1
|
Csp1, a Cold Shock Protein Homolog in Xylella fastidiosa Influences Cell Attachment, Pili Formation, and Gene Expression. Microbiol Spectr 2021; 9:e0159121. [PMID: 34787465 PMCID: PMC8597638 DOI: 10.1128/spectrum.01591-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial cold shock-domain proteins are conserved nucleic acid binding chaperones that play important roles in stress adaptation and pathogenesis. Csp1 is a temperature-independent cold shock protein homolog in Xylella fastidiosa, a bacterial plant pathogen of grapevine and other economically important crops. Csp1 contributes to stress tolerance and virulence in X. fastidiosa. However, besides general single-stranded nucleic acid binding activity, little is known about the specific function(s) of Csp1. To further investigate the role(s) of Csp1, we compared phenotypic differences and transcriptome profiles between the wild type and a csp1 deletion mutant (Δcsp1). Csp1 contributes to attachment and long-term survival and influences gene expression. We observed reduced cell-to-cell attachment and reduced attachment to surfaces with the Δcsp1 strain compared to those with the wild type. Transmission electron microscopy imaging revealed that Δcsp1 was deficient in pili formation compared to the wild type and complemented strains. The Δcsp1 strain also showed reduced survival after long-term growth in vitro. Long-read nanopore transcriptome sequencing (RNA-Seq) analysis revealed changes in expression of several genes important for attachment and biofilm formation in Δcsp1 compared to that in the wild type. One gene of interest, pilA1, which encodes a type IV pili subunit protein, was upregulated in Δcsp1. Deleting pilA1 in X. fastidiosa strain Stag's Leap increased surface attachment in vitro and reduced virulence in grapevines. X. fastidiosa virulence depends on bacterial attachment to host tissue and movement within and between xylem vessels. Our results show that the impact of Csp1 on virulence may be due to changes in expression of attachment genes. IMPORTANCE Xylella fastidiosa is a major threat to the worldwide agriculture industry. Despite its global importance, many aspects of X. fastidiosa biology and pathogenicity are poorly understood. There are currently few effective solutions to suppress X. fastidiosa disease development or eliminate bacteria from infected plants. Recently, disease epidemics due to X. fastidiosa have greatly expanded, increasing the need for better disease prevention and control strategies. Our studies show a novel connection between cold shock protein Csp1 and pili abundance and attachment, which have not been reported for X. fastidiosa. Understanding how pathogenesis-related gene expression is regulated can aid in developing novel pathogen and disease control strategies. We also streamlined a bioinformatics protocol to process and analyze long-read nanopore bacterial RNA-Seq data, which will benefit the research community, particularly those working with non-model bacterial species.
Collapse
|
2
|
Ferreiro MD, Behrmann LV, Corral A, Nogales J, Gallegos MT. Exploring the expression and functionality of the rsm sRNAs in Pseudomonas syringae pv. tomato DC3000. RNA Biol 2021; 18:1818-1833. [PMID: 33406981 PMCID: PMC8583166 DOI: 10.1080/15476286.2020.1871217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/08/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022] Open
Abstract
The Gac-rsm pathway is a global regulatory network that governs mayor lifestyle and metabolic changes in gamma-proteobacteria. In a previous study, we uncovered the role of CsrA proteins promoting growth and repressing motility, alginate production and virulence in the model phytopathogen Pseudomonas syringae pv. tomato (Pto) DC3000. Here, we focus on the expression and regulation of the rsm regulatory sRNAs, since Pto DC3000 exceptionally has seven variants (rsmX1-5, rsmY and rsmZ). The presented results offer further insights into the functioning of the complex Gac-rsm pathway and the interplay among its components. Overall, rsm expressions reach maximum levels at high cell densities, are unaffected by surface detection, and require GacA for full expression. The rsm levels of expression and GacA-dependence are determined by the sequences found in their -35/-10 promoter regions and GacA binding boxes, respectively. rsmX5 stands out for being the only rsm in Pto DC3000 whose high expression does not require GacA, constituting the main component of the total rsm pool in a gacA mutant. The deletion of rsmY and rsmZ had minor effects on Pto DC3000 motility and virulence phenotypes, indicating that rsmX1-5 can functionally replace them. On the other hand, rsmY or rsmZ overexpression in a gacA mutant did not revert its phenotype. Additionally, a negative feedback regulatory loop in which the CsrA3 protein promotes its own titration by increasing the levels of several rsm RNAs in a GacA-dependent manner has been disclosed as part of this work.
Collapse
Affiliation(s)
- María-Dolores Ferreiro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Lara Vanessa Behrmann
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Ana Corral
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - Joaquina Nogales
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental Del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
3
|
Sengoda VG, Shi X, Krugner R, Backus EA, Lin H. Targeted Mutations in Xylella fastidiosa Affect Acquisition and Retention by the Glassy-Winged Sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:612-621. [PMID: 31903491 DOI: 10.1093/jee/toz352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Xylella fastidiosa (Wells) is a xylem-limited bacterium that causes Pierce's disease of grapevines. The bacterium is transmitted by insect vectors such as the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar). Experiments were conducted to compare the role of selected X. fastidiosa genes on 1) bacterial acquisition and retention in GWSS foreguts, and 2) transmission to grapevines by GWSS. Bacterial genotypes used were: mutants Xf-ΔpilG, Xf-ΔpilH, Xf-ΔgacA, and Xf-ΔpopP; plus wild type (WT) as control. Results showed that Xf-ΔpilG had enhanced colonization rate and larger numbers in GWSS compared with WT. Yet, Xf-ΔpilG exhibited the same transmission efficiency as WT. The Xf-ΔpilH exhibited poor acquisition and retention. Although initial adhesion, multiplication, and retention of Xf-ΔpilH in GWSS were almost eliminated compared with WT, the mutation did not reduce transmission success in grapevines. Overall, Xf-ΔgacA showed colonization rates and numbers in foreguts similar to WT. The Xf-ΔgacA mutation did not affect initial adhesion, multiplication, and long-term retention compared with WT, and was not significantly diminished in transmission efficiency. In contrast, numbers of Xf-ΔpopP were variable over time, displaying greatest fluctuation from highest to lowest levels. Thus, Xf-ΔpopP had a strong, negative effect on initial adhesion, but adhered and slowly multiplied in the foregut. Again, transmission was not diminished compared to WT. Despite reductions in acquisition and retention by GWSS, transmission efficiency of genotypes to grapevines was not affected. Therefore, in order to stop the spread of X. fastidiosa by GWSS using gene-level targets, complete disruption of bacterial colonization mechanisms is required.
Collapse
Affiliation(s)
- Venkatesan G Sengoda
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| | - Xiangyang Shi
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| | - Rodrigo Krugner
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| | - Elaine A Backus
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| | - Hong Lin
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA
| |
Collapse
|
4
|
Chen H, De La Fuente L. Calcium transcriptionally regulates movement, recombination and other functions of Xylella fastidiosa under constant flow inside microfluidic chambers. Microb Biotechnol 2019; 13:548-561. [PMID: 31729188 PMCID: PMC7017821 DOI: 10.1111/1751-7915.13512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
Xylella fastidiosa is a xylem‐limited bacterial pathogen causing devastating diseases in many economically important crops. Calcium (Ca) is a major inorganic nutrient in xylem sap that influences virulence‐related traits of this pathogen, including biofilm formation and twitching motility. This study aimed to adapt a microfluidic system, which mimics the natural habitat of X. fastidiosa, for whole transcriptome analysis under flow conditions. A microfluidic chamber with two parallel channels was used, and RNA isolated from cells grown inside the system was analysed by RNA‐Seq. Ca transcriptionally regulated the machinery of type IV pili and other genes related to pathogenicity and host adaptation. Results were compared to our previous RNA‐Seq study in biofilm cells in batch cultures (Parker et al., 2016, Environ Microbiol 18, 1620). Ca‐regulated genes in both studies belonged to similar functional categories, but the number and tendencies (up‐/downregulation) of regulated genes were different. Recombination‐related genes were upregulated by Ca, and we proved experimentally that 2 mM Ca enhances natural transformation frequency. Taken together, our results suggest that the regulatory role of Ca in X. fastidiosa acts differently during growth in flow or batch conditions, and this can correlate to the different phases of growth (planktonic and biofilm) during the infection process.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
5
|
Farias GA, Olmedilla A, Gallegos MT. Visualization and characterization of Pseudomonas syringae pv. tomato DC3000 pellicles. Microb Biotechnol 2019; 12:688-702. [PMID: 30838765 PMCID: PMC6559019 DOI: 10.1111/1751-7915.13385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/10/2023] Open
Abstract
Cellulose, whose production is controlled by c-di-GMP, is a commonly found exopolysaccharide in bacterial biofilms. Pseudomonas syringae pv. tomato (Pto) DC3000, a model organism for molecular studies of plant-pathogen interactions, carries the wssABCDEFGHI operon for the synthesis of acetylated cellulose. The high intracellular levels of the second messenger c-di-GMP induced by the overexpression of the heterologous diguanylate cyclase PleD stimulate cellulose production and enhance air-liquid biofilm (pellicle) formation. To characterize the mechanisms involved in Pto DC3000 pellicle formation, we studied this process using mutants lacking flagella, biosurfactant or different extracellular matrix components, and compared the pellicles produced in the absence and in the presence of PleD. We have discovered that neither alginate nor the biosurfactant syringafactin are needed for their formation, whereas cellulose and flagella are important but not essential. We have also observed that the high c-di-GMP levels conferred more cohesion to Pto cells within the pellicle and induced the formation of intracellular inclusion bodies and extracellular fibres and vesicles. Since the pellicles were very labile and this greatly hindered their handling and processing for microscopy, we have also developed new methods to collect and process them for scanning and transmission electron microscopy. These techniques open up new perspectives for the analysis of fragile biofilms in other bacterial strains.
Collapse
Affiliation(s)
- Gabriela A Farias
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain.,Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - Adela Olmedilla
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| | - María-Trinidad Gallegos
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ-CSIC), Granada, Spain
| |
Collapse
|
6
|
Rapicavoli J, Ingel B, Blanco‐Ulate B, Cantu D, Roper C. Xylella fastidiosa: an examination of a re-emerging plant pathogen. MOLECULAR PLANT PATHOLOGY 2018; 19:786-800. [PMID: 28742234 PMCID: PMC6637975 DOI: 10.1111/mpp.12585] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 05/10/2023]
Abstract
UNLABELLED Xylella fastidiosa is a Gram-negative bacterial plant pathogen with an extremely wide host range. This species has recently been resolved into subspecies that correlate with host specificity. This review focuses on the status of X. fastidiosa pathogenic associations in plant hosts in which the bacterium is either endemic or has been recently introduced. Plant diseases associated with X. fastidiosa have been documented for over a century, and much about what is known in the context of host-pathogen interactions is based on these hosts, such as grape and citrus, in which this pathogen has been well described. Recent attention has focused on newly emerging X. fastidiosa diseases, such as in olives. TAXONOMY Bacteria; Gammaproteobacteria; family Xanthomonadaceae; genus Xylella; species fastidiosa. MICROBIOLOGICAL PROPERTIES Gram-negative rod (0.25-0.35 × 0.9-3.5 μm), non-flagellate, motile via Type IV pili-mediated twitching, fastidious. HOST RANGE Xylella fastidiosa has a broad host range that includes ornamental, ecological and agricultural plants belonging to over 300 different species in 63 different families. To date, X. fastidiosa has been found to be pathogenic in over 100 plant species. In addition, it can establish non-symptomatic associations with many plants as a commensal endophyte. Here, we list the four distinct subspecies of X. fastidiosa and some of the agriculturally relevant diseases caused by them: X. fastidiosa ssp. fastidiosa causes Pierce's disease (PD) of grapevine (Vitis vinifera); X. fastidiosa ssp. multiplex causes almond leaf scorch (ALS) and diseases on other nut and shade tree crops; X. fastidiosa ssp. pauca causes citrus variegated chlorosis (CVC) (Citrus spp.), coffee leaf scorch and olive quick decline syndrome (OQDS) (Olea europaea); X. fastidiosa ssp. sandyi causes oleander leaf scorch (OLS) (Nerium oleander). Significant host specificity seemingly exists for some of the subspecies, although this could be a result of technical biases based on the limited number of plants tested, whereas some subspecies are not as stringent in their host range and can infect several plant hosts. DISEASE SYMPTOMS Most X. fastidiosa-related diseases appear as marginal leaf necrosis and scorching of the leaves. In the case of PD, X. fastidiosa can also cause desiccation of berries (termed 'raisining'), irregular periderm development and abnormal abscission of petioles. In olive trees affected with OQDS, leaves exhibit marginal necrosis and defoliation, and overall tree decline occurs. Plants with ALS and OLS also exhibit the characteristic leaf scorch symptoms. Not all X. fastidiosa-related diseases exhibit the typical leaf scorch symptoms. These include CVC and Phony Peach disease, amongst others. In the case of CVC, symptoms include foliar wilt and interveinal chlorosis on the upper surfaces of the leaves (similar to zinc deficiency), which correspond to necrotic, gum-like regions on the undersides of the leaves. Additional symptoms of CVC include defoliation, dieback and hardening of fruits. Plants infected with Phony Peach disease exhibit a denser, more compact canopy (as a result of shortened internodes, darker green leaves and delayed leaf senescence), premature bloom and reduced fruit size. Some occlusions occur in the xylem vessels, but there are no foliar wilting, chlorosis or necrosis symptoms . USEFUL WEBSITES: http://www.piercesdisease.org/; https://pubmlst.org/xfastidiosa/; http://www.xylella.lncc.br/; https://nature.berkeley.edu/xylella/; https://ec.europa.eu/food/plant/plant_health_biosecurity/legislation/emergency_measures/xylella-fastidiosa_en.
Collapse
Affiliation(s)
- Jeannette Rapicavoli
- Department of Plant Pathology and MicrobiologyUniversity of CaliforniaRiversideCA 92521USA
| | - Brian Ingel
- Department of Plant Pathology and MicrobiologyUniversity of CaliforniaRiversideCA 92521USA
| | | | - Dario Cantu
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCA 95616USA
| | - Caroline Roper
- Department of Plant Pathology and MicrobiologyUniversity of CaliforniaRiversideCA 92521USA
| |
Collapse
|
7
|
Hao L, Johnson K, Cursino L, Mowery P, Burr TJ. Characterization of the Xylella fastidiosa PD1311 gene mutant and its suppression of Pierce's disease on grapevines. MOLECULAR PLANT PATHOLOGY 2017; 18:684-694. [PMID: 27388152 PMCID: PMC6638296 DOI: 10.1111/mpp.12428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/17/2016] [Accepted: 05/13/2016] [Indexed: 05/25/2023]
Abstract
Xylella fastidiosa causes Pierce's disease (PD) on grapevines, leading to significant economic losses in grape and wine production. To further our understanding of X. fastidiosa virulence on grapevines, we examined the PD1311 gene, which encodes a putative acyl-coenzyme A (acyl-CoA) synthetase, and is highly conserved across Xylella species. It was determined that PD1311 is required for virulence, as the deletion mutant, ΔPD1311, was unable to cause disease on grapevines. The ΔPD1311 strain was impaired in behaviours known to be associated with PD development, including motility, aggregation and biofilm formation. ΔPD1311 also expressed enhanced sensitivity to H2 O2 and polymyxin B, and showed reduced survival in grapevine sap, when compared with wild-type X. fastidiosa Temecula 1 (TM1). Following inoculation, ΔPD1311 could not be detected in grape shoots, which may be related to its altered growth and sensitivity phenotypes. Inoculation with ΔPD1311 2 weeks prior to TM1 prevented the development of PD in a significant fraction of vines and eliminated detectable levels of TM1. In contrast, vines inoculated simultaneously with TM1 and ΔPD1311 developed disease at the same level as TM1 alone. In these vines, TM1 populations were distributed similarly to populations in TM1-only inoculated plants. These findings suggest that, through an indirect mechanism, pretreatment of vines with ΔPD1311 suppresses pathogen population and disease.
Collapse
Affiliation(s)
- Lingyun Hao
- Department of Plant Pathology and Plant–Microbe BiologyCornell University‐New York State Agricultural Experiment StationGenevaNY14456USA
| | - Kameka Johnson
- Department of Plant Pathology and Plant–Microbe BiologyCornell University‐New York State Agricultural Experiment StationGenevaNY14456USA
| | - Luciana Cursino
- Department of BiologyHobart and William Smith CollegesGenevaNY14456USA
- Present address:
Division of Natural SciencesKeuka CollegeKeuka ParkNY14478USA
| | - Patricia Mowery
- Department of BiologyHobart and William Smith CollegesGenevaNY14456USA
| | - Thomas J. Burr
- Department of Plant Pathology and Plant–Microbe BiologyCornell University‐New York State Agricultural Experiment StationGenevaNY14456USA
| |
Collapse
|
8
|
Hao L, Zaini PA, Hoch HC, Burr TJ, Mowery P. Grape Cultivar and Sap Culture Conditions Affect the Development of Xylella fastidiosa Phenotypes Associated with Pierce's Disease. PLoS One 2016; 11:e0160978. [PMID: 27508296 PMCID: PMC4980040 DOI: 10.1371/journal.pone.0160978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/27/2016] [Indexed: 11/19/2022] Open
Abstract
Xylella fastidiosa is a xylem-limited bacterium in plant hosts and causes Pierce's disease (PD) of grapevines, which differ in susceptibility according to the Vitis species (spp.). In this work we compared X. fastidiosa biofilm formation and population dynamics when cultured in xylem saps from PD-susceptible and -resistant Vitis spp. under different conditions. Behaviors in a closed-culture system were compared to those in different sap-renewal cultures that would more closely mimic the physicochemical environment encountered in planta. Significant differences in biofilm formation and growth in saps from PD-susceptible and -resistant spp. were only observed using sap renewal culture. Compared to saps from susceptible V. vinifera, those from PD-resistant V. aestivalis supported lower titers of X. fastidiosa and less biofilm and V. champinii suppressed both growth and biofilm formation, behaviors which are correlated with disease susceptibility. Furthermore, in microfluidic chambers X. fastidiosa formed thick mature biofilm with three-dimensional (3-D) structures, such as pillars and mounds, in saps from all susceptible spp. In contrast, only small aggregates of various shapes were formed in saps from four out of five of the resistant spp.; sap from the resistant spp. V. mustangensis was an exception in that it also supported thick lawns of biofilm but not the above described 3-D structures typically seen in a mature biofilm from the susceptible saps. Our findings provide not only critical technical information for future bioassays, but also suggest further understanding of PD susceptibility.
Collapse
Affiliation(s)
- Lingyun Hao
- Section of Plant Pathology and Plant-Microbe Biology, SIPS, Cornell University-New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Paulo A. Zaini
- Section of Plant Pathology and Plant-Microbe Biology, SIPS, Cornell University-New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Harvey C. Hoch
- Section of Plant Pathology and Plant-Microbe Biology, SIPS, Cornell University-New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Thomas J. Burr
- Section of Plant Pathology and Plant-Microbe Biology, SIPS, Cornell University-New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Patricia Mowery
- Department of Biology, Hobart and William Smith Colleges, Geneva, New York, United States of America
| |
Collapse
|
9
|
Nascimento R, Gouran H, Chakraborty S, Gillespie HW, Almeida-Souza HO, Tu A, Rao BJ, Feldstein PA, Bruening G, Goulart LR, Dandekar AM. The Type II Secreted Lipase/Esterase LesA is a Key Virulence Factor Required for Xylella fastidiosa Pathogenesis in Grapevines. Sci Rep 2016; 6:18598. [PMID: 26753904 PMCID: PMC4709584 DOI: 10.1038/srep18598] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/03/2015] [Indexed: 11/09/2022] Open
Abstract
Pierce's disease (PD) of grapevines is caused by Xylella fastidiosa (Xf), a xylem-limited gamma-proteobacterium that is responsible for several economically important crop diseases. The occlusion of xylem elements and interference with water transport by Xf and its associated biofilm have been posited as the main cause of PD symptom development; however, Xf virulence mechanisms have not been described. Analysis of the Xf secretome revealed a putative lipase/esterase (LesA) that was abundantly secreted in bacterial culture supernatant and was characterized as a protein ortholog of the cell wall-degrading enzyme LipA of Xanthomonas strains. LesA was secreted by Xf and associated with a biofilm filamentous network. Additional proteomic analysis revealed its abundant presence in outer membrane vesicles (OMVs). Accumulation of LesA in leaf regions associated positively with PD symptoms and inversely with bacterial titer. The lipase/esterase also elicited a hypersensitive response in grapevine. Xf lesA mutants were significantly deficient for virulence when mechanically inoculated into grapevines. We propose that Xf pathogenesis is caused by LesA secretion mediated by OMV cargos and that its release and accumulation in leaf margins leads to early stages of observed PD symptoms.
Collapse
Affiliation(s)
- Rafael Nascimento
- Plant Sciences Department, University of California, Davis, 1 Shields Ave, Davis CA, 95616, USA.
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902, Uberlândia MG, Brazil
| | - Hossein Gouran
- Plant Sciences Department, University of California, Davis, 1 Shields Ave, Davis CA, 95616, USA.
| | - Sandeep Chakraborty
- Plant Sciences Department, University of California, Davis, 1 Shields Ave, Davis CA, 95616, USA.
| | - Hyrum W. Gillespie
- Plant Sciences Department, University of California, Davis, 1 Shields Ave, Davis CA, 95616, USA.
| | - Hebréia O. Almeida-Souza
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902, Uberlândia MG, Brazil
| | - Aye Tu
- Plant Sciences Department, University of California, Davis, 1 Shields Ave, Davis CA, 95616, USA.
| | - Basuthkar J. Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | - Paul A. Feldstein
- Plant Pathology Department, University of California, Davis, 1 Shields Ave, Davis CA, 95616, USA.
| | - George Bruening
- Plant Pathology Department, University of California, Davis, 1 Shields Ave, Davis CA, 95616, USA.
| | - Luiz R. Goulart
- Medical Microbiology and Immunology Department, University of California, Davis, 1 Shields Ave, Davis CA, 95616, USA
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Av. Amazonas, Bloco 2E, Campus Umuarama, 38400-902, Uberlândia MG, Brazil
| | - Abhaya M. Dandekar
- Plant Sciences Department, University of California, Davis, 1 Shields Ave, Davis CA, 95616, USA.
| |
Collapse
|
10
|
Zhang S, Chakrabarty PK, Fleites LA, Rayside PA, Hopkins DL, Gabriel DW. Three New Pierce's Disease Pathogenicity Effectors Identified Using Xylella fastidiosa Biocontrol Strain EB92-1. PLoS One 2015; 10:e0133796. [PMID: 26218423 PMCID: PMC4517913 DOI: 10.1371/journal.pone.0133796] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023] Open
Abstract
Xylella fastidiosa (X. fastidiosa) infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703) and a serine protease (PD0956); two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928), and at least one relatively short, hemagglutinin-like protein (PD0986). Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3) overexpressing PD1703 exhibited a hypersensitive response (HR) in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot) and a PD0986 (hemagglutinin) were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry.
Collapse
Affiliation(s)
- Shujian Zhang
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Pranjib K. Chakrabarty
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Laura A. Fleites
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Patricia A. Rayside
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| | - Donald L. Hopkins
- Mid-Florida Research and Education Center, University of Florida, Apopka, Florida, United States of America
| | - Dean W. Gabriel
- Plant Pathology Department, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
11
|
Dourado MN, Santos DS, Nunes LR, Costa de Oliveira RLBD, de Oliveira MV, Araújo WL. Differential gene expression in Xylella fastidiosa 9a5c during co-cultivation with the endophytic bacterium Methylobacterium mesophilicum SR1.6/6. J Basic Microbiol 2015. [PMID: 26218710 DOI: 10.1002/jobm.201400916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC), colonizes plant xylem, reducing sap flow, and inducing internerval chlorosis, leaf size reduction, necrosis, and harder and smaller fruits. This bacterium may be transmitted from plant to plant by sharpshooter insects, including Bucephalogonia xanthopis. The citrus endophytic bacterium Methylobacterium mesophilicum SR1.6/6 colonizes citrus xylem and previous studies showed that this strain is also transferred from plant to plant by B. xanthopis (Insecta), suggesting that this endophytic bacterium may interact with X. fastidiosa in planta and inside the insect vector during co-transmission by the same insect vector. To better understand the X. fastidiosa behavior in the presence of M. mesophilicum, we evaluated the X. fastidiosa transcriptional profile during in vitro interaction with M. mesophilicum SR1.6/6. The results showed that during co-cultivation, X. fastidiosa down-regulated genes related to growth and up-regulated genes related to energy production, stress, transport, and motility, suggesting the existence of a specific adaptive response to the presence of M. mesophilicum in the culture medium.
Collapse
Affiliation(s)
| | - Daiene Souza Santos
- Núcleo Integrado de Biotecnologia, NIB, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - Luiz Roberto Nunes
- Núcleo Integrado de Biotecnologia, NIB, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil.,Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | | | | | - Welington Luiz Araújo
- Núcleo Integrado de Biotecnologia, NIB, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil.,Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374-Ed. Biomédicas II, Cidade Universitária, São Paulo, 05508-900, SP, Brazil
| |
Collapse
|
12
|
Johnson KL, Cursino L, Athinuwat D, Burr TJ, Mowery P. Potential complications when developing gene deletion clones in Xylella fastidiosa. BMC Res Notes 2015; 8:155. [PMID: 25880211 PMCID: PMC4403849 DOI: 10.1186/s13104-015-1117-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background The Gram-negative xylem-limited bacterium, Xylella fastidiosa, is an important plant pathogen that infects a number of high value crops. The Temecula 1 strain infects grapevines and induces Pierce′s disease, which causes symptoms such as scorching on leaves, cluster collapse, and eventual plant death. In order to understand the pathogenesis of X. fastidiosa, researchers routinely perform gene deletion studies and select mutants via antibiotic markers. Methods Site-directed pilJ mutant of X. fastidiosa were generated and selected on antibiotic media. Mutant cultures were assessed by PCR to determine if they were composed of purely transformant cells or included mixtures of non-transformants cells. Then pure pilJ mutant and wildtype cells were mixed in PD2 medium and following incubation and exposure to kanamycin were assessed by PCR for presence of mutant and wildtype populations. Results We have discovered that when creating clones of targeted mutants of X. fastidiosa Temecula 1 with selection on antibiotic plates, X. fastidiosa lacking the gene deletion often persist in association with targeted mutant cells. We believe this phenomenon is due to spontaneous antibiotic resistance and/or X. fastidiosa characteristically forming aggregates that can be comprised of transformed and non-transformed cells. A combined population was confirmed by PCR, which showed that targeted mutant clones were mixed with non-transformed cells. After repeated transfer and storage the non-transformed cells became the dominant clone present. Conclusions We have discovered that special precautions are warranted when developing a targeted gene mutation in X. fastidiosa because colonies that arise following transformation and selection are often comprised of transformed and non-transformed cells. Following transfer and storage the cells can consist primarily of the non-transformed strain. As a result, careful monitoring of targeted mutant strains must be performed to avoid mixed populations and confounding results.
Collapse
Affiliation(s)
- Kameka L Johnson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.
| | - Luciana Cursino
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA.
| | - Dusit Athinuwat
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University New York State Agricultural Experiment Station, Geneva, NY, 14456, USA. .,Current address: Major of Organic Farming Management, Faculty of Science and Technology, Thammasat University, Pathum Thani, Thailand.
| | - Thomas J Burr
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University New York State Agricultural Experiment Station, Geneva, NY, 14456, USA.
| | - Patricia Mowery
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA.
| |
Collapse
|
13
|
Cursino L, Athinuwat D, Patel KR, Galvani CD, Zaini PA, Li Y, De La Fuente L, Hoch HC, Burr TJ, Mowery P. Characterization of the Xylella fastidiosa PD1671 gene encoding degenerate c-di-GMP GGDEF/EAL domains, and its role in the development of Pierce's disease. PLoS One 2015; 10:e0121851. [PMID: 25811864 PMCID: PMC4374697 DOI: 10.1371/journal.pone.0121851] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/16/2015] [Indexed: 01/09/2023] Open
Abstract
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce's disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence.
Collapse
Affiliation(s)
- Luciana Cursino
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Dusit Athinuwat
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Kelly R. Patel
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Cheryl D. Galvani
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
| | - Paulo A. Zaini
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Yaxin Li
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Leonardo De La Fuente
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Harvey C. Hoch
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Thomas J. Burr
- Department of Plant Pathology and Plant Microbe Biology, Cornell University, New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Patricia Mowery
- Department of Biology, Hobart and William Smith Colleges Geneva, New York, United States of America
- * E-mail:
| |
Collapse
|
14
|
de Souza AA, Ionescu M, Baccari C, da Silva AM, Lindow SE. Phenotype overlap in Xylella fastidiosa is controlled by the cyclic di-GMP phosphodiesterase Eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling. Appl Environ Microbiol 2013; 79:3444-54. [PMID: 23542613 PMCID: PMC3648042 DOI: 10.1128/aem.03834-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/21/2013] [Indexed: 11/20/2022] Open
Abstract
Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3'-5')-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates.
Collapse
Affiliation(s)
- Alessandra A de Souza
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
ABSTRACT Xylella fastidiosa regulates traits important to both virulence of grape as well as colonization of sharpshooter vectors via its production of a fatty acid signal molecule known as DSF whose production is dependent on rpfF. Although X. fastidiosa rpfF mutants exhibit increased virulence to plants, they are unable to be spread from plant to plant by insect vectors. To gain more insight into the traits that contribute to these processes, a whole-genome Agilent DNA microarray for this species was developed and used to determine the RpfF-dependent regulon by transcriptional profiling. In total, 446 protein coding genes whose expression was significantly different between the wild type and an rpfF mutant (false discovery rate < 0.05) were identified when cells were grown in PW liquid medium. Among them, 165 genes were downregulated in the rpfF mutant compared with the wild-type strain whereas 281 genes were over-expressed. RpfF function was required for regulation of 11 regulatory and σ factors, including rpfE, yybA, PD1177, glnB, rpfG, PD0954, PD0199, PD2050, colR, rpoH, and rpoD. In general, RpfF is required for regulation of genes involved in attachment and biofilm formation, enhancing expression of hemagglutinin genes hxfA and hxfB, and suppressing most type IV pili and gum genes. A large number of other RpfF-dependent genes that might contribute to virulence or insect colonization were also identified such as those encoding hemolysin and colicin V, as well as genes with unknown functions.
Collapse
Affiliation(s)
- Nian Wang
- Department of Plant and Microbial Biology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
16
|
Kong HS, Roberts DP, Patterson CD, Kuehne SA, Heeb S, Lakshman DK, Lydon J. Effect of overexpressing rsmA from Pseudomonas aeruginosa on virulence of select phytotoxin-producing strains of P. syringae. PHYTOPATHOLOGY 2012; 102:575-587. [PMID: 22568815 DOI: 10.1094/phyto-09-11-0267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The GacS/GacA two-component system functions mechanistically in conjunction with global post-transcriptional regulators of the RsmA family to allow pseudomonads and other bacteria to adapt to changing environmental stimuli. Analysis of this Gac/Rsm signal transduction pathway in phytotoxin-producing pathovars of Pseudmonas syringae is incomplete, particularly with regard to rsmA. Our approach in studying it was to overexpress rsmA in P. syringae strains through introduction of pSK61, a plasmid constitutively expressing this gene. Disease and colonization of plant leaf tissue were consistently diminished in all P. syringae strains tested (pv. phaseolicola NPS3121, pv. syringae B728a, and BR2R) when harboring pSK61 relative to these isolates harboring the empty vector pME6031. Phaseolotoxin, syringomycin, and tabtoxin were not produced in any of these strains when transformed with pSK61. Production of protease and pyoverdin as well as swarming were also diminished in all of these strains when harboring pSK61. In contrast, alginate production, biofilm formation, and the hypersensitive response were diminished in some but not all of these isolates under the same growth conditions. These results indicate that rsmA is consistently important in the overarching phenotypes disease and endophtyic colonization but that its role varies with pathovar in certain underpinning phenotypes in the phytotoxin-producing strains of P. syringae.
Collapse
Affiliation(s)
- Hye Suk Kong
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Burdman S, Bahar O, Parker JK, De La Fuente L. Involvement of Type IV Pili in Pathogenicity of Plant Pathogenic Bacteria. Genes (Basel) 2011; 2:706-35. [PMID: 24710288 PMCID: PMC3927602 DOI: 10.3390/genes2040706] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 01/03/2023] Open
Abstract
Type IV pili (T4P) are hair-like appendages found on the surface of a wide range of bacteria belonging to the β-, γ-, and δ-Proteobacteria, Cyanobacteria and Firmicutes. They constitute an efficient device for a particular type of bacterial surface motility, named twitching, and are involved in several other bacterial activities and functions, including surface adherence, colonization, biofilm formation, genetic material uptake and virulence. Tens of genes are involved in T4P synthesis and regulation, with the majority of them being generally named pil/fim genes. Despite the multiple functionality of T4P and their well-established role in pathogenicity of animal pathogenic bacteria, relatively little attention has been given to the role of T4P in plant pathogenic bacteria. Only in recent years studies have begun to examine with more attention the relevance of these surface appendages for virulence of plant bacterial pathogens. The aim of this review is to summarize the current knowledge about T4P genetic machinery and its role in the interactions between phytopathogenic bacteria and their plant hosts.
Collapse
Affiliation(s)
- Saul Burdman
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Ofir Bahar
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
18
|
Cursino L, Galvani CD, Athinuwat D, Zaini PA, Li Y, De La Fuente L, Hoch HC, Burr TJ, Mowery P. Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1198-1206. [PMID: 21692637 DOI: 10.1094/mpmi-10-10-0252] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.
Collapse
Affiliation(s)
- Luciana Cursino
- Department of Plant Pathology and Palnt-Microbe Biology, Cornell University -- New York State Agricultural Experimental Station, Geneva, NY 14456, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Binnenkade L, Lassak J, Thormann KM. Analysis of the BarA/UvrY two-component system in Shewanella oneidensis MR-1. PLoS One 2011; 6:e23440. [PMID: 21931597 PMCID: PMC3171408 DOI: 10.1371/journal.pone.0023440] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/18/2011] [Indexed: 11/18/2022] Open
Abstract
The BarA/UvrY two-component system is well conserved in species of the γ-proteobacteria and regulates numerous processes predominantly by controlling the expression of a subset of noncoding small RNAs. In this study, we identified and characterized the BarA/UvrY two-component system in the gammaproteobacterium Shewanella oneidensis MR-1. Functional interaction of sensor kinase BarA and the cognate response regulator UvrY was indicated by in vitro phosphotransfer studies. The expression of two predicted small regulatory RNAs (sRNAs), CsrB1 and CsrB2, was dependent on UvrY. Transcriptomic analysis by microarrays revealed that UvrY is a global regulator and directly or indirectly affects transcript levels of more than 200 genes in S. oneidensis. Among these are genes encoding key enzymes of central carbon metabolism such as ackA, aceAB, and pflAB. As predicted of a signal transduction pathway that controls aspects of central metabolism, mutants lacking UvrY reach a significantly higher OD than the wild type during aerobic growth on N-acetylglucosamine (NAG) while under anaerobic conditions the mutant grew more slowly. A shorter lag phase occurred with lactate as carbon source. In contrast, significant growth phenotypes were absent in complex medium. Based on these studies we hypothesize that, in S. oneidensis MR-1, the global BarA/UvrY/Csr regulatory pathway is involved in central carbon metabolism processes.
Collapse
Affiliation(s)
- Lucas Binnenkade
- Department of Ecophysiology, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| | - Jürgen Lassak
- Department of Ecophysiology, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
| | - Kai M. Thormann
- Department of Ecophysiology, Max-Planck-Institut für Terrestrische Mikrobiologie, Marburg, Germany
- * E-mail:
| |
Collapse
|
20
|
Choi HK, Goes da Silva F, Lim HJ, Iandolino A, Seo YS, Lee SW, Cook DR. Diagnosis of Pierce's disease using biomarkers specific to Xylella fastidiosa rRNA and Vitis vinifera gene expression. PHYTOPATHOLOGY 2010; 100:1089-99. [PMID: 20839944 DOI: 10.1094/phyto-01-10-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pierce's disease (PD), caused by Xylella fastidiosa, represents one of the most damaging diseases of cultivated grape. Management of PD in the vineyard often relies on the removal of infected individuals, which otherwise serve as a source of inoculum for nearby healthy vines. Effective implementation of such control measures requires early diagnosis, which is complicated by the fact that infected vines often harbor high titers of the pathogen in advance of visual symptom development. Here, we report a biomarker system that simultaneously monitors Xylella-induced plant transcripts as well as Xylella ribosomal (r)RNA. Plant biomarker genes were derived from a combination of in silico analysis of grape expressed sequence tags and validation by means of reverse-transcriptase polymerase chain reaction (RT-PCR). Four genes upregulated upon PD infection were individually multiplexed with an X. fastidiosa marker rRNA and scored using either real-time RT-PCR or gel-based conventional RT-PCR techniques. The system was sufficiently sensitive to detect both host gene transcript and pathogen rRNA in asymptomatic infected plants. Moreover, these plant biomarker genes were not induced by water deficit, which is a component of PD development. Such biomarker genes could have utility for disease control by aiding early detection and as a screening tool in breeding programs.
Collapse
Affiliation(s)
- H-K Choi
- Department of Genetic Engineering, Dong-A University, Busan, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
21
|
Caserta R, Takita MA, Targon ML, Rosselli-Murai LK, de Souza AP, Peroni L, Stach-Machado DR, Andrade A, Labate CA, Kitajima EW, Machado MA, de Souza AA. Expression of Xylella fastidiosa fimbrial and afimbrial proteins during biofilm formation. Appl Environ Microbiol 2010; 76:4250-9. [PMID: 20472735 PMCID: PMC2897468 DOI: 10.1128/aem.02114-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 05/04/2010] [Indexed: 11/20/2022] Open
Abstract
Complete sequencing of the Xylella fastidiosa genome revealed characteristics that have not been described previously for a phytopathogen. One characteristic of this genome was the abundance of genes encoding proteins with adhesion functions related to biofilm formation, an essential step for colonization of a plant host or an insect vector. We examined four of the proteins belonging to this class encoded by genes in the genome of X. fastidiosa: the PilA2 and PilC fimbrial proteins, which are components of the type IV pili, and XadA1 and XadA2, which are afimbrial adhesins. Polyclonal antibodies were raised against these four proteins, and their behavior during biofilm development was assessed by Western blotting and immunofluorescence assays. In addition, immunogold electron microscopy was used to detect these proteins in bacteria present in xylem vessels of three different hosts (citrus, periwinkle, and hibiscus). We verified that these proteins are present in X. fastidiosa biofilms but have differential regulation since the amounts varied temporally during biofilm formation, as well as spatially within the biofilms. The proteins were also detected in bacteria colonizing the xylem vessels of infected plants.
Collapse
Affiliation(s)
- R. Caserta
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - M. A. Takita
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - M. L. Targon
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - L. K. Rosselli-Murai
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - A. P. de Souza
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - L. Peroni
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - D. R. Stach-Machado
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - A. Andrade
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - C. A. Labate
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - E. W. Kitajima
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - M. A. Machado
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| | - A. A. de Souza
- Centro APTA Citros Sylvio Moreira/IAC, Rodovia Anhanguera Km 158, Cordeirópolis SP, Brazil 13490-970, Universidade Estadual de Campinas/UNICAMP, Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, P.O. Box 6010, Campinas SP, Brazil 13083-970, Universidade Estadual de Campinas/UNICAMP, Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Imunologia, Rua Monteiro Lobato s/n, Campinas SP, Brazil 13083-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, P.O. Box 83, Piracicaba SP, Brazil 13400-970, Escola Superior de Agricultura “Luiz de Queiroz”/USP, Núcleo de Apoio à Pesquisa em Microscopia Eletrônica Aplicada à Pesquisa Agropecuária (NAP/MEPA), Piracicaba SP, Brazil 13418-900
| |
Collapse
|
22
|
Soto-Suárez M, Bernal D, González C, Szurek B, Guyot R, Tohme J, Verdier V. In planta gene expression analysis of Xanthomonas oryzae pathovar oryzae, African strain MAI1. BMC Microbiol 2010; 10:170. [PMID: 20540733 PMCID: PMC2893596 DOI: 10.1186/1471-2180-10-170] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 06/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial leaf blight causes significant yield losses in rice crops throughout Asia and Africa. Although both the Asian and African strains of the pathogen, Xanthomonas oryzae pv. oryzae (Xoo), induce similar symptoms, they are nevertheless genetically different, with the African strains being more closely related to the Asian X. oryzae pv. oryzicola (Xoc). RESULTS Changes in gene expression of the African Xoo strain MAI1 in the susceptible rice cultivar Nipponbare were profiled, using an SSH Xoo DNA microarray. Microarray hybridization was performed comparing bacteria recovered from plant tissues at 1, 3, and 6 days after inoculation (dai) with bacteria grown in vitro. A total of 710 bacterial genes were found to be differentially expressed, with 407 up-regulated and 303 down-regulated. Expression profiling indicated that less than 20% of the 710 bacterial transcripts were induced in the first 24 h after inoculation, whereas 63% were differentially expressed at 6 dai. The 710 differentially expressed genes were one-end sequenced. 535 sequences were obtained from which 147 non-redundant sequences were identified. Differentially expressed genes were related to metabolism, secretion and transport, pathogen adherence to plant tissues, plant cell-wall degradation, IS elements, and virulence. In addition, various other genes encoding proteins with unknown function or showing no similarity to other proteins were also induced. The Xoo MAI1 non-redundant set of sequences was compared against several X. oryzae genomes, revealing a specific group of genes that was present only in MAI1. Numerous IS elements were also found to be differentially expressed. Quantitative real-time PCR confirmed 86% of the identified profile on a set of 14 genes selected according to the microarray analysis. CONCLUSIONS This is the first report to compare the expression of Xoo genes in planta across different time points during infection. This work shows that as-yet-unidentified and potentially new virulence factors are appearing in an emerging African pathogen. It also confirms that African Xoo strains do differ from their Asian counterparts, even at the transcriptional level.
Collapse
Affiliation(s)
- Mauricio Soto-Suárez
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Institut de Recherche pour le Développement, 911 Avenue Agropolis BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|