1
|
Al‐Shaibani MAS, Sakoleva T, Živković LA, Austin HP, Dörr M, Hilfert L, Haak E, Bornscheuer UT, Vidaković‐Koch T. Product Distribution of Steady-State and Pulsed Electrochemical Regeneration of 1,4-NADH and Integration with Enzymatic Reaction. ChemistryOpen 2024; 13:e202400064. [PMID: 38607952 PMCID: PMC11319214 DOI: 10.1002/open.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
The direct electrochemical reduction of nicotinamide adenine dinucleotide (NAD+) results in various products, complicating the regeneration of the crucial 1,4-NADH cofactor for enzymatic reactions. Previous research primarily focused on steady-state polarization to examine potential impacts on product selectivity. However, this study explores the influence of dynamic conditions on the selectivity of NAD+ reduction products by comparing two dynamic profiles with steady-state conditions. Our findings reveal that the main products, including 1,4-NADH, several dimers, and ADP-ribose, remained consistent across all conditions. A minor by-product, 1,6-NADH, was also identified. The product distribution varied depending on the experimental conditions (steady state vs. dynamic) and the concentration of NAD+, with higher concentrations and overpotentials promoting dimerization. The optimal yield of 1,4-NADH was achieved under steady-state conditions with low overpotential and NAD+ concentrations. While dynamic conditions enhanced the 1,4-NADH yield at shorter reaction times, they also resulted in a significant amount of unidentified products. Furthermore, this study assessed the potential of using pulsed electrochemical regeneration of 1,4-NADH with enoate reductase (XenB) for cyclohexenone reduction.
Collapse
Affiliation(s)
- Mohammed Ali Saif Al‐Shaibani
- Electrochemical Energy ConversionMax Planck Institute for Dynamics of Complex Technical SystemsSandtorstraße 139106MagdeburgGermany
| | - Thaleia Sakoleva
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Luka A. Živković
- Electrochemical Energy ConversionMax Planck Institute for Dynamics of Complex Technical SystemsSandtorstraße 139106MagdeburgGermany
| | - Harry P. Austin
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Mark Dörr
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Liane Hilfert
- Institute of ChemistryOtto von Guericke UniversityUniversitätsplatz 239106MagdeburgGermany
| | - Edgar Haak
- Institute of ChemistryOtto von Guericke UniversityUniversitätsplatz 239106MagdeburgGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Str. 417487GreifswaldGermany
| | - Tanja Vidaković‐Koch
- Electrochemical Energy ConversionMax Planck Institute for Dynamics of Complex Technical SystemsSandtorstraße 139106MagdeburgGermany
| |
Collapse
|
2
|
Ossowski MS, Gallardo JP, Niborski LL, Rodríguez-Durán J, Lapadula WJ, Juri Ayub M, Chadi R, Hernandez Y, Fernandez ML, Potenza M, Gómez KA. Characterization of Novel Trypanosoma cruzi-Specific Antigen with Potential Use in the Diagnosis of Chagas Disease. Int J Mol Sci 2024; 25:1202. [PMID: 38256275 PMCID: PMC10816184 DOI: 10.3390/ijms25021202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Chagas disease is caused by the parasite Trypanosoma cruzi. In humans, it evolves into a chronic disease, eventually resulting in cardiac, digestive, and/or neurological disorders. In the present study, we characterized a novel T. cruzi antigen named Tc323 (TcCLB.504087.20), recognized by a single-chain monoclonal antibody (scFv 6B6) isolated from the B cells of patients with cardiomyopathy related to chronic Chagas disease. Tc323, a ~323 kDa protein, is an uncharacterized protein showing putative quinoprotein alcohol dehydrogenase-like domains. A computational molecular docking study revealed that the scFv 6B6 binds to an internal domain of Tc323. Immunofluorescence microscopy and Western Blot showed that Tc323 is expressed in the main developmental forms of T. cruzi, localized intracellularly and exhibiting a membrane-associated pattern. According to phylogenetic analysis, Tc323 is highly conserved throughout evolution in all the lineages of T. cruzi so far identified, but it is absent in Leishmania spp. and Trypanosoma brucei. Most interestingly, only plasma samples from patients infected with T. cruzi and those with mixed infection with Leishmania spp. reacted against Tc323. Collectively, our findings demonstrate that Tc323 is a promising candidate for the differential serodiagnosis of chronic Chagas disease in areas where T. cruzi and Leishmania spp. infections coexist.
Collapse
Affiliation(s)
- Micaela S. Ossowski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Juan Pablo Gallardo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Leticia L. Niborski
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Jessica Rodríguez-Durán
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Walter J. Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina; (W.J.L.); (M.J.A.)
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina; (W.J.L.); (M.J.A.)
| | - Raúl Chadi
- Hospital General de Agudos “Dr. Ignacio Pirovano”, Buenos Aires 1430, Argentina;
| | - Yolanda Hernandez
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Buenos Aires 1063, Argentina; (Y.H.); (M.L.F.)
| | - Marisa L. Fernandez
- Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Buenos Aires 1063, Argentina; (Y.H.); (M.L.F.)
| | - Mariana Potenza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| | - Karina A. Gómez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires 1428, Argentina; (M.S.O.); (J.P.G.); (L.L.N.); (J.R.-D.)
| |
Collapse
|
3
|
Daumann LJ, Pol A, Op den Camp HJM, Martinez-Gomez NC. A perspective on the role of lanthanides in biology: Discovery, open questions and possible applications. Adv Microb Physiol 2022; 81:1-24. [PMID: 36167440 DOI: 10.1016/bs.ampbs.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Because of their use in high technologies like computers, smartphones and renewable energy applications, lanthanides (belonging to the group of rare earth elements) are essential for our daily lives. A range of applications in medicine and biochemical research made use of their photo-physical properties. The discovery of a biological role for lanthanides has boosted research in this new field. Several methanotrophs and methylotrophs are strictly dependent on the presence of lanthanides in the growth medium while others show a regulatory response. After the first demonstration of a lanthanide in the active site of the XoxF-type pyrroloquinoline quinone methanol dehydrogenases, follow-up studies showed the same for other pyrroloquinoline quinone-containing enzymes. In addition, research focused on the effect of lanthanides on regulation of gene expression and uptake mechanism into bacterial cells. This review briefly describes the discovery of the role of lanthanides in biology and focuses on open questions in biological lanthanide research and possible application of lanthanide-containing bacteria and enzymes in recovery of these special elements.
Collapse
Affiliation(s)
- Lena J Daumann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arjan Pol
- Department of Microbiology, RIBES, Radboud University, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, RIBES, Radboud University, Nijmegen, The Netherlands.
| | - N Cecilia Martinez-Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States
| |
Collapse
|
4
|
Myriapod genomes reveal ancestral horizontal gene transfer and hormonal gene loss in millipedes. Nat Commun 2022; 13:3010. [PMID: 35637228 PMCID: PMC9151784 DOI: 10.1038/s41467-022-30690-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/12/2022] [Indexed: 01/08/2023] Open
Abstract
Animals display a fascinating diversity of body plans. Correspondingly, genomic analyses have revealed dynamic evolution of gene gains and losses among animal lineages. Here we sequence six new myriapod genomes (three millipedes, three centipedes) at key phylogenetic positions within this major but understudied arthropod lineage. We combine these with existing genomic resources to conduct a comparative analysis across all available myriapod genomes. We find that millipedes generally have considerably smaller genomes than centipedes, with the repeatome being a major contributor to genome size, driven by independent large gains of transposons in three centipede species. In contrast to millipedes, centipedes gained a large number of gene families after the subphyla diverged, with gains contributing to sensory and locomotory adaptations that facilitated their ecological shift to predation. We identify distinct horizontal gene transfer (HGT) events from bacteria to millipedes and centipedes, with no identifiable HGTs shared among all myriapods. Loss of juvenile hormone O-methyltransferase, a key enzyme in catalysing sesquiterpenoid hormone production in arthropods, was also revealed in all millipede lineages. Our findings suggest that the rapid evolution of distinct genomic pathways in centipede and millipede lineages following their divergence from the myriapod ancestor, was shaped by differing ecological pressures. Myriapods play an important ecological role in soil and forest ecosystems. Here the authors analyse nine myriapod genomes, showing rapid evolution of distinct genomic pathways in centipede and millipede lineages, shaped by differing ecological pressures.
Collapse
|
5
|
Abstract
The widely distributed, essential redox factor pyrroloquinoline quinone (PQQ, methoxatin) (1) was discovered in the mid-1960s. The breadth and depth of its biological effects are steadily being revealed, and understanding its biosynthesis at the genomic level is a continuing process. In this review, aspects of the chemistry, biology, biosynthesis, and commercial production of 1 at the gene level, and some applications, are presented from discovery through to mid-2021.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States.,Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | | |
Collapse
|
6
|
Pyrroloquinoline-Quinone Is More Than an Antioxidant: A Vitamin-like Accessory Factor Important in Health and Disease Prevention. Biomolecules 2021; 11:biom11101441. [PMID: 34680074 PMCID: PMC8533503 DOI: 10.3390/biom11101441] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. In addition, PQQ attenuates clinically relevant dysfunctions (e.g., those associated with ischemia, inflammation and lipotoxicity). PQQ is novel among biofactors that are not currently accepted as vitamins or conditional vitamins. For example, the absence of PQQ in diets produces a response like a vitamin-related deficiency with recovery upon PQQ repletion in a dose-dependent manner. Moreover, potential health benefits, such as improved metabolic flexibility and immuno-and neuroprotection, are associated with PQQ supplementation. Here, we address PQQ's role as an enzymatic cofactor or accessory factor and highlight mechanisms underlying PQQ's actions. We review both large scale and targeted datasets demonstrating that a neonatal or perinatal PQQ deficiency reduces mitochondria content and mitochondrial-related gene expression. Data are reviewed that suggest PQQ's modulation of lactate acid and perhaps other dehydrogenases enhance NAD+-dependent sirtuin activity, along with the sirtuin targets, such as PGC-1α, NRF-1, NRF-2 and TFAM; thus, mediating mitochondrial functions. Taken together, current observations suggest vitamin-like PQQ has strong potential as a potent therapeutic nutraceutical.
Collapse
|
7
|
Ali A, Ellinger B, Brandt SC, Betzel C, Rühl M, Wrenger C, Schlüter H, Schäfer W, Brognaro H, Gand M. Genome and Secretome Analysis of Staphylotrichum longicolleum DSM105789 Cultured on Agro-Residual and Chitinous Biomass. Microorganisms 2021; 9:1581. [PMID: 34442660 PMCID: PMC8398502 DOI: 10.3390/microorganisms9081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylotrichum longicolleum FW57 (DSM105789) is a prolific chitinolytic fungus isolated from wood, with a chitinase activity of 0.11 ± 0.01 U/mg. We selected this strain for genome sequencing and annotation, and compiled its growth characteristics on four different chitinous substrates as well as two agro-industrial waste products. We found that the enzymatic mixture secreted by FW57 was not only able to digest pre-treated sugarcane bagasse, but also untreated sugarcane bagasse and maize leaves. The efficiency was comparable to a commercial enzymatic cocktail, highlighting the potential of the S. longicolleum enzyme mixture as an alternative pretreatment method. To further characterize the enzymes, which efficiently digested polymers such as cellulose, hemicellulose, pectin, starch, and lignin, we performed in-depth mass spectrometry-based secretome analysis using tryptic peptides from in-gel and in-solution digestions. Depending on the growth conditions, we were able to detect from 442 to 1092 proteins, which were annotated to identify from 134 to 224 putative carbohydrate-active enzymes (CAZymes) in five different families: glycoside hydrolases, auxiliary activities, carbohydrate esterases, polysaccharide lyases, glycosyl transferases, and proteins containing a carbohydrate-binding module, as well as combinations thereof. The FW57 enzyme mixture could be used to replace commercial enzyme cocktails for the digestion of agro-residual substrates.
Collapse
Affiliation(s)
- Arslan Ali
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, University Road, Karachi 75270, Pakistan
- Institute of Clinical Chemistry and Laboratory Medicine, Diagnostic Center, Section Mass Spectrometry & Proteomics, Campus Research, Martinistr. 2, N27, Medical Center Hamburg-Eppendorf, Universität Hamburg, 20246 Hamburg, Germany
| | - Bernhard Ellinger
- Department ScreeningPort, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany;
| | - Sophie C. Brandt
- Department of Molecular Phytopathology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany; (S.C.B.); (W.S.)
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Department Biology and Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany;
| | - Carsten Wrenger
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
- Biomedical Science Institute, University of São Paulo, Av. Lineu Prestes, 2415, São Paulo CEP 05508-900, Brazil
| | - Hartmut Schlüter
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
- Institute of Clinical Chemistry and Laboratory Medicine, Diagnostic Center, Section Mass Spectrometry & Proteomics, Campus Research, Martinistr. 2, N27, Medical Center Hamburg-Eppendorf, Universität Hamburg, 20246 Hamburg, Germany
| | - Wilhelm Schäfer
- Department of Molecular Phytopathology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany; (S.C.B.); (W.S.)
| | - Hévila Brognaro
- Institute of Biochemistry and Molecular Biology, University of Hamburg, Martin Luther King Platz 6, 20146 Hamburg, Germany; (A.A.); (C.B.); (C.W.); (H.S.); (H.B.)
- Biomedical Science Institute, University of São Paulo, Av. Lineu Prestes, 2415, São Paulo CEP 05508-900, Brazil
| | - Martin Gand
- Department of Molecular Phytopathology, Biocenter Klein Flottbek, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany; (S.C.B.); (W.S.)
- Institute of Food Chemistry and Food Biotechnology, Department Biology and Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany;
| |
Collapse
|
8
|
Kondo T, Kichijo M, Maruta A, Nakaya M, Takenaka S, Arakawa T, Fushinobu S, Sakamoto T. Structural and functional analysis of gum arabic l-rhamnose-α-1,4-d-glucuronate lyase establishes a novel polysaccharide lyase family. J Biol Chem 2021; 297:101001. [PMID: 34303708 PMCID: PMC8377490 DOI: 10.1016/j.jbc.2021.101001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Gum arabic (GA) is widely used as an emulsion stabilizer and coating in several industrial applications, such as foods and pharmaceuticals. GA contains a complex carbohydrate moiety, and the nonreducing ends of the side chains are often capped with l-rhamnose; thus, enzymes that can remove these caps are promising tools for the structural analysis of the carbohydrates comprising GA. In this study, GA-specific l-rhamnose-α-1,4-d-glucuronate lyase from the fungus Fusarium oxysporum 12S (FoRham1) was cloned and characterized. FoRham1 showed the highest amino acid sequence similarity with enzymes belonging to the glycoside hydrolase family 145; however, the catalytic residue on the posterior pocket of the β-propeller fold protein was not conserved. The catalytic residues of FoRham1 were instead conserved with ulvan lyases belonging to polysaccharide lyase family 24. Kinetic analysis showed that FoRham1 has the highest catalytic efficiency for the substrate α-l-rhamnose-(1→4)-d-glucuronic acid. The crystal structures of ligand-free and α-l-rhamnose-(1→4)-d-glucuronic acid –bound FoRham1 were determined, and the active site was identified on the anterior side of the β-propeller. The three-dimensional structure of the active site and mutagenesis analysis revealed the detailed catalytic mechanism of FoRham1. Our findings offer a new enzymatic tool for the further analysis of the GA carbohydrate structure and for elucidating its physiological functions in plants. Based on these results, we renamed glycoside hydrolase family 145 as a new polysaccharide lyase family 42, in which FoRham1 is included.
Collapse
Affiliation(s)
- Tatsuya Kondo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Miyu Kichijo
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Akiho Maruta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Makoto Nakaya
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, Osaka, Japan
- Department of Nutrition, Otemae College of Nutrition and Confectionery, Osaka, Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
| | - Takatoshi Arakawa
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Tatsuji Sakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
- For correspondence: Tatsuji Sakamoto
| |
Collapse
|
9
|
Kondo T, Kichijo M, Nakaya M, Takenaka S, Arakawa T, Kotake T, Fushinobu S, Sakamoto T. Biochemical and structural characterization of a novel 4‐
O
‐α‐
l
‐rhamnosyl‐β‐
d
‐glucuronidase from
Fusarium oxysporum. FEBS J 2021; 288:4918-4938. [DOI: 10.1111/febs.15795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 01/27/2023]
Affiliation(s)
- Tatsuya Kondo
- Graduate School of Life and Environmental Sciences Osaka Prefecture University Sakai Japan
| | - Miyu Kichijo
- Graduate School of Life and Environmental Sciences Osaka Prefecture University Sakai Japan
| | - Makoto Nakaya
- Center for Research and Development of Bioresources, Organization for Research Promotion Osaka Prefecture University Sakai Japan
- Department of Nutrition Otemae College of Nutrition and Confectionery Osaka Japan
| | - Shigeo Takenaka
- Graduate School of Comprehensive Rehabilitation Osaka Prefecture University Habikino Japan
| | - Takatoshi Arakawa
- Department of Biotechnology The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Toshihisa Kotake
- Graduate School of Science and Engineering Saitama University Saitama Japan
| | - Shinya Fushinobu
- Department of Biotechnology The University of Tokyo Tokyo Japan
- Collaborative Research Institute for Innovative Microbiology The University of Tokyo Tokyo Japan
| | - Tatsuji Sakamoto
- Graduate School of Life and Environmental Sciences Osaka Prefecture University Sakai Japan
| |
Collapse
|
10
|
Zhu W, Klinman JP. Biogenesis of the peptide-derived redox cofactor pyrroloquinoline quinone. Curr Opin Chem Biol 2020; 59:93-103. [PMID: 32731194 PMCID: PMC7736144 DOI: 10.1016/j.cbpa.2020.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Pyrroloquinoline quinone (PQQ) is a peptide-derived redox cofactor produced by prokaryotes that also plays beneficial roles in organisms from other kingdoms. We review recent developments on the pathway of PQQ biogenesis, focusing on the mechanisms of PqqE, PqqF/G, and PqqB. These advances may shed light on other, uncharacterized biosynthetic pathways.
Collapse
Affiliation(s)
- Wen Zhu
- California Institute for Quantitative Biosciences and Department of Chemistry, University of California, Berkeley, CA, 94720-3220, USA
| | - Judith P Klinman
- California Institute for Quantitative Biosciences and Department of Chemistry, University of California, Berkeley, CA, 94720-3220, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720-3220, USA.
| |
Collapse
|
11
|
Bioelectrocatalysis based on direct electron transfer of fungal pyrroloquinoline quinone-dependent dehydrogenase lacking the cytochrome domain. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Characterization of the CAZy Repertoire from the Marine-Derived Fungus Stemphylium lucomagnoense in Relation to Saline Conditions. Mar Drugs 2020; 18:md18090461. [PMID: 32916905 PMCID: PMC7551824 DOI: 10.3390/md18090461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 01/17/2023] Open
Abstract
Even if the ocean represents a large part of Earth's surface, only a few studies describe marine-derived fungi compared to their terrestrial homologues. In this ecosystem, marine-derived fungi have had to adapt to the salinity and to the plant biomass composition. This articles studies the growth of five marine isolates and the tuning of lignocellulolytic activities under different conditions, including the salinity. A de novo transcriptome sequencing and assembly were used in combination with a proteomic approach to characterize the Carbohydrate Active Enzymes (CAZy) repertoire of one of these strains. Following these approaches, Stemphylium lucomagnoense was selected for its adapted growth on xylan in saline conditions, its high xylanase activity, and its improved laccase activities in seagrass-containing cultures with salt. De novo transcriptome sequencing and assembly indicated the presence of 51 putative lignocellulolytic enzymes. Its secretome composition was studied in detail when the fungus was grown on either a terrestrial or a marine substrate, under saline and non-saline conditions. Proteomic analysis of the four S. lucomagnoense secretomes revealed a minimal suite of extracellular enzymes for plant biomass degradation and highlighted potential enzyme targets to be further studied for their adaptation to salts and for potential biotechnological applications.
Collapse
|
13
|
Mi Z, Cheng J, Zhao P, Tian P, Tan T. Improved Production of Pyrroloquinoline Quinone by Simultaneous Augmentation of Its Synthesis Gene Expression and Glucose Metabolism in Klebsiella pneumoniae. Curr Microbiol 2020; 77:1174-1183. [PMID: 32080751 DOI: 10.1007/s00284-020-01918-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
Klebsiella pneumoniae can naturally synthesize pyrroloquinoline quinone (PQQ), but current low yield restricts its commercialization. Here, we reported that PQQ production can be improved by simultaneously intensifying PQQ gene expression and glucose metabolism. Firstly, tandem repetitive tac promoters were constructed to overexpress PQQ synthesis genes. Results showed that when three repeats of tac promoter were recruited to overexpress PQQ synthesis genes, the recombinant strain generated 1.5-fold PQQ relative to the strain recruiting only one tac promoter. Quantitative real-time PCR (qRT-PCR) revealed the increased transcription levels of PQQ synthesis genes. Next, fermentation parameters were optimized to augment the glucose direct oxidation pathway (GDOP) mediated by PQQ-dependent glucose dehydrogenase (PQQ-GDH). Results demonstrated that the cultivation conditions of sufficient glucose (≥ 32 g/L), low pH (5.8), and limited potassium (0.7 nmol/L) significantly promoted the biosynthesis of gluconic acid, 2-ketogluconic acid, and PQQ. In optimum shake flask fermentation conditions, the K. pneumoniae strain overexpressing PQQ synthesis genes under three repeats of tac promoter generated 363.3 nmol/L of PQQ, which was 2.6-fold of that in original culture conditions. In bioreactor cultivation, this strain produced 2371.7 nmol/L of PQQ. To our knowledge, this is the highest PQQ titer reported so far using K. pneumoniae as a host strain. Overall, simultaneous intensification of pqq gene expression and glucose metabolism is effective to improve PQQ production.
Collapse
Affiliation(s)
- Zhiwei Mi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jingchao Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
14
|
Yakushi T, Takahashi R, Matsutani M, Kataoka N, Hours RA, Ano Y, Adachi O, Matsushita K. The membrane-bound sorbosone dehydrogenase of Gluconacetobacter liquefaciens is a pyrroloquinoline quinone-dependent enzyme. Enzyme Microb Technol 2020; 137:109511. [PMID: 32423666 DOI: 10.1016/j.enzmictec.2020.109511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 11/19/2022]
Abstract
Membrane-bound sorbosone dehydrogenase (SNDH) of Gluconacetobacter liquefaciens oxidizes l-sorbosone to 2-keto-l-gulonic acid (2KGLA), a key intermediate in vitamin C production. We constructed recombinant Escherichia coli and Gluconobacter strains harboring plasmids carrying the sndh gene from Ga. liquefaciens strain RCTMR10 to identify the prosthetic group of SNDH. The membranes of the recombinant E. coli showed l-sorbosone oxidation activity, only after the holo-enzyme formation with pyrroloquinoline quinone (PQQ), indicating that SNDH is a PQQ-dependent enzyme. The sorbosone-oxidizing respiratory chain was thus heterologously reconstituted in the E. coli membranes. The membranes that contained SNDH showed the activity of sorbosone:ubiquinone analogue oxidoreductase. These results suggest that the natural electron acceptor for SNDH is membranous ubiquinone, and it functions as the primary dehydrogenase in the sorbosone oxidation respiratory chain in Ga. liquefaciens. A biotransformation experiment showed l-sorbosone oxidation to 2KGLA in a nearly quantitative manner. Phylogenetic analysis for prokaryotic SNDH homologues revealed that they are found only in the Proteobacteria phylum and those of the Acetobacteraceae family are clustered in a group where all members possess a transmembrane segment. A three-dimensional structure model of the SNDH constructed with an in silico fold recognition method was similar to the crystal structure of the PQQ-dependent pyranose dehydrogenase from Coprinopsis cinerea. The structural similarity suggests a reaction mechanism under which PQQ participates in l-sorbosone oxidation.
Collapse
Affiliation(s)
- Toshiharu Yakushi
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan.
| | - Ryota Takahashi
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Minenosuke Matsutani
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Naoya Kataoka
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Roque A Hours
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Universidad Nacional de La Plata - CONICET, La Plata, Argentina
| | - Yoshitaka Ano
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 796-8566, Japan
| | - Osao Adachi
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazunobu Matsushita
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|