilm through different growth phases, showing that the pH is not always a limiting factor in a biofilm and (2) decreasing pH and increasing redox potential at the biofilm electrode were associated only with the biofilm, demonstrating that G. sulfurreducens biofilms respire in a unique internal environment. Redox potential inside the biofilm was also compared to the local biofilm potential measured by a graphite microelectrode, where the tip of the microelectrode was allowed to acclimatize inside the biofilm.
Collapse
Affiliation(s)
- Jerome T Babauta
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, PO Box 642710, Pullman, Washington 99164-2710, USA
| | | | | | | | | |
Collapse
|
32
|
Bester E, Kroukamp O, Hausner M, Edwards E, Wolfaardt G. Biofilm form and function: carbon availability affects biofilm architecture, metabolic activity and planktonic cell yield. J Appl Microbiol 2010; 110:387-98. [DOI: 10.1111/j.1365-2672.2010.04894.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Chao J, Wolfaardt GM, Arts MT. Characterization of Pseudomonas aeruginosa fatty acid profiles in biofilms and batch planktonic cultures. Can J Microbiol 2010; 56:1028-39. [DOI: 10.1139/w10-093] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The fatty acid composition of Pseudomonas aeruginosa PAO1 was compared between biofilm and batch planktonic cultures. Strain PAO1 biofilms were able to maintain a consistent fatty acid profile for up to 6 days, whereas strain PAO1 batch planktonic cultures showed a gradual loss of cis-monounsaturated fatty acids over 4 days. Biofilms exhibited a greater proportion of hydroxy fatty acids but a lower proportion of both cyclopropane fatty acids and saturated fatty acids (SAFAs). SAFAs with ≥16 carbons, in particular, decreased in biofilms when compared with that in batch planktonic cultures. A reduced proportion of SAFAs and a decline in overall fatty acid chain length indicate more fluidic biophysical properties for cell membranes of P. aeruginosa in biofilms. Separating the biofilms into 2 partitions and comparing their fatty acid compositions revealed additional trends that were not observed in the whole biofilm: the shear-nonremovable layer consistently showed greater proportions of hydroxy fatty acid than the bulk liquid + shear-removable portion of the biofilm. The shear-nonremovable portion demonstrated a relatively immediate decline in the proportion of monounsaturated fatty acids between days 2 and 4; which was offset by an increase in the proportion of cyclopropane fatty acids, specifically 19:0cyc(11,12). Simultaneously, the shear-removable portion of the biofilm showed an increase in the proportion of trans-monounsaturated fatty acids and cyclopropane fatty acids.
Collapse
Affiliation(s)
- Jerry Chao
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Aquatic Ecosystem Management Research Division, National Water Research Institute – Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6, Canada
| | - Gideon M. Wolfaardt
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Aquatic Ecosystem Management Research Division, National Water Research Institute – Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6, Canada
| | - Michael T. Arts
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
- Aquatic Ecosystem Management Research Division, National Water Research Institute – Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6, Canada
| |
Collapse
|
34
|
Pronounced effect of the nature of the inoculum on biofilm development in flow systems. Appl Environ Microbiol 2010; 76:6025-31. [PMID: 20639376 DOI: 10.1128/aem.00070-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation renders sessile microbial populations growing in continuous-flow systems less susceptible to variation in dilution rate than planktonic cells, where dilution rates exceeding an organism's maximum growth rate (micro(max)) results in planktonic cell washout. In biofilm-dominated systems, the biofilm's overall micro(max) may therefore be more relevant than the organism's micro(max), where the biofilm micro(max) is considered as a net process dependent on the adsorption rate, growth rate, and removal rate of cells within the biofilm. Together with lag (acclimation) time, the biofilm's overall micro(max) is important wherever biofilm growth is a dominant form, from clinical settings, where the aim is to prevent transition from lag to exponential growth, to industrial bioreactors, where the aim is to shorten the lag and rapidly reach maximum activity. The purpose of this study was to measure CO(2) production as an indicator of biofilm activity to determine the effect of nutrient type and concentration and of the origin of the inoculum on the length of the lag phase, biofilm micro(max), and steady-state metabolic activity of Pseudomonas aeruginosa PA01 (containing gfp), Pseudomonas fluorescens CT07 (containing gfp), and a mixed community. As expected, for different microorganisms the lengths of the lag phase in biofilm development and the biofilm micro(max) values differ, whereas different nutrient concentrations result in differences in the lengths of lag phase and steady-state values but not in biofilm micro(max) rates. The data further showed that inocula from different phenotypic origins give rise to lag time of different lengths and that this influence persists for a number of generations after inoculation.
Collapse
|
35
|
Metabolic differentiation in biofilms as indicated by carbon dioxide production rates. Appl Environ Microbiol 2009; 76:1189-97. [PMID: 20023078 DOI: 10.1128/aem.01719-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The measurement of carbon dioxide production rates as an indication of metabolic activity was applied to study biofilm development and response of Pseudomonas sp. biofilms to an environmental disturbance in the form of a moving air-liquid interface (i.e., shear). A differential response in biofilm cohesiveness was observed after bubble perturbation, and the biofilm layers were operationally defined as either shear-susceptible or non-shear-susceptible. Confocal laser scanning microscopy and image analysis showed a significant reduction in biofilm thickness and biomass after the removal of the shear-susceptible biofilm layer, as well as notable changes in the roughness coefficient and surface-to-biovolume ratio. These changes were accompanied by a 72% reduction of whole-biofilm CO2 production; however, the non-shear-susceptible region of the biofilm responded rapidly after the removal of the overlying cells and extracellular polymeric substances (EPS) along with the associated changes in nutrient and O2 flux, with CO2 production rates returning to preperturbation levels within 24 h. The adaptable nature and the ability of bacteria to respond to environmental conditions were further demonstrated by the outer shear-susceptible region of the biofilm; the average CO2 production rate of cells from this region increased within 0.25 h from 9.45 +/- 5.40 fmol of CO2 x cell(-1) x h(-1) to 22.6 +/- 7.58 fmol of CO2 x cell(-1) x h(-1) when cells were removed from the biofilm and maintained in suspension without an additional nutrient supply. These results also demonstrate the need for sufficient monitoring of biofilm recovery at the solid substratum if mechanical methods are used for biofouling control.
Collapse
|