1
|
Marietou A, Schmidt JS, Rasmussen MR, Scoma A, Rysgaard S, Vergeynst L. The effect of hydrostatic pressure on the activity and community composition of hydrocarbon-degrading bacteria in Arctic seawater. Appl Environ Microbiol 2023; 89:e0098723. [PMID: 37943057 PMCID: PMC10686064 DOI: 10.1128/aem.00987-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE Increased ship traffic in the Arctic region raises the risk of oil spills. With an average sea depth of 1,000 m, there is a growing concern over the potential release of oil sinking in the form of marine oil snow into deep Arctic waters. At increasing depth, the oil-degrading community is exposed to increasing hydrostatic pressure, which can reduce microbial activity. However, microbes thriving in polar regions may adapt to low temperature by modulation of membrane fluidity, which is also a well-known adaptation to high hydrostatic pressure. At mild hydrostatic pressures up to 8-12 MPa, we did not observe an altered microbial activity or community composition, whereas comparable studies using deep-sea or sub-Arctic microbial communities with in situ temperatures of 4-5°C showed pressure-induced effects at 10-15 MPa. Our results suggest that the psychrophilic nature of the underwater microbial communities in the Arctic may be featured by specific traits that enhance their fitness at increasing hydrostatic pressure.
Collapse
Affiliation(s)
- Angeliki Marietou
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | | | - Martin R. Rasmussen
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Alberto Scoma
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Søren Rysgaard
- Arctic Research Centre, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Leendert Vergeynst
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Arctic Research Centre, Department of Biology, Aarhus University, Aarhus, Denmark
- Centre for Water Technology (WATEC), Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Scheffer G, Gieg LM. The Mystery of Piezophiles: Understudied Microorganisms from the Deep, Dark Subsurface. Microorganisms 2023; 11:1629. [PMID: 37512802 PMCID: PMC10384521 DOI: 10.3390/microorganisms11071629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms that can withstand high pressure within an environment are termed piezophiles. These organisms are considered extremophiles and inhabit the deep marine or terrestrial subsurface. Because these microorganisms are not easily accessed and require expensive sampling methods and laboratory instruments, advancements in this field have been limited compared to other extremophiles. This review summarizes the current knowledge on piezophiles, notably the cellular and physiological adaptations that such microorganisms possess to withstand and grow in high-pressure environments. Based on existing studies, organisms from both the deep marine and terrestrial subsurface show similar adaptations to high pressure, including increased motility, an increase of unsaturated bonds within the cell membrane lipids, upregulation of heat shock proteins, and differential gene-regulation systems. Notably, more adaptations have been identified within the deep marine subsurface organisms due to the relative paucity of studies performed on deep terrestrial subsurface environments. Nevertheless, similar adaptations have been found within piezophiles from both systems, and therefore the microbial biogeography concepts used to assess microbial dispersal and explore if similar organisms can be found throughout deep terrestrial environments are also briefly discussed.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
3
|
Miller KM, Tang F, Li S, Mullane KK, Shelton BR, Bui L, Bartlett DH, Nicholson WL. Carnobacterium Species Capable of Growth at Pressures Ranging Over 5 Orders of Magnitude, from the Surface of Mars (10 3 Pa) to Deep Oceans (10 7 Pa) in the Solar System. ASTROBIOLOGY 2023; 23:94-104. [PMID: 36450114 DOI: 10.1089/ast.2022.0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Several permanently cold solar system bodies are being investigated with regard to their potential habitability, including Mars and icy moons. In such locations, microbial life would have to cope with low temperatures and both high and low pressures, ranging from ∼102 to 103 Pa on the surface of Mars to upward of ∼108-109 Pa in the subsurface oceans of icy moons. The bacterial genus Carnobacterium consists of species that were previously shown to be capable of growth in the absence of oxygen at low temperatures and at either low pressure or high pressure, but to date the entire pressure range of the genus has not been explored. In the present study, we subjected 14 Carnobacterium strains representing 11 species to cultivation in a complex liquid medium under anaerobic conditions at 2°C and at a range of pressures spanning 5 orders of magnitude, from 103 to 107 Pa. Eleven of the 14 strains showed measurable growth rates at all pressures tested, representing the first demonstration of terrestrial life forms capable of growth under such a wide range of pressures. These findings expand the physical boundaries of the capabilities of life to occur in extreme extraterrestrial environments.
Collapse
Affiliation(s)
- Kathleen M Miller
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, USA
| | - Flora Tang
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Sixuan Li
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Kelli K Mullane
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Brontë R Shelton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Lam Bui
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, USA
| |
Collapse
|
4
|
Luo E, Leu AO, Eppley JM, Karl DM, DeLong EF. Diversity and origins of bacterial and archaeal viruses on sinking particles reaching the abyssal ocean. THE ISME JOURNAL 2022; 16:1627-1635. [PMID: 35236926 PMCID: PMC9122931 DOI: 10.1038/s41396-022-01202-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 11/15/2022]
Abstract
Sinking particles and particle-associated microbes influence global biogeochemistry through particulate matter export from the surface to the deep ocean. Despite ongoing studies of particle-associated microbes, viruses in these habitats remain largely unexplored. Whether, where, and which viruses might contribute to particle production and export remain open to investigation. In this study, we analyzed 857 virus population genomes associated with sinking particles collected over three years in sediment traps moored at 4000 m in the North Pacific Subtropical Gyre. Particle-associated viruses here were linked to cellular hosts through matches to bacterial and archaeal metagenome-assembled genome (MAG)-encoded prophages or CRISPR spacers, identifying novel viruses infecting presumptive deep-sea bacteria such as Colwellia, Moritella, and Shewanella. We also identified lytic viruses whose abundances correlated with particulate carbon flux and/or were exported from the photic to abyssal ocean, including cyanophages. Our data are consistent with some of the predicted outcomes of the viral shuttle hypothesis, and further suggest that viral lysis of both autotrophic and heterotrophic prokaryotes may play a role in carbon export. Our analyses revealed the diversity and origins of prevalent viruses found on deep-sea sinking particles and identified prospective viral groups for future investigation into processes that govern particle export in the open ocean.
Collapse
Affiliation(s)
- Elaine Luo
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
- Woods Hole Oceanographic Institution, 266 Woods Hole Road, MS 51, Woods Hole MA, 02543, Falmouth, USA.
| | - Andy O Leu
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
- Australia Center for Ecogenomics, University of Queensland, St. Lucia QLD, 4072, Australia
| | - John M Eppley
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawai'i at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
5
|
Microbiomes of Hadal Fishes across Trench Habitats Contain Similar Taxa and Known Piezophiles. mSphere 2022; 7:e0003222. [PMID: 35306867 PMCID: PMC9044967 DOI: 10.1128/msphere.00032-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hadal snailfishes are the deepest-living fishes in the ocean, inhabiting trenches from depths of ∼6,000 to 8,000 m. While the microbial communities in trench environments have begun to be characterized, the microbes associated with hadal megafauna remain relatively unknown. Here, we describe the gut microbiomes of two hadal snailfishes, Pseudoliparis swirei (Mariana Trench) and Notoliparis kermadecensis (Kermadec Trench), using 16S rRNA gene amplicon sequencing. We contextualize these microbiomes with comparisons to the abyssal macrourid Coryphaenoides yaquinae and the continental shelf-dwelling snailfish Careproctus melanurus. The microbial communities of the hadal snailfishes were distinct from their shallower counterparts and were dominated by the same sequences related to the Mycoplasmataceae and Desulfovibrionaceae. These shared taxa indicate that symbiont lineages have remained similar to the ancestral symbiont since their geographic separation or that they are dispersed between geographically distant trenches and subsequently colonize specific hosts. The abyssal and hadal fishes contained sequences related to known, cultured piezophiles, microbes that grow optimally under high hydrostatic pressure, including Psychromonas, Moritella, and Shewanella. These taxa are adept at colonizing nutrient-rich environments present in the deep ocean, such as on particles and in the guts of hosts, and we hypothesize they could make a dietary contribution to deep-sea fishes by degrading chitin and producing fatty acids. We characterize the gut microbiota within some of the deepest fishes to provide new insight into the diversity and distribution of host-associated microbial taxa and the potential of these animals, and the microbes they harbor, for understanding adaptation to deep-sea habitats. IMPORTANCE Hadal trenches, characterized by high hydrostatic pressures and low temperatures, are one of the most extreme environments on our planet. By examining the microbiome of abyssal and hadal fishes, we provide insight into the diversity and distribution of host-associated life at great depth. Our findings show that there are similar microbial populations in fishes geographically separated by thousands of miles, reflecting strong selection for specific microbial lineages. Only a few psychropiezophilic taxa, which do not reflect the diversity of microbial life at great depth, have been successfully isolated in the laboratory. Our examination of deep-sea fish microbiomes shows that typical high-pressure culturing methodologies, which have largely remained unchanged since the pioneering work of Claude ZoBell in the 1950s, may simulate the chemical environment found in animal guts and helps explain why the same deep-sea genera are consistently isolated.
Collapse
|
6
|
Rodriguez-Flores JL, Messai-Badji R, Robay A, Temanni R, Syed N, Markovic M, Al-Khayat E, Qafoud F, Nawaz Z, Badii R, Al-Sarraj Y, Mbarek H, Al-Muftah W, Alvi M, Rostami MR, Cruzado JCM, Mezey JG, Shakaki AA, Malek JA, Greenblatt MB, Fakhro KA, Machaca K, Al-Nabet A, Afifi N, Brooks A, Ismail SI, Althani A, Crystal RG. The QChip1 knowledgebase and microarray for precision medicine in Qatar. NPJ Genom Med 2022; 7:3. [PMID: 35046417 PMCID: PMC8770564 DOI: 10.1038/s41525-021-00270-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
Risk genes for Mendelian (single-gene) disorders (SGDs) are consistent across populations, but pathogenic risk variants that cause SGDs are typically population-private. The goal was to develop "QChip1," an inexpensive genotyping microarray to comprehensively screen newborns, couples, and patients for SGD risk variants in Qatar, a small nation on the Arabian Peninsula with a high degree of consanguinity. Over 108 variants in 8445 Qatari were identified for inclusion in a genotyping array containing 165,695 probes for 83,542 known and potentially pathogenic variants in 3438 SGDs. QChip1 had a concordance with whole-genome sequencing of 99.1%. Testing of QChip1 with 2707 Qatari genomes identified 32,674 risk variants, an average of 134 pathogenic alleles per Qatari genome. The most common pathogenic variants were those causing homocystinuria (1.12% risk allele frequency), and Stargardt disease (2.07%). The majority (85%) of Qatari SGD pathogenic variants were not present in Western populations such as European American, South Asian American, and African American in New York City and European and Afro-Caribbean in Puerto Rico; and only 50% were observed in a broad collection of data across the Greater Middle East including Kuwait, Iran, and United Arab Emirates. This study demonstrates the feasibility of developing accurate screening tools to identify SGD risk variants in understudied populations, and the need for ancestry-specific SGD screening tools.
Collapse
Affiliation(s)
- Juan L Rodriguez-Flores
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | - Ramzi Temanni
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Najeeb Syed
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Monika Markovic
- Qatar Biobank for Medical Research, Qatar Foundation, Doha, Qatar
| | - Eiman Al-Khayat
- Qatar Biobank for Medical Research, Qatar Foundation, Doha, Qatar
| | - Fatima Qafoud
- Qatar Biobank for Medical Research, Qatar Foundation, Doha, Qatar
| | - Zafar Nawaz
- Diagnostic Genomic Division, Hamad Medical Corporation, Doha, Qatar
| | - Ramin Badii
- Weill Cornell Medicine, Doha, Qatar
- Diagnostic Genomic Division, Hamad Medical Corporation, Doha, Qatar
| | | | - Hamdi Mbarek
- Qatar Genome Program, Qatar Foundation, Doha, Qatar
| | | | | | | | | | - Jason G Mezey
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | | | | | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Khalid A Fakhro
- Weill Cornell Medicine, Doha, Qatar
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Ajayeb Al-Nabet
- Diagnostic Genomic Division, Hamad Medical Corporation, Doha, Qatar
| | - Nahla Afifi
- Qatar Biobank for Medical Research, Qatar Foundation, Doha, Qatar
| | - Andrew Brooks
- RUCDR Infinite Biologics, Piscataway, NJ, USA
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA
| | | | - Asmaa Althani
- Qatar Genome Program, Qatar Foundation, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Scoma A. Functional groups in microbial ecology: updated definitions of piezophiles as suggested by hydrostatic pressure dependence on temperature. THE ISME JOURNAL 2021; 15:1871-1878. [PMID: 33782568 PMCID: PMC8245400 DOI: 10.1038/s41396-021-00930-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/01/2023]
Affiliation(s)
- Alberto Scoma
- grid.7048.b0000 0001 1956 2722Engineered Microbial Systems Laboratory (EMS-Lab), Department of Biological and Chemical Engineering (BCE), Aarhus University, Aarhus N, Denmark ,grid.7048.b0000 0001 1956 2722Section of Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
8
|
Zhang WJ, Zhang C, Zhou S, Li XG, Mangenot S, Fouteau S, Guerin T, Qi XQ, Yang J, Bartlett DH, Wu LF. Comparative genomic analysis of obligately piezophilic Moritella yayanosii DB21MT-5 reveals bacterial adaptation to the Challenger Deep, Mariana Trench. Microb Genom 2021; 7:000591. [PMID: 34319226 PMCID: PMC8477399 DOI: 10.1099/mgen.0.000591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/20/2021] [Indexed: 01/19/2023] Open
Abstract
Hadal trenches are the deepest but underexplored ecosystems on the Earth. Inhabiting the trench bottom is a group of micro-organisms termed obligate piezophiles that grow exclusively under high hydrostatic pressures (HHP). To reveal the genetic and physiological characteristics of their peculiar lifestyles and microbial adaptation to extreme high pressures, we sequenced the complete genome of the obligately piezophilic bacterium Moritella yayanosii DB21MT-5 isolated from the deepest oceanic sediment at the Challenger Deep, Mariana Trench. Through comparative analysis against pressure sensitive and deep-sea piezophilic Moritella strains, we identified over a hundred genes that present exclusively in hadal strain DB21MT-5. The hadal strain encodes fewer signal transduction proteins and secreted polysaccharases, but has more abundant metal ion transporters and the potential to utilize plant-derived saccharides. Instead of producing osmolyte betaine from choline as other Moritella strains, strain DB21MT-5 ferments on choline within a dedicated bacterial microcompartment organelle. Furthermore, the defence systems possessed by DB21MT-5 are distinct from other Moritella strains but resemble those in obligate piezophiles obtained from the same geographical setting. Collectively, the intensive comparative genomic analysis of an obligately piezophilic strain Moritella yayanosii DB21MT-5 demonstrates a depth-dependent distribution of energy metabolic pathways, compartmentalization of important metabolism and use of distinct defence systems, which likely contribute to microbial adaptation to the bottom of hadal trench.
Collapse
Affiliation(s)
- Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, PR China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France / IDSSE-CAS, Sanya, PR China
- Institution of Deep-Sea Life Sciences, Hainan Deep-Sea Technology Laboratory, Sanya, PR China
| | - Chan Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, PR China
- Present address: College of Horticulture, Hainan University, No. 58, Renmin Avenue, Haikou, PR China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xue-Gong Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, PR China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France / IDSSE-CAS, Sanya, PR China
- Institution of Deep-Sea Life Sciences, Hainan Deep-Sea Technology Laboratory, Sanya, PR China
| | - Sophie Mangenot
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Stéphanie Fouteau
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Thomas Guerin
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Xiao-Qing Qi
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, PR China
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France / IDSSE-CAS, Sanya, PR China
- Institution of Deep-Sea Life Sciences, Hainan Deep-Sea Technology Laboratory, Sanya, PR China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Douglas H. Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| | - Long-Fei Wu
- France-China Joint Laboratory for Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), Marseille, France / IDSSE-CAS, Sanya, PR China
- Aix-Marseille Université, CNRS, LCB UMR 7257, IMM, IM2B, Marseille, France
| |
Collapse
|
9
|
Wei W, Wang L, Fang J, Liu R. Population structure, activity potential and ecotype partitioning of Pseudoalteromonas along the vertical water column of the New Britain Trench. FEMS Microbiol Lett 2021; 368:6308368. [PMID: 34160584 DOI: 10.1093/femsle/fnab078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/21/2021] [Indexed: 11/14/2022] Open
Abstract
Microbial degradation of organic matter along the vertical profile of the water column is a major process driving the carbon cycle in the ocean. Pseudoalteromonas has been identified as a dominant genus in pelagic marine environments worldwide, playing important roles in the remineralization of organic carbon. However, the current understanding of Pseudoalteromonas was mainly based on shallow water populations or cultivated species. This study analyzed for the first time the structure, activity potential and ecotypes differentiation of Pseudoalteromonas in the water column of the New Britain Trench (NBT) down to 6000 m. Analysis on diversities of the 16S rRNA gene and their transcripts showed that Pseudoalteromonas was greatly enriched in deep-sea waters and showed high activity potentials. The deep-sea Pseudoalteromonas were significantly different from their shallow-water counterparts, suggesting an obvious ecotype division along with the vertical profile. Phylogenetic analysis on the 16S rRNA gene and hsp60 gene of 219 Pseudoalteromonas strains isolated from different depths further showed that the vertical ecotype division could even occur at the strain level, which might be a result of long-term adaptation to environmental conditions at different depths. The discovered depth-specific strains provide valuable models for further studies on adaptation, evolution and functions of the deep-sea Pseudoalteromonas.
Collapse
Affiliation(s)
- Wenxia Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai,201306, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China
| | - Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai,201306, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai,201306, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao,266000, China.,Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI 96813, USA
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai,201306, China.,National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
10
|
Lo CKL, Sheth PM. Carnobacterium inhibens isolated in blood culture of an immunocompromised, metastatic cancer patient: a case report and literature review. BMC Infect Dis 2021; 21:403. [PMID: 33933029 PMCID: PMC8088058 DOI: 10.1186/s12879-021-06095-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carnobacterium species are lactic acid-producing Gram-positive bacteria that have been approved by the US Food and Drug Administration and Health Canada for use as a food bio-preservative. The use of live bacteria as a food additive and its potential risk of infections in immunocompromised patients are not well understood. CASE PRESENTATION An 81-year-old male with a history of metastatic prostate cancer on androgen deprivation therapy and chronic steroids presented to our hospital with a 2-week history of productive cough, dyspnea, altered mentation, and fever. Extensive computed tomography imaging revealed multifocal pneumonia without other foci of infection. He was diagnosed with pneumonia and empirically treated with ceftriaxone and vancomycin. Blood cultures from admission later returned positive for Carnobacterium inhibens. He achieved clinical recovery with step-down to oral amoxicillin/clavulanic acid for a total 7-day course of antibiotics. CONCLUSIONS This is the fourth reported case of bacteremia with Carnobacterium spp. isolated from humans. This case highlights the need to better understand the pathogenicity and disease spectrum of bacteria used in the food industry for bio-preservation, especially in immunocompromised patients.
Collapse
Affiliation(s)
- Carson Ka-Lok Lo
- Division of Infectious Diseases, Juravinski Cancer Centre, McMaster University Infectious Diseases Residency Program, 699 Concession Street, Hamilton, Ontario, L8V 5C2, Canada.
| | - Prameet M Sheth
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada. .,Division of Microbiology, Kingston Health Sciences Centre, 76 Stuart Street, Kingston, Ontario, K7L 2V7, Canada.
| |
Collapse
|
11
|
Abstract
The ocean’s “biological pump” exports sinking particles containing carbon, nutrients, and energy to the deep sea, contributing centrally to the global carbon cycle. Here, we identify key organisms and biological processes associated with elevated carbon flux to the abyss. Our analyses reveal that, during summer export, specific populations of photosynthetic algae, heterotrophic protists, and bacteria reach the abyss on sinking particles. Deep-sea bacteria respond rapidly to this elevated nutrient delivery to the abyss in summer. During other seasons, different organisms and processes appear responsible for particle export to the deep sea. Our analyses reveal key biota and biological processes that interconnect surface productivity, particle export, and the deep-sea ecosystem, thereby influencing the function and efficiency of the ocean’s biological pump. In the open ocean, elevated carbon flux (ECF) events increase the delivery of particulate carbon from surface waters to the seafloor by severalfold compared to other times of year. Since microbes play central roles in primary production and sinking particle formation, they contribute greatly to carbon export to the deep sea. Few studies, however, have quantitatively linked ECF events with the specific microbial assemblages that drive them. Here, we identify key microbial taxa and functional traits on deep-sea sinking particles that correlate positively with ECF events. Microbes enriched on sinking particles in summer ECF events included symbiotic and free-living diazotrophic cyanobacteria, rhizosolenid diatoms, phototrophic and heterotrophic protists, and photoheterotrophic and copiotrophic bacteria. Particle-attached bacteria reaching the abyss during summer ECF events encoded metabolic pathways reflecting their surface water origins, including oxygenic and aerobic anoxygenic photosynthesis, nitrogen fixation, and proteorhodopsin-based photoheterotrophy. The abundances of some deep-sea bacteria also correlated positively with summer ECF events, suggesting rapid bathypelagic responses to elevated organic matter inputs. Biota enriched on sinking particles during a spring ECF event were distinct from those found in summer, and included rhizaria, copepods, fungi, and different bacterial taxa. At other times over our 3-y study, mid- and deep-water particle colonization, predation, degradation, and repackaging (by deep-sea bacteria, protists, and animals) appeared to shape the biotic composition of particles reaching the abyss. Our analyses reveal key microbial players and biological processes involved in particle formation, rapid export, and consumption, that may influence the ocean’s biological pump and help sustain deep-sea ecosystems.
Collapse
|
12
|
Fongaro G, Maia GA, Rogovski P, Cadamuro RD, Lopes JC, Moreira RS, Camargo AF, Scapini T, Stefanski FS, Bonatto C, Marques Souza DS, Stoco PH, Duarte RTD, Cabral da Cruz AC, Wagner G, Treichel H. Extremophile Microbial Communities and Enzymes for Bioenergetic Application Based on Multi-Omics Tools. Curr Genomics 2020; 21:240-252. [PMID: 33071618 PMCID: PMC7521039 DOI: 10.2174/1389202921999200601144137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 04/20/2020] [Indexed: 12/03/2022] Open
Abstract
Abstract: Genomic and proteomic advances in extremophile microorganism studies are increasingly demonstrating their ability to produce a variety of enzymes capable of converting biomass into bioenergy. Such microorganisms are found in environments with nutritional restrictions, anaerobic environments, high salinity, varying pH conditions and extreme natural environments such as hydrothermal vents, soda lakes, and Antarctic sediments. As extremophile microorganisms and their enzymes are found in widely disparate locations, they generate new possibilities and opportunities to explore biotechnological prospecting, including biofuels (biogas, hydrogen and ethanol) with an aim toward using multi-omics tools that shed light on biotechnological breakthroughs.
Collapse
Affiliation(s)
- Gislaine Fongaro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme Augusto Maia
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Paula Rogovski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rafael Dorighello Cadamuro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Joana Camila Lopes
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Renato Simões Moreira
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Aline Frumi Camargo
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Thamarys Scapini
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Fábio Spitza Stefanski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Charline Bonatto
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Doris Sobral Marques Souza
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Patrícia Hermes Stoco
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens Tadeu Delgado Duarte
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Ariadne Cristiane Cabral da Cruz
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Glauber Wagner
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Helen Treichel
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
13
|
Peoples LM, Kyaw TS, Ugalde JA, Mullane KK, Chastain RA, Yayanos AA, Kusube M, Methé BA, Bartlett DH. Distinctive gene and protein characteristics of extremely piezophilic Colwellia. BMC Genomics 2020; 21:692. [PMID: 33023469 PMCID: PMC7542103 DOI: 10.1186/s12864-020-07102-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023] Open
Abstract
Background The deep ocean is characterized by low temperatures, high hydrostatic pressures, and low concentrations of organic matter. While these conditions likely select for distinct genomic characteristics within prokaryotes, the attributes facilitating adaptation to the deep ocean are relatively unexplored. In this study, we compared the genomes of seven strains within the genus Colwellia, including some of the most piezophilic microbes known, to identify genomic features that enable life in the deep sea. Results Significant differences were found to exist between piezophilic and non-piezophilic strains of Colwellia. Piezophilic Colwellia have a more basic and hydrophobic proteome. The piezophilic abyssal and hadal isolates have more genes involved in replication/recombination/repair, cell wall/membrane biogenesis, and cell motility. The characteristics of respiration, pilus generation, and membrane fluidity adjustment vary between the strains, with operons for a nuo dehydrogenase and a tad pilus only present in the piezophiles. In contrast, the piezosensitive members are unique in having the capacity for dissimilatory nitrite and TMAO reduction. A number of genes exist only within deep-sea adapted species, such as those encoding d-alanine-d-alanine ligase for peptidoglycan formation, alanine dehydrogenase for NADH/NAD+ homeostasis, and a SAM methyltransferase for tRNA modification. Many of these piezophile-specific genes are in variable regions of the genome near genomic islands, transposases, and toxin-antitoxin systems. Conclusions We identified a number of adaptations that may facilitate deep-sea radiation in members of the genus Colwellia, as well as in other piezophilic bacteria. An enrichment in more basic and hydrophobic amino acids could help piezophiles stabilize and limit water intrusion into proteins as a result of high pressure. Variations in genes associated with the membrane, including those involved in unsaturated fatty acid production and respiration, indicate that membrane-based adaptations are critical for coping with high pressure. The presence of many piezophile-specific genes near genomic islands highlights that adaptation to the deep ocean may be facilitated by horizontal gene transfer through transposases or other mobile elements. Some of these genes are amenable to further study in genetically tractable piezophilic and piezotolerant deep-sea microorganisms.
Collapse
Affiliation(s)
- Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.,Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA
| | - Than S Kyaw
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Juan A Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Kelli K Mullane
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Roger A Chastain
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - A Aristides Yayanos
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Masataka Kusube
- Department of Material Science, National Institute of Technology, Wakayama College, 77 Noshima, Nada-cho, Gobo, Wakayama, 644-0023, Japan
| | - Barbara A Methé
- Center for Microbiome and Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.
| |
Collapse
|
14
|
Sun Q, Song J, Li X, Yuan H, Ma J, Wang Q. Bacterial vertical and horizontal variability around a deep seamount in the Tropical Western Pacific Ocean. MARINE POLLUTION BULLETIN 2020; 158:111419. [PMID: 32753203 DOI: 10.1016/j.marpolbul.2020.111419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Research on bacterial communities in seamounts is still in its infancy. Spatial variability of bacterial communities was investigated around M5 seamount of the Tropical Western Pacific Ocean. Our results revealed greater variability of bacterial communities vertically than horizontally. Bacterial diversity generally increased with depths within water column and the complexity increased with the sampling depths. All stations had water mass-specific bacterial community compositions, with distinct bacterial community structure between the bottom layer (being Actinobacteria and Firmicutes-dominant) and other layers (being Alphaproteobacteria-dominant), except the deepest B2 which showed gradual transition. Major orders tended to be distributed symmetrically at bilateral sides of the seamount with more differences occurring at section B than at section A, possibly due to the westward North Equatorial Current (NEC) along section B and reverse subcurrent, as well possible upwelling. Seamount exerted certain effect on bacterial horizontal distribution in the surrounding water mainly through topography-current interaction.
Collapse
Affiliation(s)
- Qiqi Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Meta-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jinming Song
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Meta-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuegang Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Meta-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huamao Yuan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Meta-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Ma
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Meta-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qidong Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Meta-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Oliver GC, Cario A, Rogers KL. Rate and Extent of Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High Hydrostatic Pressures. Front Microbiol 2020; 11:1023. [PMID: 32595611 PMCID: PMC7303961 DOI: 10.3389/fmicb.2020.01023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022] Open
Abstract
High hydrostatic pressure (HHP) batch cultivation of a model extremophile, Archaeoglobus fulgidus type strain VC-16, was performed to explore how elevated pressures might affect microbial growth and physiology in the deep marine biosphere. Though commonly identified in high-temperature and high-pressure marine environments (up to 2-5 km below sea level, 20-50 MPa pressures), A. fulgidus growth at elevated pressure has not been characterized previously. Here, exponential growth of A. fulgidus was observed up to 60 MPa when supported by the heterotrophic metabolism of lactate oxidation coupled to sulfate reduction, and up to 40 MPa for autotrophic CO2 fixation coupled to thiosulfate reduction via H2. Maximum growth rates for this heterotrophic metabolism were observed at 20 MPa, suggesting that A. fulgidus is a moderate piezophile under these conditions. However, only piezotolerance was observed for autotrophy, as growth rates remained nearly constant from 0.3 to 40 MPa. Experiments described below show that A. fulgidus continues both heterotrophic sulfate reduction and autotrophic thiosulfate reduction nearly unaffected by increasing pressure up to 30 MPa and 40 MPa, respectively. As these pressures encompass a variety of subsurface marine environments, A. fulgidus serves as a model extremophile for exploring the effects of elevated pressure on microbial metabolisms in the deep subsurface. Further, these results exemplify the need for high-pressure cultivation of deep-sea and subsurface microorganisms to better reflect in situ physiological conditions.
Collapse
Affiliation(s)
- Gina C. Oliver
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Anaïs Cario
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Karyn L. Rogers
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Rensselaer Astrobiology Research and Education Center, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
16
|
Jin M, Gai Y, Guo X, Hou Y, Zeng R. Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Mar Drugs 2019; 17:md17120656. [PMID: 31766541 PMCID: PMC6950199 DOI: 10.3390/md17120656] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
The deep sea, which is defined as sea water below a depth of 1000 m, is one of the largest biomes on the Earth, and is recognised as an extreme environment due to its range of challenging physical parameters, such as pressure, salinity, temperature, chemicals and metals (such as hydrogen sulphide, copper and arsenic). For surviving in such extreme conditions, deep-sea extremophilic microorganisms employ a variety of adaptive strategies, such as the production of extremozymes, which exhibit outstanding thermal or cold adaptability, salt tolerance and/or pressure tolerance. Owing to their great stability, deep-sea extremozymes have numerous potential applications in a wide range of industries, such as the agricultural, food, chemical, pharmaceutical and biotechnological sectors. This enormous economic potential combined with recent advances in sampling and molecular and omics technologies has led to the emergence of research regarding deep-sea extremozymes and their primary applications in recent decades. In the present review, we introduced recent advances in research regarding deep-sea extremophiles and the enzymes they produce and discussed their potential industrial applications, with special emphasis on thermophilic, psychrophilic, halophilic and piezophilic enzymes.
Collapse
Affiliation(s)
- Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yingbao Gai
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Xun Guo
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Yanping Hou
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: ; Tel.: +86-592-2195323
| |
Collapse
|
17
|
|
18
|
Wang Y, Zhu FC, He LS, Danchin A. Unique tRNA gene profile suggests paucity of nucleotide modifications in anticodons of a deep-sea symbiotic Spiroplasma. Nucleic Acids Res 2019; 46:2197-2203. [PMID: 29390076 PMCID: PMC5861454 DOI: 10.1093/nar/gky045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Abstract
The position 34 of a tRNA is always modified for efficient recognition of codons and accurate integration of amino acids by the translation machinery. Here, we report genomics features of a deep-sea gut symbiotic Spiroplasma, which suggests that the organism does not require tRNA(34) anticodon modifications. In the genome, there is a novel set of tRNA genes composed of 32 species for recognition of the 20 amino acids. Among the anticodons of the tRNAs, we witnessed the presence of both U34- and C34-containing tRNAs required to decode NNR (A/G) 2:2 codons as countermeasure of probable loss of anticodon modification genes. In the tRNA fragments detected in the gut transcriptome, mismatches expected to be caused by some tRNA modifications were not shown in their alignments with the corresponding genes. However, the probable paucity of modified anticodons did not fundamentally change the codon usage pattern of the Spiroplasma. The tRNA gene profile that probably resulted from the paucity of tRNA(34) modifications was not observed in other symbionts and deep-sea bacteria, indicating that this phenomenon was an evolutionary dead-end. This study provides insights on co-evolution of translation machine and tRNA genes and steric constraints of codon-anticodon interactions in deep-sea extreme environment.
Collapse
Affiliation(s)
- Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Fang-Chao Zhu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Antoine Danchin
- Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France.,School of Biomedical Sciences, Li Kashing Faculty of Medicine, University of Hong Kong, 21 Sassoon Road, SAR Hong Kong, China
| |
Collapse
|
19
|
Parks MM, Kurylo CM, Batchelder JE, Theresa Vincent C, Blanchard SC. Implications of sequence variation on the evolution of rRNA. Chromosome Res 2019; 27:89-93. [PMID: 30719681 PMCID: PMC6505490 DOI: 10.1007/s10577-018-09602-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
The evolution of the multi-copy family of ribosomal RNA (rRNA) genes is unique in regard to its genetics and genome evolution. Paradoxically, rRNA genes are highly homogenized within and between individuals, yet they are globally distinct between species. Here, we discuss the implications for models of rRNA gene evolution in light of our recent discoveries that ribosomes bearing rRNA sequence variants can affect gene expression and physiology and that intra-individual rRNA alleles exhibit both context- and tissue-specific expression.
Collapse
Affiliation(s)
- Matthew M Parks
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Chad M Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | | | - C Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
20
|
Bartoccioni P, Fort J, Zorzano A, Errasti-Murugarren E, Palacín M. Functional characterization of the alanine-serine-cysteine exchanger of Carnobacterium sp AT7. J Gen Physiol 2019; 151:505-517. [PMID: 30696726 PMCID: PMC6445583 DOI: 10.1085/jgp.201812195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/16/2018] [Accepted: 01/03/2019] [Indexed: 01/18/2023] Open
Abstract
Proteins of the L-type amino acid transporter (LAT) subfamily take up amino acids from the environment for use in the cell. Bartoccioni et al. show that the bacterial amino acid exchanger BasC is functionally similar to the human LAT Asc1, making BasC a useful model for this class of transporters. Many key cell processes require prior cell uptake of amino acids from the environment, which is facilitated by cell membrane amino acid transporters such as those of the L-type amino acid transporter (LAT) subfamily. Alterations in LAT subfamily amino acid transport are associated with several human diseases, including cancer, aminoacidurias, and neurodegenerative conditions. Therefore, from the perspective of human health, there is considerable interest in obtaining structural information about these transporter proteins. We recently solved the crystal structure of the first LAT transporter, the bacterial alanine-serine-cysteine exchanger of Carnobacterium sp AT7 (BasC). Here, we provide a complete functional characterization of detergent-purified, liposome-reconstituted BasC transporter to allow the extension of the structural insights into mechanistic understanding. BasC is a sodium- and proton-independent small neutral amino acid exchanger whose substrate and inhibitor selectivity are almost identical to those previously described for the human LAT subfamily member Asc-1. Additionally, we show that, like its human counterparts, this transporter has apparent affinity asymmetry for the intra- and extracellular substrate binding sites—a key feature in the physiological role played by these proteins. BasC is an excellent paradigm of human LAT transporters and will contribute to our understanding of the molecular mechanisms underlying substrate recognition and translocation at both sides of the plasma membrane.
Collapse
Affiliation(s)
- Paola Bartoccioni
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Joana Fort
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Ekaitz Errasti-Murugarren
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Palacín
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
21
|
|
22
|
Impact of high hydrostatic pressure on bacterial proteostasis. Biophys Chem 2017; 231:3-9. [PMID: 28365058 DOI: 10.1016/j.bpc.2017.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 02/01/2023]
Abstract
High hydrostatic pressure (HHP) is an important factor that limits microbial growth in deep-sea ecosystems to specifically adapted piezophiles. Furthermore, HHP treatment is used as a novel food preservation technique because of its ability to inactivate pathogenic and spoilage bacteria while minimizing the loss of food quality. Disruption of protein homeostasis (i.e. proteostasis) as a result of HHP-induced conformational changes in ribosomes and proteins has been considered as one of the limiting factors for both microbial growth and survival under HHP conditions. This work therefore reviews the effects of sublethal (≤100MPa) and lethal (>100MPa) pressures on protein synthesis, structure, and functionality in bacteria. Furthermore, current understanding on the mechanisms adopted by piezophiles to maintain proteostasis in HHP environments and responses developed by atmospheric-adapted bacteria to protect or restore proteostasis after HHP exposure are discussed.
Collapse
|
23
|
Iskandar CF, Borges F, Taminiau B, Daube G, Zagorec M, Remenant B, Leisner JJ, Hansen MA, Sørensen SJ, Mangavel C, Cailliez-Grimal C, Revol-Junelles AM. Comparative Genomic Analysis Reveals Ecological Differentiation in the Genus Carnobacterium. Front Microbiol 2017; 8:357. [PMID: 28337181 PMCID: PMC5341603 DOI: 10.3389/fmicb.2017.00357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/21/2017] [Indexed: 02/01/2023] Open
Abstract
Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium.
Collapse
Affiliation(s)
- Christelle F. Iskandar
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Bernard Taminiau
- Laboratory of Food Microbiology, Department of Food Science, Fundamental and Applied Research for Animal and Health, University of LiègeLiège, Belgium
| | - Georges Daube
- Laboratory of Food Microbiology, Department of Food Science, Fundamental and Applied Research for Animal and Health, University of LiègeLiège, Belgium
| | | | | | - Jørgen J. Leisner
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Martin A. Hansen
- Molecular Microbial Ecology Group, University of CopenhagenCopenhagen, Denmark
| | - Søren J. Sørensen
- Molecular Microbial Ecology Group, University of CopenhagenCopenhagen, Denmark
| | - Cécile Mangavel
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Catherine Cailliez-Grimal
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| | - Anne-Marie Revol-Junelles
- Laboratoire d’Ingénierie des Biomolécules, École Nationale Supérieure d’Agronomie et des Industries Alimentaires – Université de LorraineVandoeuvre-lès-Nancy, France
| |
Collapse
|
24
|
Havlová K, Dvořáčková M, Peiro R, Abia D, Mozgová I, Vansáčová L, Gutierrez C, Fajkus J. Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2016; 92:457-471. [PMID: 27531496 DOI: 10.1007/s11103-016-0524-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/03/2016] [Indexed: 05/28/2023]
Abstract
Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5 % of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.
Collapse
Affiliation(s)
- Kateřina Havlová
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- Institute of Biophysics ASCR, v.v.i., Královopolská 135, 61265, Brno, Czech Republic.
| | - Ramon Peiro
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Madrid, 28049, Spain
| | - David Abia
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Madrid, 28049, Spain
| | - Iva Mozgová
- Faculty of Science, Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Lenka Vansáčová
- Faculty of Science, Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Crisanto Gutierrez
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Nicolas Cabrera 1, Madrid, 28049, Spain
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- Faculty of Science, Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic.
| |
Collapse
|
25
|
Itävaara M, Salavirta H, Marjamaa K, Ruskeeniemi T. Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes. ADVANCES IN APPLIED MICROBIOLOGY 2016; 94:1-77. [PMID: 26917241 DOI: 10.1016/bs.aambs.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fractures in the deep subsurface of Earth's crust are inhabited by diverse microbial communities that participate in biogeochemical cycles of the Earth. Life on Earth, which arose c. 3.5-4.0 billion years ago, reaches down at least 5 km in the crust. Deep mines, caves, and boreholes have provided scientists with opportunities to sample deep subsurface microbiomes and to obtain information on the species diversity and functions. A wide variety of bacteria, archaea, eukaryotes, and viruses are now known to reside in the crust, but their functions are still largely unknown. The crust at different depths has varying geological composition and hosts endemic microbiomes accordingly. The diversity is driven by geological formations and gases evolving from deeper depths. Cooperation among different species is still mostly unexplored, but viruses are known to restrict density of bacterial and archaeal populations. Due to the complex growth requirements of the deep subsurface microbiomes, the new knowledge about their diversity and functions is mostly obtained by molecular methods, eg, meta'omics'. Geomicrobiology is a multidisciplinary research area combining disciplines from geology, mineralogy, geochemistry, and microbiology. Geomicrobiology is concerned with the interaction of microorganisms and geological processes. At the surface of mineralogical or rock surfaces, geomicrobial processes occur mainly under aerobic conditions. In the deep subsurface, however, the environmental conditions are reducing and anaerobic. The present chapter describes the world of microbiomes in deep terrestrial geological environments as well as metagenomic and metatranscriptomic methods suitable for studies of these enigmatic communities.
Collapse
Affiliation(s)
- M Itävaara
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - H Salavirta
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - K Marjamaa
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | | |
Collapse
|
26
|
|
27
|
Single cells within the Puerto Rico trench suggest hadal adaptation of microbial lineages. Appl Environ Microbiol 2015; 81:8265-76. [PMID: 26386059 DOI: 10.1128/aem.01659-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/12/2015] [Indexed: 11/20/2022] Open
Abstract
Hadal ecosystems are found at a depth of 6,000 m below sea level and below, occupying less than 1% of the total area of the ocean. The microbial communities and metabolic potential in these ecosystems are largely uncharacterized. Here, we present four single amplified genomes (SAGs) obtained from 8,219 m below the sea surface within the hadal ecosystem of the Puerto Rico Trench (PRT). These SAGs are derived from members of deep-sea clades, including the Thaumarchaeota and SAR11 clade, and two are related to previously isolated piezophilic (high-pressure-adapted) microorganisms. In order to identify genes that might play a role in adaptation to deep-sea environments, comparative analyses were performed with genomes from closely related shallow-water microbes. The archaeal SAG possesses genes associated with mixotrophy, including lipoylation and the glycine cleavage pathway. The SAR11 SAG encodes glycolytic enzymes previously reported to be missing from this abundant and cosmopolitan group. The other SAGs, which are related to piezophilic isolates, possess genes that may supplement energy demands through the oxidation of hydrogen or the reduction of nitrous oxide. We found evidence for potential trench-specific gene distributions, as several SAG genes were observed only in a PRT metagenome and not in shallower deep-sea metagenomes. These results illustrate new ecotype features that might perform important roles in the adaptation of microorganisms to life in hadal environments.
Collapse
|
28
|
Wannicke N, Frindte K, Gust G, Liskow I, Wacker A, Meyer A, Grossart HP. Measuring bacterial activity and community composition at high hydrostatic pressure using a novel experimental approach: a pilot study. FEMS Microbiol Ecol 2015; 91:fiv036. [DOI: 10.1093/femsec/fiv036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2015] [Indexed: 11/12/2022] Open
|
29
|
Marine extremophiles: a source of hydrolases for biotechnological applications. Mar Drugs 2015; 13:1925-65. [PMID: 25854643 PMCID: PMC4413194 DOI: 10.3390/md13041925] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/26/2022] Open
Abstract
The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.
Collapse
|
30
|
Bhushan A, Mukherjee T, Joshi J, Shankar P, Kalia VC. Insights into the Origin of Clostridium botulinum Strains: Evolution of Distinct Restriction Endonuclease Sites in rrs (16S rRNA gene). Indian J Microbiol 2015; 55:140-50. [PMID: 25805900 DOI: 10.1007/s12088-015-0514-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/12/2015] [Indexed: 11/26/2022] Open
Abstract
Diversity analysis of Clostridium botulinum strains is complicated by high microheterogeneity caused by the presence of 9-22 copies of rrs (16S rRNA gene). The need is to mine genetic markers to identify very closely related strains. Multiple alignments of the nucleotide sequences of the 212 rrs of 13 C. botulinum strains revealed intra- and inter-genomic heterogeneity. Low intragenomic heterogeneity in rrs was evident in strains 230613, Alaska E43, Okra, Eklund 17B, Langeland, 657, Kyoto, BKT015925, and Loch Maree. The most heterogenous rrs sequences were those of C. botulinum strains ATCC 19397, Hall, H04402065, and ATCC 3502. In silico restriction mapping of these rrs sequences was observable with 137 type II Restriction endonucleases (REs). Nucleotide changes (NC) at these RE sites resulted in appearance of distinct and additional sites, and loss in certain others. De novo appearances of RE sites due to NC were recorded at different positions in rrs gene. A nucleotide transition A>G in rrs of C. botulinum Loch Maree and 657 resulted in the generation of 4 and 10 distinct RE sites, respectively. Transitions A>G, G>A, and T>C led to the loss of RE sites. A perusal of the entire NC and in silico RE mapping of rrs of C. botulinum strains provided insights into their evolution. Segregation of strains on the basis of RE digestion patterns of rrs was validated by the cladistic analysis involving six house keeping genes: dnaN, gyrB, metG, prfA, pyrG, and Rho.
Collapse
Affiliation(s)
- Ashish Bhushan
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Tanmoy Mukherjee
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Jayadev Joshi
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Pratap Shankar
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, Delhi, 110007 India
| |
Collapse
|
31
|
Abstract
The deep biosphere is composed of very different biotopes located in the depth of the oceans, the ocean crust or the lithosphere. Although very different, deep biosphere biotopes share one common feature, high hydrostatic pressure. The deep biosphere is colonized by specific organisms, called piezophiles, that are able to grow under high hydrostatic pressure. Bacterial piezophiles are mainly psychrophiles belonging to five genera of γ-proteobacteria, Photobacterium, Shewanella, Colwellia, Psychromonas and Moritella, while piezophilic Archaea are mostly (hyper)thermophiles from the Thermococcales. None of these genera are specific for the deep biosphere. High pressure deeply impacts the activity of cells and cellular components, and reduces the activity of numerous key processes, eventually leading to cell death of piezosensitive organisms. Biochemical and genomic studies yield a fragmented view on the adaptive mechanisms in piezophiles. It is yet unclear whether piezophilic adaptation requires the modification of a few genes, or metabolic pathways, or a more profound reorganization of the genome, the fine tuning of gene expression to compensate the pressure-induced loss of activity of the proteins most affected by high pressure, or a stress-like physiological cell response. In contrast to what has been seen for thermophily or halophily, the adaptation to high pressure is diffuse in the genome and may concern only a small fraction of the genes.
Collapse
|
32
|
Youssef NH, Couger MB, McCully AL, Criado AEG, Elshahed MS. Assessing the global phylum level diversity within the bacterial domain: A review. J Adv Res 2014; 6:269-82. [PMID: 26257925 PMCID: PMC4522544 DOI: 10.1016/j.jare.2014.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/06/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022] Open
Abstract
Microbial ecology is the study of microbes in the natural environment and their interactions with each other. Investigating the nature of microorganisms residing within a specific habitat is an extremely important component of microbial ecology. Such microbial diversity surveys aim to determine the identity, physiological preferences, metabolic capabilities, and genomic features of microbial taxa within a specific ecosystem. A comprehensive review of various aspects of microbial diversity (phylogenetic, functional, and genomic diversities) in the microbial (bacterial, archaeal, and microeukaryotic) world is clearly a daunting task that could not be aptly summarized in a single review. Here, we focus on one aspect of diversity (phylogenetic diversity) in one microbial domain (the Bacteria). We restrict our analysis to the highest taxonomic rank (phylum) and attempt to investigate the extent of global phylum level diversity within the Bacteria. We present a brief historical perspective on the subject and highlight how the adaptation of molecular biological and phylogenetic approaches has greatly expanded our view of global bacterial diversity. We also summarize recent progress toward the discovery of novel bacterial phyla, present evidences that the scope of phylum level diversity in nature has hardly been exhausted, and propose novel approaches that could greatly facilitate the discovery process of novel bacterial phyla within various ecosystems.
Collapse
Affiliation(s)
- Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - M B Couger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Alexandra L McCully
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | | | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
33
|
Effects of high hydrostatic pressure on coastal bacterial community abundance and diversity. Appl Environ Microbiol 2014; 80:5992-6003. [PMID: 25063663 DOI: 10.1128/aem.02109-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hydrostatic pressure is an important parameter influencing the distribution of microbial life in the ocean. In this study, the response of marine bacterial populations from surface waters to pressures representative of those under deep-sea conditions was examined. Southern California coastal seawater collected 5 m below the sea surface was incubated in microcosms, using a range of temperatures (16 to 3°C) and hydrostatic pressure conditions (0.1 to 80 MPa). Cell abundance decreased in response to pressure, while diversity increased. The morphology of the community also changed with pressurization to a predominant morphotype of small cocci. The pressure-induced community changes included an increase in the relative abundance of Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Flavobacteria largely at the expense of Epsilonproteobacteria. Culturable high-pressure-surviving bacteria were obtained and found to be phylogenetically similar to isolates from cold and/or deep-sea environments. These results provide novel insights into the response of surface water bacteria to changes in hydrostatic pressure.
Collapse
|
34
|
Muck S, Griessler T, Köstner N, Klimiuk A, Winter C, Herndl GJ. Fracture zones in the Mid Atlantic Ridge lead to alterations in prokaryotic and viral parameters in deep-water masses. Front Microbiol 2014; 5:264. [PMID: 24917857 PMCID: PMC4040922 DOI: 10.3389/fmicb.2014.00264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 05/13/2014] [Indexed: 11/16/2022] Open
Abstract
We hypothesized that mixing zones of deep-water masses act as ecotones leading to alterations in microbial diversity and activity due to changes in the biogeochemical characteristics of these boundary systems. We determined the changes in prokaryotic and viral abundance and production in the Vema Fracture Zone (VFZ) of the subtropical North Atlantic Ocean, where North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) are funneled through this narrow canyon and therefore, are subjected to intense vertical mixing. Consequently, salinity, potential temperature, oxygen, PO4, SiO4, NO3 were altered in the NADW inside the VFZ as compared to the NADW outside of the VFZ. Also, viral abundance, lytic viral production (VP) and the virus-to-prokaryote ratio (VPR) were elevated in the NADW in the VFZ as compared to the NADW outside the VFZ. In contrast to lytic VP, lysogenic VP and both the frequency of lytically (FIC) and lysogenically infected cells (FLC) did not significantly differ between in- and outside the VFZ. Generally, FIC was higher than FLC throughout the water column. Prokaryotic (determined by T-RFLP) and viral (determined by RAPD-PCR) community composition was depth-stratified inside and outside the VFZ. The viral community was more modified both with depth and over distance inside the VFZ as compared to the northern section and to the prokaryotic communities. However, no clusters of prokaryotic and viral communities characteristic for the VFZ were identified. Based on our observations, we conclude that turbulent mixing of the deep water masses impacts not only the physico-chemical parameters of the mixing zone but also the interaction between viruses and prokaryotes due to a stimulation of the overall activity. However, only minor effects of deep water mixing were observed on the community composition of the dominant prokaryotes and viruses.
Collapse
Affiliation(s)
- Simone Muck
- Department of Limnology and Oceanography, Center of Ecology, University of ViennaVienna, Austria
| | - Thomas Griessler
- Department of Limnology and Oceanography, Center of Ecology, University of ViennaVienna, Austria
| | - Nicole Köstner
- Department of Limnology and Oceanography, Center of Ecology, University of ViennaVienna, Austria
| | - Adam Klimiuk
- Department of Limnology and Oceanography, Center of Ecology, University of ViennaVienna, Austria
| | - Christian Winter
- Department of Limnology and Oceanography, Center of Ecology, University of ViennaVienna, Austria
| | - Gerhard J. Herndl
- Department of Limnology and Oceanography, Center of Ecology, University of ViennaVienna, Austria
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research (NIOZ)Den Burg, Netherlands
| |
Collapse
|
35
|
Exposure of Bacillus subtilis to low pressure (5 kilopascals) induces several global regulons, including those involved in the SigB-mediated general stress response. Appl Environ Microbiol 2014; 80:4788-94. [PMID: 24878601 DOI: 10.1128/aem.00885-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Studies of how microorganisms respond to pressure have been limited mostly to the extreme high pressures of the deep sea (i.e., the piezosphere). In contrast, despite the fact that the growth of most bacteria is inhibited at pressures below ∼2.5 kPa, little is known of microbial responses to low pressure (LP). To study the global LP response, we performed transcription microarrays on Bacillus subtilis cells grown under normal atmospheric pressure (∼101 kPa) and a nearly inhibitory LP (5 kPa), equivalent to the pressure found at an altitude of ∼20 km. Microarray analysis revealed altered levels of 363 transcripts belonging to several global regulons (AbrB, CcpA, CodY, Fur, IolR, ResD, Rok, SigH, Spo0A). Notably, the highest number of upregulated genes, 86, belonged to the SigB-mediated general stress response (GSR) regulon. Upregulation of the GSR by LP was confirmed by monitoring the expression of the SigB-dependent ctc-lacZ reporter fusion. Measuring transcriptome changes resulting from exposure of bacterial cells to LP reveals insights into cellular processes that may respond to LP exposure.
Collapse
|
36
|
Ecotype diversity and conversion in Photobacterium profundum strains. PLoS One 2014; 9:e96953. [PMID: 24824441 PMCID: PMC4019646 DOI: 10.1371/journal.pone.0096953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/12/2014] [Indexed: 12/03/2022] Open
Abstract
Photobacterium profundum is a cosmopolitan marine bacterium capable of growth at low temperature and high hydrostatic pressure. Multiple strains of P. profundum have been isolated from different depths of the ocean and display remarkable differences in their physiological responses to pressure. The genome sequence of the deep-sea piezopsychrophilic strain Photobacterium profundum SS9 has provided some clues regarding the genetic features required for growth in the deep sea. The sequenced genome of Photobacterium profundum strain 3TCK, a non-piezophilic strain isolated from a shallow-water environment, is now available and its analysis expands the identification of unique genomic features that correlate to environmental differences and define the Hutchinsonian niche of each strain. These differences range from variations in gene content to specific gene sequences under positive selection. Genome plasticity between Photobacterium bathytypes was investigated when strain 3TCK-specific genes involved in photorepair were introduced to SS9, demonstrating that horizontal gene transfer can provide a mechanism for rapid colonisation of new environments.
Collapse
|
37
|
Chen J, Zhou ZC, Gu JD. Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes. Appl Microbiol Biotechnol 2014; 98:5685-96. [PMID: 24769903 DOI: 10.1007/s00253-014-5733-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 01/19/2023]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) process is unique in linking the microbial carbon and nitrogen cycles, but the presence of n-damo bacteria in marine ecosystem and the associated environmental factors are still poorly understood. In the present study, detection of n-damo bacteria using 16S rRNA and pmoA gene-based PCR primers was successfully employed to reveal their diversity and distribution in the surface and subsurface sediments of the South China Sea (SCS). The widespread occurrence of n-damo bacteria in both the surface and subsurface sediments with high diversity has been confirmed in this study. The pmoA gene-amplified sequences clustered within three newly erected subclusters, namely SCS-1, SCS-2, and SCS-3, suggesting the unique niche specificity of n-damo bacteria in the marine ecosystem. Results indicated the presence of n-damo bacteria in the west Pacific Ocean with a wide distribution from the continental shelf (E201S) to the deep abyss (E407S and E407B). Community structures of n-damo bacteria in SCS are clearly different from those of nonmarine ones known. It is also found that NO x (-) and NH4 (+) affected the community structures and distribution of n-damo bacteria in the SCS sediments differently. Salinity is another important factor identified, shaping the n-damo communities in marine environments. The community based on pmoA gene-amplified sequences, and community richness and diversity based on 16S rRNA gene-amplified sequences correlated with temperature.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | | | | |
Collapse
|
38
|
Masanari M, Wakai S, Ishida M, Kato C, Sambongi Y. Correlation between the optimal growth pressures of four Shewanella species and the stabilities of their cytochromes c 5. Extremophiles 2014; 18:617-27. [DOI: 10.1007/s00792-014-0644-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/23/2014] [Indexed: 11/29/2022]
|
39
|
Giordano D, Coppola D, Russo R, Tinajero-Trejo M, di Prisco G, Lauro F, Ascenzi P, Verde C. The globins of cold-adapted Pseudoalteromonas haloplanktis TAC125: from the structure to the physiological functions. Adv Microb Physiol 2014; 63:329-89. [PMID: 24054800 DOI: 10.1016/b978-0-12-407693-8.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Evolution allowed Antarctic microorganisms to grow successfully under extreme conditions (low temperature and high O2 content), through a variety of structural and physiological adjustments in their genomes and development of programmed responses to strong oxidative and nitrosative stress. The availability of genomic sequences from an increasing number of cold-adapted species is providing insights to understand the molecular mechanisms underlying crucial physiological processes in polar organisms. The genome of Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct truncated globins exhibiting the 2/2 α-helical fold. One of these globins has been extensively characterised by spectroscopic analysis, kinetic measurements and computer simulation. The results indicate unique adaptive structural properties that enhance the overall flexibility of the protein, so that the structure appears to be resistant to pressure-induced stress. Recent results on a genomic mutant strain highlight the involvement of the cold-adapted globin in the protection against the stress induced by high O2 concentration. Moreover, the protein was shown to catalyse peroxynitrite isomerisation in vitro. In this review, we first summarise how cold temperatures affect the physiology of microorganisms and focus on the molecular mechanisms of cold adaptation revealed by recent biochemical and genetic studies. Next, since only in a very few cases the physiological role of truncated globins has been demonstrated, we also discuss the structural and functional features of the cold-adapted globin in an attempt to put into perspective what has been learnt about these proteins and their potential role in the biology of cold-adapted microorganisms.
Collapse
|
40
|
Brown MV, Ostrowski M, Grzymski JJ, Lauro FM. A trait based perspective on the biogeography of common and abundant marine bacterioplankton clades. Mar Genomics 2014; 15:17-28. [PMID: 24662471 DOI: 10.1016/j.margen.2014.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/08/2014] [Accepted: 03/08/2014] [Indexed: 11/26/2022]
Abstract
Marine microbial communities provide much of the energy upon which all higher trophic levels depend, particularly in open-ocean and oligotrophic systems, and play a pivotal role in biogeochemical cycling. How and why species are distributed in the global oceans, and whether net ecosystem function can be accurately predicted from community composition are fundamental questions for marine scientists. Many of the most abundant clades of marine bacteria, including the Prochlorococcus, Synechococcus, SAR11, SAR86 and Roseobacter, have a very broad, if not a cosmopolitan distribution. However this is not reflected in an underlying genetic identity. Rather, widespread distribution in these organisms is achieved by the existence of closely related but discrete ecotypes that display niche adaptations. Closely related ecotypes display specific nutritional or energy generating mechanisms and are adapted to different physical parameters including temperature, salinity, and hydrostatic pressure. Furthermore, biotic phenomena such as selective grazing and viral loss contribute to the success or failure of ecotypes allowing some to compete effectively in particular marine provinces but not in others. An additional layer of complexity is added by ocean currents and hydrodynamic specificity of water body masses that bound microbial dispersal and immigration. These vary in space and time with respect to intensity and direction, making the definition of large biogeographic provinces problematic. A deterministic theory aimed at understanding how all these factors shape microbial life in the oceans can only proceed through analysis of microbial traits, rather than pure phylogenetic assessments. Trait based approaches seek mechanistic explanations for the observed temporal and spatial patterns. This review will present successful recent advances in phylogenetic and trait based biogeographic analyses in some of the most abundant marine taxa.
Collapse
Affiliation(s)
- Mark V Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Evolution and Ecology Research Center, University of New South Wales, Sydney, Australia
| | - Martin Ostrowski
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Joseph J Grzymski
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, USA
| | - Federico M Lauro
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
41
|
Novel psychropiezophilic Oceanospirillales species Profundimonas piezophila gen. nov., sp. nov., isolated from the deep-sea environment of the Puerto Rico trench. Appl Environ Microbiol 2013; 80:54-60. [PMID: 24123740 DOI: 10.1128/aem.02288-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The diversity of deep-sea high-pressure-adapted (piezophilic) microbes in isolated monoculture remains low. In this study, a novel obligately psychropiezophilic bacterium was isolated from seawater collected from the Puerto Rico Trench at a depth of ∼6,000 m. This isolate, designated YC-1, grew best in a nutrient-rich marine medium, with an optimal growth hydrostatic pressure of 50 MPa (range, 20 to 70 MPa) at 8°C. Under these conditions, the maximum growth rate was extremely slow, 0.017 h(-1), and the maximum yield was 3.51 × 10(7) cells ml(-1). Cell size and shape changed with pressure, shifting from 4.0 to 5.0 μm in length and 0.5 to 0.8 μm in width at 60 MPa to 0.8- to 1.0-μm diameter coccoid cells under 20 MPa, the minimal pressure required for growth. YC-1 is a Gram-negative, facultatively anaerobic heterotroph. Its predominant cellular fatty acids are the monounsaturated fatty acids (MUFAs) C16:1 and C18:1. Unlike many other psychropiezophiles, YC-1 does not synthesize any polyunsaturated fatty acids (PUFAs). Phylogenetic analysis placed YC-1 within the family of Oceanospirillaceae, closely related to the uncultured symbiont of the deep-sea whale bone-eating worms of the genus Osedax. In common with some other members of the Oceanospirillales, including those enriched during the Deepwater Horizon oil spill, YC-1 is capable of hydrocarbon utilization. On the basis of its characteristics, YC-1 appears to represent both a new genus and a new species, which we name Profundimonas piezophila gen. nov., sp. nov.
Collapse
|
42
|
Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat Commun 2013; 4:2457. [DOI: 10.1038/ncomms3457] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/16/2013] [Indexed: 12/23/2022] Open
|
43
|
Herndl GJ, Reinthaler T. Microbial control of the dark end of the biological pump. NATURE GEOSCIENCE 2013; 6:718-724. [PMID: 24707320 PMCID: PMC3972885 DOI: 10.1038/ngeo1921] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A fraction of the carbon captured by phytoplankton in the sunlit surface ocean sinks to depth as dead organic matter and faecal material. The microbial breakdown of this material in the subsurface ocean generates carbon dioxide. Collectively, this microbially mediated flux of carbon from the atmosphere to the ocean interior is termed the biological pump. In recent decades it has become clear that the composition of the phytoplankton community in the surface ocean largely determines the quantity and quality of organic matter that sinks to depth. This settling organic matter, however, is not sufficient to meet the energy demands of microbes in the dark ocean. Two additional sources of organic matter have been identified: non-sinking organic particles of debated origin that escape capture by sediment traps and exhibit stable concentrations throughout the dark ocean, and microbes that convert inorganic carbon into organic matter. Whether these two sources can together account for the significant mismatch between organic matter consumption and supply in the dark ocean remains to be seen. It is clear, however, that the microbial community of the deep ocean works in a fundamentally different way from surface water communities.
Collapse
Affiliation(s)
- Gerhard J. Herndl
- Department of Limnology and Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- Department of Biological Oceanography, Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, Texel, The Netherlands
- Correspondence and requests for materials should be addressed to G.J.H.
| | - Thomas Reinthaler
- Department of Limnology and Oceanography, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
44
|
Picard A, Daniel I. Pressure as an environmental parameter for microbial life--a review. Biophys Chem 2013; 183:30-41. [PMID: 23891571 DOI: 10.1016/j.bpc.2013.06.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/18/2013] [Accepted: 06/22/2013] [Indexed: 01/18/2023]
Abstract
Microbial life has been prevailing in the biosphere for the last 3.8 Ga at least. Throughout most of the Earth's history it has experienced a range of pressures; both dynamic pressure when the young Earth was heavily bombarded, and static pressure in subsurface environments that could have served as a refuge and where microbial life nowadays flourishes. In this review, we discuss the extent of high-pressure habitats in early and modern times and provide a short overview of microbial survival under dynamic pressures. We summarize the current knowledge about the impact of microbial activity on biogeochemical cycles under pressures characteristic of the deep subsurface. We evaluate the possibility that pressure can be a limiting parameter for life at depth. Finally, we discuss the open questions and knowledge gaps that exist in the field of high-pressure geomicrobiology.
Collapse
Affiliation(s)
- Aude Picard
- Center for Applied Geoscience, Eberhard Karls University Tübingen, Sigwartstrasse 10, 72076 Tübingen, Germany.
| | | |
Collapse
|
45
|
Complete Genome Sequence of the Deep-Sea Bacterium Psychromonas Strain CNPT3. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00304-13. [PMID: 23723403 PMCID: PMC3668011 DOI: 10.1128/genomea.00304-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Members of the genus Psychromonas are commonly found in polar and deep-sea environments. Here we present the genome of Psychromonas strain CNPT3. Historically, it was the first bacterium shown to piezoregulate the composition of its membrane lipids and to have a higher growth rate at 57 megapascals (MPa) than at 0.1 MPa.
Collapse
|
46
|
Draft Genome Sequence of the Deep-Sea Bacterium Shewanella benthica Strain KT99. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00210-13. [PMID: 23723392 PMCID: PMC3668000 DOI: 10.1128/genomea.00210-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We report the draft genome sequence of the obligately piezophilic Shewanella benthica strain KT99 isolated from the abyssal South Pacific Ocean. Strain KT99 is the first piezophilic isolate from the Tonga-Kermadec trench, and its genome provides many clues on high-pressure adaptation and the evolution of deep-sea piezophilic bacteria.
Collapse
|
47
|
Lekunberri I, Sintes E, de Corte D, Yokokawa T, Herndl GJ. Spatial patterns of bacterial and archaeal communities along the Romanche Fracture Zone (tropical Atlantic). FEMS Microbiol Ecol 2013; 85:537-52. [PMID: 23621156 PMCID: PMC3840699 DOI: 10.1111/1574-6941.12142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 11/29/2022] Open
Abstract
The composition of prokaryotic communities was determined in the meso- and bathypelagic waters funneled through the Romanche Fracture Zone (RFZ, 2°7′S, 31°79′W to 0°6′N, 14°33′W) in the tropical Atlantic. Distinct water masses were identified based on their physical and chemical characteristics. The bacterial and archaeal communities were depth-stratified with a total of 116 and 25 operational taxonomic units (OTUs), respectively, distributed among the distinct water masses as revealed by terminal restriction fragment length polymorphism, and cloning and sequencing. The relative abundance of Thaumarchaeota, determined by catalyzed reporter deposition-fluorescence in situ hybridization, was significantly higher in deeper layers (Antarctic Bottom Water, AABW, > 4000 m depth), contributing up to 31% to the total prokaryotic community, than in the mesopelagic and lower euphotic layer. Although the contribution of SAR11 to bacterial abundance did not increase with depth, SAR202, SAR324, SAR406 and Alteromonas did increase with depth. Terminal restriction fragment length polymorphism analysis revealed successional changes in the bacterial and archaeal community composition of the North Atlantic Deep Water (NADW) with a passage time through the RFZ of c. 4 months but not in the under- and overlying water masses. Our results indicate that specific water masses harbor distinct bacterial and archaeal communities and that the prokaryotic community of the NADW undergoes successional changes in this conduit between the western and eastern Atlantic basin. Apparently, in the absence of major input of organic matter to specific deep-water masses, the indigenous prokaryotic community adapts to subtle physical and biogeochemical changes in the water mass within a time frame of weeks, similar to the reported seasonal changes in surface water prokaryotic communities.
Collapse
Affiliation(s)
- Itziar Lekunberri
- Department of Marine Biology, Faculty Center of Ecology, University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
48
|
Complete Chromosome Sequence of Carnobacterium maltaromaticum LMA 28. GENOME ANNOUNCEMENTS 2013; 1:genomeA00115-12. [PMID: 23405327 PMCID: PMC3569318 DOI: 10.1128/genomea.00115-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/19/2012] [Indexed: 11/20/2022]
Abstract
Within the lactic acid bacterium genus Carnobacterium, Carnobacterium maltaromaticum is one of the most frequently isolated species from natural environments and food. It potentially plays a major role in food product biopreservation. We report here on the 3.649-Mb chromosome sequence of C. maltaromaticum LMA 28, which was isolated from ripened soft cheese.
Collapse
|
49
|
Polyextremophiles and the Constraints for Terrestrial Habitability. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
50
|
López-Pérez M, Gonzaga A, Martin-Cuadrado AB, Onyshchenko O, Ghavidel A, Ghai R, Rodriguez-Valera F. Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Sci Rep 2012; 2:696. [PMID: 23019517 PMCID: PMC3458243 DOI: 10.1038/srep00696] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/12/2012] [Indexed: 12/17/2022] Open
Abstract
Alteromonas macleodii is a marine gammaproteobacterium with widespread distribution in temperate or tropical waters. We describe three genomes of isolates from surface waters around Europe (Atlantic, Mediterranean and Black Sea) and compare them with a previously described deep Mediterranean isolate (AltDE) that belongs to a widely divergent clade. The surface isolates are quite similar, the most divergent being the Black Sea (BS11) isolate. The genomes contain several genomic islands with different gene content. The recruitment of very similar genomic fragments from metagenomes in different locations indicates that the surface clade is globally abundant with little effect of geography, even the AltDE and the BS11 genomes recruiting from surface samples in open ocean locations. The finding of CRISPR protospacers of AltDE in a lysogenic phage in the Atlantic (English Channel) isolate illustrates a flow of genetic material among these clades and a remarkably wide distribution of this phage.
Collapse
Affiliation(s)
- Mario López-Pérez
- División de Microbiología, Universidad Miguel Hernández, San Juan 03550, Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|