1
|
Grimm K, Fiedler A, Kröger C. Investigation on the effectiveness of a new hoof care product to sustainably reduce and prevent digital dermatitis in dairy cow herds. J Dairy Sci 2025; 108:1869-1881. [PMID: 39477063 DOI: 10.3168/jds.2024-25134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/08/2024] [Indexed: 01/25/2025]
Abstract
The regular application of hoof care and cleaning products is an important part of protocols designed to reduce burden of disease caused by the ubiquitous and multifactorial hoof disease digital dermatitis (DD) in dairy cows. Commonly used hoof care products such as formalin or copper sulfate applied through foot baths or by spraying hindfeet are often irritant to the skin as well as harmful to the environment or human health, and scientifically proven evidence of their efficacy is scarce. Thus, in a clinical controlled trial, we investigated whether the use of a hoof care product based on a mix of iron complex salts, zinc salts, and aluminum designed to reduce bacterial load on the skin and to support the natural skin barrier, was able to sustainably reduce disease severity and prevent new cases in 132 cows in 2 dairy herds (n1 = 72, n2 = 60) in Germany. From Dec 2021 to Dec 2022 only one predefined hind foot of every cow was washed and sprayed with the product twice a week (treatment group), the other hind foot was only washed (control group). Heifers joining the herd were sprayed for at least 4 wk beforehand according to the same treatment and control regimen. During the trial, hooves were numerically scored for DD lesions on a monthly basis using a disease severity score (A): from 0 = no lesion, up to 60 = ulcerative lesion ≥2.5 cm and categorically with 3 categories (B): none, nonactive, and active. Results A: Mean area under the curve of the numerical score that summarizes development over time was substantially and significantly smaller in the treatment group. Results B: Two-step regression analysis for the outcome category at evaluation day (with exclusion of the first baseline evaluation) showed that during the trial, compared with the treatment group, odds of having a lesion rather than none was 4 times higher in the control group and the odds of having an active lesion compared with an inactive one were almost 6 times higher in the control group. Additionally, spraying had a significant preventive effect for the feet of heifers (n = 17) introduced to the herd during the trial on farm 1: Only one active lesion occurred in the treatment group with numerous active lesions observed in the control group and mean area under the curve of the numerical score over time was significantly lower in the treatment group, too. No active lesions occurred in the heifers of farm 2 (n = 12) in either of the study groups. The iron, zinc, and aluminum-based product effectively reduced disease prevalence and disease severity during the 1-yr study period in the examined dairy herds, and data from heifers suggest that the application of the product to heifers 4 wk before entering a herd with controlled DD management measures has high potential for prevention of the disease.
Collapse
Affiliation(s)
- K Grimm
- Hoof Health Associates (Praxisgemeinschaft für Klauengesundheit) Dres. med. vet. Fiedler, Grimm & Kröger, 80999 Munich, Germany.
| | - A Fiedler
- Hoof Health Associates (Praxisgemeinschaft für Klauengesundheit) Dres. med. vet. Fiedler, Grimm & Kröger, 80999 Munich, Germany
| | - C Kröger
- Hoof Health Associates (Praxisgemeinschaft für Klauengesundheit) Dres. med. vet. Fiedler, Grimm & Kröger, 80999 Munich, Germany
| |
Collapse
|
2
|
Production of indole and hydrogen sulfide by the oxygen-tolerant mutant strain Clostridium sp. Aeroto-AUH-JLC108 contributes to form a hypoxic microenvironment. Arch Microbiol 2022; 204:486. [PMID: 35834134 DOI: 10.1007/s00203-022-03113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
In this study, the oxygen-tolerant mutant strain Clostridium sp. Aeroto-AUH-JLC108 was found to produce indole when grown aerobically. The tnaA gene coding for tryptophanase responsible for the production of indole was cloned. The tnaA gene from Aeroto-AUH-JLC108 is 1677 bp and has one point mutation (C36G) compared to the original anaerobic strain AUH-JLC108. Phylogenetic analyses based on the amino acid sequence showed significant homology to that of TnaA from Flavonifractor. Furthermore, we found that the tnaA gene also exhibited cysteine desulfhydrase activity. The production of hydrogen sulfide (H2S) was accompanied by decrease in the amount of the dissolved oxygen in the culture medium. Similarly, the amount of indole produced by strain Aeroto-AUH-JLC108 obviously decreased the oxidation-reduction potential (ORP) in BHI liquid medium. The results demonstrated that production of indole and H2S helped to form a hypoxic microenvironment for strain Aeroto-AUH-JLC108 when grown aerobically.
Collapse
|
3
|
Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 2000 2021; 87:76-93. [PMID: 34463982 PMCID: PMC8415008 DOI: 10.1111/prd.12388] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oral microbiome is a community of microorganisms, comprised of bacteria, fungi, viruses, archaea, and protozoa, that form a complex ecosystem within the oral cavity. Although minor perturbations in the environment are frequent and compensable, major shifts in the oral microbiome can promote an unbalanced state, known as dysbiosis. Dysbiosis can promote oral diseases, including periodontitis. In addition, oral dysbiosis has been associated with other systemic diseases, including cancer. The objective of this review is to evaluate the epidemiologic evidence linking periodontitis to oral, gastrointestinal, lung, breast, prostate, and uterine cancers, as well as describe new evidence and insights into the role of oral dysbiosis in the etiology and pathogenesis of the cancer types discussed. Finally, we discuss how antimicrobials, antimicrobial peptides, and probiotics may be promising tools to prevent and treat these cancers, targeting both the microbes and associated carcinogenesis processes. These findings represent a novel paradigm in the pathogenesis and treatment of cancer focused on the oral microbiome and antimicrobial‐based therapies.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Belkacemi S, Tidjani Alou M, Khelaifia S, Raoult D. A review of in vitro attempts to develop the axenic culture of Treponema pallidum and genomics-based suggestions to achieve this elusive goal. J Med Microbiol 2021; 70. [PMID: 34328411 DOI: 10.1099/jmm.0.001388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To date, the axenic culture of Treponema pallidum remains a challenge in the field of microbiology despite countless attempts. Here, we conducted a comprehensive bibliographic analysis using several databases and search engines, namely Pubmed, Google scholar, Google, Web of Science and Scopus. Numerous unsuccessful empiric studies have been conducted and evaluated using as criteria dark-field microscopic observation of motile spiral shaped cells in the culture and virulence of the culture through rabbit infectivity. All of these studies failed to induce rabbit infectivity, even when deemed positive after microscopic observation leading to the misnomer of avirulent T. pallidum. In fact, this criterion was improperly chosen because not all spiral shaped cells are T. pallidum. However, these studies led to the formulation of culture media particularly favourable to the growth of several species of Treponema, including Oral Microbiology and Immunology, Zürich medium (OMIZ), Oral Treponeme Enrichment Broth (OTEB) and T-Raoult, thus allowing the increase in the number of cultivable strains of Treponema. The predicted metabolic capacities of T. pallidum show limited metabolism, also exhibited by other non-cultured and pathogenic Treponema species, in contrast to cultured Treponema species. The advent of next generation sequencing represents a turning point in this field, as the knowledge inferred from the genome can finally lead to the axenic culture of T. pallidum.
Collapse
Affiliation(s)
- Souad Belkacemi
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection 19-21 Boulevard Jean Moulin 13005, Marseille, France
| | - Maryam Tidjani Alou
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection 19-21 Boulevard Jean Moulin 13005, Marseille, France
| | - Saber Khelaifia
- Institut Hospitalo-Universitaire Méditerranée Infection 19-21 Boulevard Jean Moulin 13005, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection 19-21 Boulevard Jean Moulin 13005, Marseille, France
| |
Collapse
|
5
|
State of the Art in the Culture of the Human Microbiota: New Interests and Strategies. Clin Microbiol Rev 2020; 34:34/1/e00129-19. [PMID: 33115723 DOI: 10.1128/cmr.00129-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The last 5 years have seen a turning point in the study of the gut microbiota with a rebirth of culture-dependent approaches to study the gut microbiota. High-throughput methods have been developed to study bacterial diversity with culture conditions aimed at mimicking the gut environment by using rich media such as YCFA (yeast extract, casein hydrolysate, fatty acids) and Gifu anaerobic medium in an anaerobic workstation, as well as media enriched with rumen and blood and coculture, to mimic the symbiosis of the gut microbiota. Other culture conditions target phenotypic and metabolic features of bacterial species to facilitate their isolation. Preexisting technologies such as next-generation sequencing and flow cytometry have also been utilized to develop innovative methods to isolate previously uncultured bacteria or explore viability in samples of interest. These techniques have been applied to isolate CPR (Candidate Phyla Radiation) among other, more classic approaches. Methanogenic archaeal and fungal cultures present different challenges than bacterial cultures. Efforts to improve the available systems to grow archaea have been successful through coculture systems. For fungi that are more easily isolated from the human microbiota, the challenge resides in the identification of the isolates, which has been approached by applying matrix-assisted laser desorption ionization-time of flight mass spectrometry technology to fungi. Bacteriotherapy represents a nonnegligible avenue in the future of medicine to correct dysbiosis and improve health or response to therapy. Although great strides have been achieved in the last 5 years, efforts in bacterial culture need to be sustained to continue deciphering the dark matter of metagenomics, particularly CPR, and extend these methods to archaea and fungi.
Collapse
|
6
|
Radaic A, Ye C, Parks B, Gao L, Kuraji R, Malone E, Kamarajan P, Zhan L, Kapila YL. Modulation of pathogenic oral biofilms towards health with nisin probiotic. J Oral Microbiol 2020; 12:1809302. [PMID: 32944159 PMCID: PMC7482728 DOI: 10.1080/20002297.2020.1809302] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Oral dysbiosis is an imbalance in the oral microbiome and is associated with a variety of oral and systemic diseases, including periodontal disease, caries, and head and neck/oral cancer. Although antibiotics can be used to control this dysbiosis, they can lead to adverse side effects and superinfections. Thus, novel strategies have been proposed to address these shortcomings. One strategy is the use of probiotics as antimicrobial agents, since they are considered safe for humans and the environment. Specifically, the Gram-positive Lactococcus lactis, a species present in the oral and gut microbiota, is able to produce nisin, which has been used worldwide for food preservation. Objective The objective of this study was to test whether a nisin probiotic can promote a healthier oral microbiome in pathogen-spiked oral biofilms. Results We found that L. lactis can prevent oral biofilm formation and disrupt 24-h and 48-h pre-formed biofilms. Finally, we demonstrate that both treatments, a nisin-producing L. lactis probiotic and nisin can decrease the levels of pathogens in the biofilms and return the diversity levels back to control or ‘healthy’ levels. Conclusion A nisin-producing probiotic, can be used to treat ‘disease-altered’ biofilms and promote healthier oral biofilms, which may be useful for improving patient oral health.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Changchang Ye
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Brett Parks
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Li Gao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.,Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ryutaro Kuraji
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.,Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Erin Malone
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Ling Zhan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Phillips L, Chu L, Kolodrubetz D. Multiple enzymes can make hydrogen sulfide from cysteine in Treponema denticola. Anaerobe 2020; 64:102231. [PMID: 32603680 PMCID: PMC7484134 DOI: 10.1016/j.anaerobe.2020.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Treponema denticola is a spirochete that is involved in causing periodontal diseases. This bacterium can produce H2S from thiol compounds found in the gingival crevicular fluid. Determining how H2S is made by oral bacteria is important since this molecule is present at high levels in periodontally-diseased pockets and the biological effects of H2S can explain some of the pathologies seen in periodontitis. Thus, it is of interest to identify the enzyme, or enzymes, involved in the synthesis of H2S by T. denticola. We, and others, have previously identified and characterized a T. denticola cystalysin, called HlyA, which hydrolyzes cysteine into H2S (and pyruvate and ammonia). However, there have been no studies to show that HlyA is, or is not, the only pathway that T. denticola can use to make H2S. To address this question, allelic replacement mutagenesis was used to make a deletion mutant (ΔhlyA) in the gene encoding HlyA. The mutant produces the same amount of H2S from cysteine as do wild type spirochetes, indicating that T. denticola has at least one other enzyme that can generate H2S from cysteine. To identify candidates for this other enzyme, a BLASTp search of T. denticola strain 33520 was done. There was one gene that encoded an HlyA homolog so we named it HlyB. Recombinant His-tagged HlyB was expressed in E. coli and partially purified. This enzyme was able to make H2S from cysteine in vitro. To test the role of HlyB in vivo, an HlyB deletion mutant (ΔhlyB) was constructed in T. denticola. This mutant still made normal levels of H2S from cysteine, but a strain mutated in both hly genes (ΔhlyA ΔhlyB) synthesizes significantly less H2S from cysteine. We conclude that the HlyA and HlyB enzymes perform redundant functions in vivo and are the major contributors to H2S production in T. denticola. However, at least one other enzyme can still convert cysteine to H2S in the ΔhlyA ΔhlyB mutant. An in silico analysis that identifies candidate genes for this other enzyme is presented.
Collapse
Affiliation(s)
- Linda Phillips
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Lianrui Chu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - David Kolodrubetz
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
8
|
Chathoth K, Martin B, Cornelis P, Yvenou S, Bonnaure-Mallet M, Baysse C. The events that may contribute to subgingival dysbiosis: a focus on the interplay between iron, sulfide and oxygen. FEMS Microbiol Lett 2020; 367:5860280. [DOI: 10.1093/femsle/fnaa100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
This minireview considers the disruption of the host–microbiota harmless symbiosis in the subgingival niche. The establishment of a chronic infection by subversion of a commensal microbiota results from a complex and multiparametric sequence of events. This review narrows down to the interplay between oxygen, iron and sulfide that can result in a vicious cycle that would favor peroxygenic and glutathione producing streptococci as well as sulfidogenic anaerobic pathogens in the subgingival niche. We propose hypothesis and discuss strategies for the therapeutic modulation of the microbiota to prevent periodontitis and promote oral health.
Collapse
Affiliation(s)
- Kanchana Chathoth
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Bénédicte Martin
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Laboratory of Microbiology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, F-27000 Évreux, France
| | - Stéven Yvenou
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Martine Bonnaure-Mallet
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
- CHU Pontchaillou Rennes, 35000 Rennes, France
| | - Christine Baysse
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| |
Collapse
|
9
|
Chu L, Wu Y, Xu X, Phillips L, Kolodrubetz D. Glutathione catabolism by Treponema denticola impacts its pathogenic potential. Anaerobe 2020; 62:102170. [PMID: 32044394 PMCID: PMC7153967 DOI: 10.1016/j.anaerobe.2020.102170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 12/28/2022]
Abstract
Treponema denticola is a spirochete that is etiologic for periodontal diseases. This bacterium is one of two periodontal pathogens that have been shown to have a complete three step enzymatic pathway (GTSP) that catabolizes glutathione to H2S. This pathway may contribute to the tissue pathology seen in periodontitis since diseased periodontal pockets have lower glutathione levels than healthy sites with a concomitant increase in H2S concentration. In order to be able to demonstrate that glutathione catabolism by the GTSP is critical for the pathogenic potential of T. denticola, allelic replacement mutagenesis was used to make a deletion mutant (Δggt) in the gene encoding the first enzyme in the GTSP. The mutant cannot produce H2S from glutathione since it lacks gamma-glutamyltransferase (GGT) activity. The hemolytic and hemoxidation activities of wild type T. denticola plus glutathione are reduced to background levels with the Δggt mutant and the mutant has lost the ability to grow aerobically when incubated with glutathione. The Δggt bacteria with glutathione cause less cell death in human gingival fibroblasts (hGFs) in vitro than do wild type T. denticola and the levels of hGF death correlate with the amounts of H2S produced. Importantly, the mutant spirochetes plus glutathione make significantly smaller lesions than wild type bacteria plus glutathione in a mouse back lesion model that assesses soft tissue destruction, a major symptom of periodontal diseases. Our results are the first to prove that T. denticola thiol-compound catabolism by its gamma-glutamyltransferase can play a significant role in the in the types of host tissue damage seen in periodontitis.
Collapse
Affiliation(s)
- Lianrui Chu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yimin Wu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiaoping Xu
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Linda Phillips
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - David Kolodrubetz
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
10
|
Belkacemi S, Bou Khalil J, Ominami Y, Hisada A, Fontanini A, Caputo A, Levasseur A, Lagier JC, Khelaifia S, Raoult D. Passive Filtration, Rapid Scanning Electron Microscopy, and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Treponema Culture and Identification from the Oral Cavity. J Clin Microbiol 2019; 57:e00517-19. [PMID: 31340994 PMCID: PMC6760945 DOI: 10.1128/jcm.00517-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022] Open
Abstract
We present here a new passive-filtration-based culture device combined with rapid identification with a new electron microscope (Hitachi TM4000) for the detection and culture of Treponema species from the human oral cavity. Of the 44 oral samples cultivated, 15 (34%) were found to be positive for Treponema using electron microscopy and were also culture positive. All were subcultured on agar plates; based on genome sequencing and analyses, 10 were strains of Treponema pectinovorum and 5 were strains of Treponema denticola The 29 samples that were negative for Treponema remained culture negative. In addition, 14 Treponema species ordered from the DSMZ collection were cultured in the T-Raoult culture medium optimized here. Finally, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was used and 30 novel spectra were added to the MALDI-TOF MS database. We have successfully developed a new and effective method for treponemal detection, culture, and identification.
Collapse
Affiliation(s)
- Souad Belkacemi
- Microbes Evolution Phylogeny, and Infections, Aix-Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hopitaux de Marseille, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Jacques Bou Khalil
- Microbes Evolution Phylogeny, and Infections, Aix-Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hopitaux de Marseille, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Yusuke Ominami
- Science and Medical Systems Business Group, Hitachi High-Technologies Corp., Tokyo, Japan
| | - Akiko Hisada
- Research and Development Group, Hitachi, Ltd., Saitama, Japan
| | - Anthony Fontanini
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Aurelia Caputo
- Hôpital de la Timone, Assistance Publique-Hopitaux de Marseille, Marseille, France
| | - Anthony Levasseur
- UMR VITROME, Aix Marseille Université, Institut de Recherche pour le Développement, SSA, Assistance Publique-Hopitaux de Marseille, IHU-Méditerranée Infection, Marseille, France
| | - Jean-Christophe Lagier
- Microbes Evolution Phylogeny, and Infections, Aix-Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hopitaux de Marseille, Marseille, France
| | - Saber Khelaifia
- Microbes Evolution Phylogeny, and Infections, Aix-Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hopitaux de Marseille, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Microbes Evolution Phylogeny, and Infections, Aix-Marseille Université, Institut de Recherche pour le Développement, Assistance Publique-Hopitaux de Marseille, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
11
|
A di-iron protein recruited as an Fe[II] and oxygen sensor for bacterial chemotaxis functions by stabilizing an iron-peroxy species. Proc Natl Acad Sci U S A 2019; 116:14955-14960. [PMID: 31270241 DOI: 10.1073/pnas.1904234116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Many bacteria contain cytoplasmic chemoreceptors that lack sensor domains. Here, we demonstrate that such cytoplasmic receptors found in 8 different bacterial and archaeal phyla genetically couple to metalloproteins related to β-lactamases and nitric oxide reductases. We show that this oxygen-binding di-iron protein (ODP) acts as a sensor for chemotactic responses to both iron and oxygen in the human pathogen Treponema denticola (Td). The ODP di-iron site binds oxygen at high affinity to reversibly form an unusually stable μ-peroxo adduct. Crystal structures of ODP from Td and the thermophile Thermotoga maritima (Tm) in the Fe[III]2-O2 2-, Zn[II], and apo states display differences in subunit association, conformation, and metal coordination that indicate potential mechanisms for sensing. In reconstituted systems, iron-peroxo ODP destabilizes the phosphorylated form of the receptor-coupled histidine kinase CheA, thereby providing a biochemical link between oxygen sensing and chemotaxis in diverse prokaryotes, including anaerobes of ancient origin.
Collapse
|
12
|
Reed LA, O'Bier NS, Oliver LD, Hoffman PS, Marconi RT. Antimicrobial activity of amixicile against Treponema denticola and other oral spirochetes associated with periodontal disease. J Periodontol 2018; 89:1467-1474. [PMID: 29958324 DOI: 10.1002/jper.17-0185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/29/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Periodontal disease is a polymicrobial infection characterized by inflammation of the gingiva, alveolar bone resorption and tooth loss. As periodontal disease progresses, oral treponemes (spirochetes) become dominant bacteria in periodontal pockets. Oral treponemes are anaerobes and all encode the enzyme pyruvate-ferredoxin oxidoreductase (PFOR) which catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA. Here we assess the susceptibility of oral treponemes to amixicile (AMIX), a novel inhibitor of PFOR. METHODS The minimum inhibitory concentration (MIC) of AMIX against several oral treponeme species was determined. The impact of AMIX on processes relevant to virulence including motility, H2 S production, and complement evasion were determined. RESULTS The growth of all oral treponeme species tested was inhibited by AMIX with MIC concentrations (MIC) ranging from 0.5-1.5 μg/mL. AMIX significantly reduced motility, caused a dose-dependent decrease in hydrogen sulfide production and increased sensitivity to killing by human complement (i.e., serum sensitivity). CONCLUSIONS AMIX is effective in vitro in inhibiting growth and other processes central to virulence. AMIX could serve could serve as a new selective therapeutic tool for the treatment of periodontal disease.
Collapse
Affiliation(s)
- Lucas A Reed
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA
| | - Nathaniel S O'Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA
| | - Lee D Oliver
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA
| | - Paul S Hoffman
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA
| |
Collapse
|
13
|
Capion N, Larsson EK, Nielsen OL. A clinical and histopathological comparison of the effectiveness of salicylic acid to a compound of inorganic acids for the treatment of digital dermatitis in cattle. J Dairy Sci 2017; 101:1325-1333. [PMID: 29224873 DOI: 10.3168/jds.2017-13622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/16/2017] [Indexed: 02/02/2023]
Abstract
Bovine digital dermatitis (DD) is a painful infectious disease, causing lameness, reduced animal welfare, and production losses in dairy herds. The main factors contributing to DD are an infection with Treponema spp. and poor hygiene. Topical treatment has primarily consisted of antibiotics; however, the demand for effective nonantibiotic alternatives is increasing. The objective was to evaluate the performance of 3 nonantibiotic topical treatments (salicylic acid and a compound of inorganic acids in a 20% solution and in a dry form) on DD in a commercial dairy herd. Within the 30-d test period, 42 DD lesions on 33 Holstein cows were assigned to receive 1 of the 3 treatments. Lesions were biopsied before and after treatment and were clinically evaluated 5 times. Improved lesions were clinically defined as either healed (regeneration of the skin) or healing (dry lesions covered by a scab). Unhealed lesions were defined as either active [with a raw, moist, strawberry-like (granulating) surface] or mature (with a raised papillomatous appearance). The effectiveness of treatment was evaluated histopathologically using the following scores: 0 (no spirochetes present), 1 (small number of spirochetes present in the epidermis), 2 (moderate number of spirochetes present and reaching an intermediary level in the epidermis), and 3 (large number of spirochetes present and reaching the deepest part of the epidermis or the superficial dermis). The improvement rate was 10/14 (71%) for salicylic acid, 11/15 (73%) for the inorganic acid solution, and 8/13 (62%) for the inorganic acid powder. The analysis showed no difference among treatments. The association between clinical score and histopathological score was determined by an odds ratio. The odds ratio of a healed lesion having spirochetes in the epidermis was 0.58 and that of an active DD lesion having spirochetes in the epidermis was 26.5.
Collapse
Affiliation(s)
- N Capion
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Højbakkegaard Alle 5, DK-2630 Taastrup, Denmark.
| | | | - O L Nielsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 3, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
14
|
Frederick RE, Caranto JD, Masitas CA, Gebhardt LL, MacGowan CE, Limberger RJ, Kurtz DM. Dioxygen and nitric oxide scavenging by Treponema denticola flavodiiron protein: a mechanistic paradigm for catalysis. J Biol Inorg Chem 2015; 20:603-13. [PMID: 25700637 PMCID: PMC4768905 DOI: 10.1007/s00775-015-1248-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
Abstract
Flavodiiron proteins (FDPs) contain a unique active site consisting of a non-heme diiron carboxylate site proximal to a flavin mononucleotide (FMN). FDPs serve as the terminal components for reductive scavenging of dioxygen (to water) or nitric oxide (to nitrous oxide), which combats oxidative or nitrosative stress in many bacteria. Characterizations of FDPs from spirochetes or from any oral microbes have not been previously reported. Here, we report characterization of an FDP from the anaerobic spirochete, Treponema (T.) denticola, which is associated with chronic periodontitis. The isolated T. denticola FDP exhibited efficient four-electron dioxygen reductase activity and lower but significant anaerobic nitric oxide reductase activity. A mutant T. denticola strain containing the inactivated FDP-encoding gene was significantly more air-sensitive than the wild-type strain. Single turnover reactions of the four-electron-reduced FDP (FMNH2-Fe(II)Fe(II)) (FDPred) with O2 monitored on the milliseconds to seconds time scale indicated initial rapid formation of a spectral feature consistent with a cis-μ-1,2-peroxo-diferric intermediate, which triggered two-electron oxidation of FMNH2. Reaction of FDPred with NO showed apparent cooperativity between binding of the first and second NO to the diferrous site. The resulting diferrous dinitrosyl complex triggered two-electron oxidation of the FMNH2. Our cumulative results on this and other FDPs indicate that smooth two-electron FMNH2 oxidation triggered by the FDPred/substrate complex and overall four-electron oxidation of FDPred to FDPox constitutes a mechanistic paradigm for both dioxygen and nitric oxide reductase activities of FDPs. Four-electron reductive O2 scavenging by FDPs could contribute to oxidative stress protection in many other oral bacteria.
Collapse
Affiliation(s)
- Rosanne E. Frederick
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jonathan D. Caranto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Cesar A. Masitas
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Linda L. Gebhardt
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Charles E. MacGowan
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Ronald J. Limberger
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Donald M. Kurtz
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
15
|
Henry LG, Boutrin MC, Aruni W, Robles A, Ximinies A, Fletcher HM. Life in a Diverse Oral Community - Strategies for Oxidative Stress Survival. J Oral Biosci 2014; 56:63-71. [PMID: 26744578 DOI: 10.1016/j.job.2014.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND While the oral cavity harbors more than 680 bacterial species, the interaction and association of selected bacterial species play a role in periodontal diseases. Bacterial species including Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, a consortium previously designated as the "red complex" is now being expanded to include other new emerging pathogens that are significantly associated with periodontal disease. HIGHLIGHT In addition to novel mechanisms for oxidative resistance of individual species, community dynamics may lead to an overall strategy for survival in the inflammatory environment of the periodontal pocket. Complex systems controlled by response regulators protect against oxidative and nitrosative stress. CONCLUSION The combination of these multifaceted strategies would provide a comprehensive defense and support system against the repetitive host immune response to promote microbial persistence and disease.
Collapse
Affiliation(s)
- Leroy G Henry
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Marie-Claire Boutrin
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Wilson Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Antonette Robles
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Alexia Ximinies
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| | - Hansel M Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350
| |
Collapse
|
16
|
You M, Mo S, Leung WK, Watt RM. Comparative analysis of oral treponemes associated with periodontal health and disease. BMC Infect Dis 2013; 13:174. [PMID: 23578286 PMCID: PMC3637317 DOI: 10.1186/1471-2334-13-174] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/27/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Periodontal diseases, such as periodontitis, are chronic inflammatory infections affecting the gingivae (gums), underlying connective tissues and bone that support the teeth. Oral treponemes (genus Treponema) are widely-considered to play important roles in periodontal disease etiology and pathogenesis; however, precise relationships remain to be fully established. METHODS A 16S rRNA clone library-based approach was used to comprehensively characterize and compare the diversity of treponeme taxa present in subgingival plaque sampled from periodontitis patients (n = 10) versus periodontitis-free controls (n = 10). 16S rRNA gene sequences were assigned to operational taxonomic units (OTUs) using a 99% identity cut-off A variety of taxonomy (OTU) and phylogeny-based statistical approaches were used to compare populations of treponeme OTUs present in both subject groups. RESULTS A total of 615 plasmid clones containing ca. 1500 bp Treponema 16S rRNA gene sequences were obtained; 365 from periodontitis subjects, 250 from periodontitis-free controls. These were assigned to 110 treponeme OTUs. 93 OTUs were detected in the periodontitis subjects (mean 9.3 ± 5.2 OTUs per subject; range 9-26), and 43 OTUs were detected in controls (mean 4.3 ± 5.9 OTUs per subject; range 3-20). OTUs belonging to oral treponeme phylogroups 1-7 were detected in both subject sets. Phylogroup 1 treponemes had the highest levels of OTU richness (diversity) and clonal abundance within both subject groups. Levels of OTU richness and clonal abundance of phylogroup 2 treponemes were significantly higher in the periodontitis subjects (Mann Whitney U-test, p < 0.001). Both OTU-based and phylogeny-based analyses clearly indicated that there were significant differences in the composition of treponeme communities present in periodontitis versus control subjects. The detection frequency of five OTUs showed a statistically-significant correlation with disease status. The OTU (8P47) that corresponded to the type strain of Treponema denticola had the strongest association with periodontitis (p < 0.01). CONCLUSIONS Higher levels of treponeme taxon richness and clonal abundance were associated with periodontitis. However, our results clearly indicated that subjects free from clinical symptoms of periodontal disease also contained highly diverse populations of treponeme bacteria within their subgingival microbiota. Our data supports the hypothesis that specific treponeme taxa are associated with periodontal disease.
Collapse
|
17
|
Frederick JR, Sarkar J, McDowell JV, Marconi RT. Molecular signaling mechanisms of the periopathogen, Treponema denticola. J Dent Res 2011; 90:1155-63. [PMID: 21447698 DOI: 10.1177/0022034511402994] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the healthy subgingiva, oral treponemes account for a small percentage of the total bacteria. However, in diseased periodontal pockets, treponemes thrive and become a dominant component of the bacterial population. Oral treponemes are uniquely adept at capitalizing on the environmental conditions that develop with periodontal disease. The molecular basis of adaptive responses of oral treponemes is just beginning to be investigated and defined. The completion of several treponeme genome sequences and the characterization of global regulatory systems provide an important starting point in the analysis of signaling and adaptive responses. In this review, we discuss existing literature focused on the genetic regulatory mechanisms of Treponema denticola and present an overview of the possible roles of regulatory proteins identified through genome analyses. This information provides insight into the possible molecular mechanisms utilized by oral spirochetes to survive in the periodontal pocket and transition from a minor to a dominant organism.
Collapse
Affiliation(s)
- J R Frederick
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | | | |
Collapse
|
18
|
Transcriptional profiles of Treponema denticola in response to environmental conditions. PLoS One 2010; 5:e13655. [PMID: 21048920 PMCID: PMC2965109 DOI: 10.1371/journal.pone.0013655] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 09/27/2010] [Indexed: 11/19/2022] Open
Abstract
The periodontal pathogen T. denticola resides in a stressful environment rife with challenges, the human oral cavity. Knowledge of the stress response capabilities of this invasive spirochete is currently very limited. Whole genome expression profiles in response to different suspected stresses including heat shock, osmotic downshift, oxygen and blood exposure were examined. Most of the genes predicted to encode conserved heat shock proteins (HSPs) were found to be induced under heat and oxygen stress. Several of these HSPs also seem to be important for survival in hypotonic solutions and blood. In addition to HSPs, differential regulation of many genes encoding metabolic proteins, hypothetical proteins, transcriptional regulators and transporters was observed in patterns that could betoken functional associations. In summary, stress responses in T. denticola exhibit many similarities to the corresponding stress responses in other organisms but also employ unique components including the induction of hypothetical proteins.
Collapse
|
19
|
Zhang JH, Dong Z, Chu L. Hydrogen sulfide induces apoptosis in human periodontium cells. J Periodontal Res 2010; 45:71-8. [DOI: 10.1111/j.1600-0765.2009.01202.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Chu L, Xu X, Su J, Song L, Lai Y, Dong Z, Cappelli D. Role of Aggregatibacter actinomycetemcomitans in glutathione catabolism. ACTA ACUST UNITED AC 2009; 24:236-42. [PMID: 19416454 DOI: 10.1111/j.1399-302x.2008.00501.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Our previous studies demonstrated that three enzymes, gamma-glutamyltransferase (GGT), cysteinylglycinase (CGase) and cystalysin, are required for the catabolism of glutathione to produce hydrogen sulfide (H(2)S) in Treponema denticola. In this study, we examined glutathione catabolism in Aggregatibacter actinomycetemcomitans. METHODS The GGT and CGase of A. actinomycetemcomitans were determined by biological methods and GGT was characterized using a molecular biological approach. RESULTS A. actinomycetemcomitans showed GGT and CGase activity, but could not produce H(2)S from glutathione. The addition of recombinant T. denticola cystalysin, an l-cysteine desulfhydrase, to whole cells of A. actinomycetemcomitans resulted in the production of H(2)S from glutathione. Subsequently, we cloned A. actinomycetemcomitans GGT gene (ggt) and overexpressed the 63 kDa GGT protein. The recombinant A. actinomycetemcomitans GGT was purified and identified. The K(cat)/K(m) of the recombinant GGT from N-gamma-l-glutamyl-4-nitroaniline as substrate was 31/microm/min. The activity of GGT was optimum at pH 6.9-7.1 and enhanced by thiol-containing compounds. CONCLUSION The results demonstrated that A. actinomycetemcomitans had GGT and CGase activities and that the GGT was characterized. The possible role of A. actinomycetemcomitans in glutathione metabolism and H(2)S production from oral bacteria was discussed.
Collapse
Affiliation(s)
- L Chu
- Department of Orthodontics, University of Texas Health Sciences Center, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Izard J, Hsieh CE, Limberger RJ, Mannella CA, Marko M. Native cellular architecture of Treponema denticola revealed by cryo-electron tomography. J Struct Biol 2008; 163:10-7. [PMID: 18468917 DOI: 10.1016/j.jsb.2008.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 03/20/2008] [Accepted: 03/21/2008] [Indexed: 11/26/2022]
Abstract
Using cryo-electron tomography, we are developing a refined description of native cellular structures in the pathogenic spirochete Treponema denticola. Tightly organized bundles of periplasmic flagella were readily observed in intact plunge-frozen cells. The periplasmic space was measured in both wild-type and aflagellate strains, and found to widen by less than the diameter of flagella when the latter are present. This suggests that a structural change occurs in the peptidoglycan layer to accommodate the presence of the flagella. In dividing cells, the flagellar filaments were found to bridge the cytoplasmic cylinder constriction site. Cytoplasmic filaments, adjacent to the inner membrane, run parallel to the tightly organized flagellar filaments. The cytoplasmic filaments may be anchored by a narrow plate-like structure. The tapering of the cell ends was conserved between cells, with a patella-shaped structure observed in the periplasm at the tip of each cytoplasmic cylinder. Several incompletely characterized structures have been observed in the periplasm between dividing cells, including a cable-like structure linking two cytoplasmic cylinders and complex foil-shaped structures.
Collapse
Affiliation(s)
- Jacques Izard
- Department of Molecular Genetics, The Forsyth Institute, 140 Fenway, Boston, MA 02135, USA.
| | | | | | | | | |
Collapse
|