1
|
Wang L, Sun S, Liu H, Zhang Q, Meng Y, Sun F, Zhang J, Liu H, Xu W, Ye Z, Zhang J, Sun B, Xu J. Thioredoxin reductase inhibition and glutathione depletion mediated by glaucocalyxin A promote intracellular disulfide stress in gastric cancer cells. FEBS J 2024. [PMID: 39434427 DOI: 10.1111/febs.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/25/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Thioredoxin reductase 1 (TXNRD1) has been identified as one of the promising chemotherapeutic targets in cancer cells. Therefore, a novel TXNRD1 inhibitor could accelerate chemotherapy in clinical anticancer research. In this study, glaucocalyxin A (GlauA), a natural diterpene extracted from Rabdosia japonica var. glaucocalyx, was identified as a novel inhibitor of TXNRD1. We found that GlauA effectively inhibited recombinant TXNRD1 and reduced its activity in gastric cancer cells without affecting the enzyme's expression level. Mechanistically, the selenocysteine residue (U498) of TXNRD1 was irreversibly modified by GlauA through a Michael addition. Additionally, GlauA formed a covalent adduct with glutathione (GSH) and disrupted cellular redox balance by depleting cellular GSH. The inhibition of TXNRD1 and depletion of GSH by GlauA conferred its cytotoxic effects in spheroid culture and Transwell assays in AGS cells. The disulfide stress induced cytotoxicity of GlauA could be mitigated by adding reducing agents, such as DTT and β-ME. Furthermore, the FDA-approval drug auranofin, a TXNRD1 inhibitor, triggered oligomerization of the cytoskeletal protein Talin-1 in AGS cells, indicating that inhibiting TXNRD1 triggered disulfide stress. In conclusion, this study uncovered GlauA as an efficient inhibitor of TXNRD1 and demonstrated the potential of TXNRD1 inhibition as an effective anticancer strategy by disrupting redox homeostasis and inducing disulfide stress.
Collapse
Affiliation(s)
- Ling Wang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Shibo Sun
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Haowen Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Qiuyu Zhang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Yao Meng
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Fan Sun
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute, Dalian University of Technology, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Cancer, Liaoning Cancer Hospital and Institute, Dalian University of Technology, Shenyang, China
| | - Haiyan Liu
- College of Chemistry and Environmental Engineering, Yingkou Institute of Technology, China
| | - Weiping Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Zhiwei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| | - Jianqiang Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, China
| |
Collapse
|
2
|
Gencheva R, Cheng Q, Arnér ESJ. Thioredoxin reductase selenoproteins from different organisms as potential drug targets for treatment of human diseases. Free Radic Biol Med 2022; 190:320-338. [PMID: 35987423 DOI: 10.1016/j.freeradbiomed.2022.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Human thioredoxin reductase (TrxR) is a selenoprotein with a central role in cellular redox homeostasis, utilizing a highly reactive and solvent-exposed selenocysteine (Sec) residue in its active site. Pharmacological modulation of TrxR can be obtained with several classes of small compounds showing different mechanisms of action, but most often dependent upon interactions with its Sec residue. The clinical implications of TrxR modulation as mediated by small compounds have been studied in diverse diseases, from rheumatoid arthritis and ischemia to cancer and parasitic infections. The possible involvement of TrxR in these diseases was in some cases serendipitously discovered, by finding that existing clinically used drugs are also TrxR inhibitors. Inhibiting isoforms of human TrxR is, however, not the only strategy for human disease treatment, as some pathogenic parasites also depend upon Sec-containing TrxR variants, including S. mansoni, B. malayi or O. volvulus. Inhibiting parasite TrxR has been shown to selectively kill parasites and can thus become a promising treatment strategy, especially in the context of quickly emerging resistance towards other drugs. Here we have summarized the basis for the targeting of selenoprotein TrxR variants with small molecules for therapeutic purposes in different human disease contexts. We discuss how Sec engagement appears to be an indispensable part of treatment efficacy and how some therapeutically promising compounds have been evaluated in preclinical or clinical studies. Several research questions remain before a wider application of selenoprotein TrxR inhibition as a first-line treatment strategy might be developed. These include further mechanistic studies of downstream effects that may mediate treatment efficacy, identification of isoform-specific enzyme inhibition patterns for some given therapeutic compounds, and the further elucidation of cell-specific effects in disease contexts such as in the tumor microenvironment or in host-parasite interactions, and which of these effects may be dependent upon the specific targeting of Sec in distinct TrxR isoforms.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary.
| |
Collapse
|
3
|
Cheng Q, Roveri A, Cozza G, Bordin L, Rohn I, Schwerdtle T, Kipp A, Ursini F, Maiorino M, Miotto G, Arnér ESJ. Production and purification of homogenous recombinant human selenoproteins reveals a unique codon skipping event in E. coli and GPX4-specific affinity to bromosulfophthalein. Redox Biol 2021; 46:102070. [PMID: 34304108 PMCID: PMC8326192 DOI: 10.1016/j.redox.2021.102070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/18/2023] Open
Abstract
Selenoproteins are translated via animal domain-specific elongation machineries that redefine dedicated UGA opal codons from termination of translation to selenocysteine (Sec) insertion, utilizing specific tRNA species and Sec-specific elongation factors. This has made recombinant production of mammalian selenoproteins in E. coli technically challenging but recently we developed a methodology that enables such production, using recoding of UAG for Sec in an RF1-deficient host strain. Here we used that approach for production of the human glutathione peroxidases 1, 2 and 4 (GPX1, GPX2 and GPX4), with all these three enzymes being important antioxidant selenoproteins. Among these, GPX4 is the sole embryonically essential enzyme, and is also known to be essential for spermatogenesis as well as protection from cell death through ferroptosis. Enzyme kinetics, ICP-MS and mass spectrometry analyses of the purified recombinant proteins were used to characterize selenoprotein characteristics and their Sec contents. This revealed a unique phenomenon of one-codon skipping, resulting in a lack of a single amino acid at the position corresponding to the selenocysteine (Sec) residue, in about 30% of the recombinant GPX isoenzyme products. We furthermore confirmed the previously described UAG suppression with Lys or Gln as well as a minor suppression with Tyr, together resulting in about 20% Sec contents in the full-length proteins. No additional frameshifts or translational errors were detected. We subsequently found that Sec-containing GPX4 could be further purified over a bromosulfophthalein-column, yielding purified recombinant GPX4 with close to complete Sec contents. This production method for homogenously purified GPX4 should help to further advance the studies of this important selenoprotein.
Collapse
Affiliation(s)
- Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Luciana Bordin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Isabelle Rohn
- University of Potsdam, Institute of Nutritional Science, Department of Food Chemistry, Nuthetal, Germany
| | - Tanja Schwerdtle
- University of Potsdam, Institute of Nutritional Science, Department of Food Chemistry, Nuthetal, Germany; German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Anna Kipp
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Molecular Nutritional Physiology, Jena, Germany
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giovanni Miotto
- Department of Molecular Medicine, University of Padova, Padova, Italy; CRIBI Biotechnology Center, University of Padova, Padova, Italy
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden; Department of Selenoprotein Research, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
4
|
Sun S, Xu W, Zhou H, Zhang Y, Zhang J, Li X, Li B, Ma K, Xu J. Efficient purification of selenoprotein thioredoxin reductase 1 by using chelating reagents to protect the affinity resins and rescue the enzyme activities. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Cheng Q, Arnér ESJ. Selenocysteine Insertion at a Predefined UAG Codon in a Release Factor 1 (RF1)-depleted Escherichia coli Host Strain Bypasses Species Barriers in Recombinant Selenoprotein Translation. J Biol Chem 2017; 292:5476-5487. [PMID: 28193838 DOI: 10.1074/jbc.m117.776310] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/02/2017] [Indexed: 11/06/2022] Open
Abstract
Selenoproteins contain the amino acid selenocysteine (Sec), co-translationally inserted at a predefined UGA opal codon by means of Sec-specific translation machineries. In Escherichia coli, this process is dependent upon binding of the Sec-dedicated elongation factor SelB to a Sec insertion sequence (SECIS) element in the selenoprotein-encoding mRNA and competes with UGA-directed translational termination. Here, we found that Sec can also be efficiently incorporated at a predefined UAG amber codon, thereby competing with RF1 rather than RF2. Subsequently, utilizing the RF1-depleted E. coli strain C321.ΔA, we could produce mammalian selenoprotein thioredoxin reductases with unsurpassed purity and yield. We also found that a SECIS element was no longer absolutely required in such a system. Human glutathione peroxidase 1 could thereby also be produced, and we could confirm a previously proposed catalytic tetrad in this selenoprotein. We believe that the versatility of this new UAG-directed production methodology should enable many further studies of diverse selenoproteins.
Collapse
Affiliation(s)
- Qing Cheng
- From the Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Elias S J Arnér
- From the Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
6
|
Li W, Li Y, Wu Y, Cui Y, Liu Y, Shi X, Zhang Q, Chen Q, Sun Q, Hu Q. Phenotypic and genetic changes in the life cycle of small colony variants of Salmonella enterica serotype Typhimurium induced by streptomycin. Ann Clin Microbiol Antimicrob 2016; 15:37. [PMID: 27245674 PMCID: PMC4888536 DOI: 10.1186/s12941-016-0151-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/18/2016] [Indexed: 01/29/2023] Open
Abstract
Background Small colony variants (SCVs), constituting a slow-growing subpopulation of bacteria that facilitates persistence in lethal environmental conditions, are able to revert to the phenotype of rapid growth for further proliferation and transmission. Salmonella enterica serotype Typhimurium is one of the most important foodborne pathogens. This study investigated the genetic mechanisms how SCVs induced by streptomycin reverted to the fast-growing phenotype and the phenotypic changes of SCVs among their complete life cycle in S.Typhimurium. Methods Salmonella Typhimurium SCVs were obtained by streptomycin treatment and their revertants were collected in the absence of antibiotics. The fitness, antimicrobial susceptibility, biofilm formation, and the biofilm-related genes expression were analyzed in comparison to their wild type strain, and the whole genome sequencing was performed to identify the genetic changes in the life cycle of S. Typhimurium SCVs. Results Small colony variants were characterized by an increased antimicrobial resistance to streptomycin (64-fold), imipenem (twofold), and gentamicin (fourfold). A significant increase in biofilm production with higher expression of csgB was observed in SCVs (P < 0.01). The genetic alterations of all SCVs occurred in ubiE gene (coenzyme Q8 and menaquinone synthesis) with frameshift mutations. However, all fast-growing revertants again lost the trait of increased biofilm production (P > 0.05), in which two modes of the genetic changes for reversing to the rapidly growing form were observed: four revertants harbored a secondary mutation in ubiE, which reinstated most of the amino acid sequence of the ubiE, and other four revertants harbored a mutation in prfB. Conclusions Salmonella Typhimurium could switch to the phenotype of SCVs under the treatment of streptomycin by a mutation in ubiE, partially combined with increased production of biofilm, and these SCVs could escape from growth restriction by a compensatory mutation in prfB or a new mutation in ubiE. These findings may contribute to establishing phenotype-directed treatments against SCVs of S.Typhimurium. Electronic supplementary material The online version of this article (doi:10.1186/s12941-016-0151-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wanli Li
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, 29# Wangjiang Rd., Chengdu, Sichuan, 610064, P. R. China
| | - Yinghui Li
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Centre for Disease Control and Prevention, Shenzhen, Guangdong, 518055, P. R. China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, P. R. China
| | - Yao Liu
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, 29# Wangjiang Rd., Chengdu, Sichuan, 610064, P. R. China
| | - Xiaolu Shi
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Centre for Disease Control and Prevention, Shenzhen, Guangdong, 518055, P. R. China
| | - Qian Zhang
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Centre for Disease Control and Prevention, Shenzhen, Guangdong, 518055, P. R. China
| | - Qiongcheng Chen
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Centre for Disease Control and Prevention, Shenzhen, Guangdong, 518055, P. R. China
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, 29# Wangjiang Rd., Chengdu, Sichuan, 610064, P. R. China.
| | - Qinghua Hu
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Centre for Disease Control and Prevention, Shenzhen, Guangdong, 518055, P. R. China.
| |
Collapse
|
7
|
|
8
|
Xu J, Croitoru V, Rutishauser D, Cheng Q, Arnér ESJ. Wobble decoding by the Escherichia coli selenocysteine insertion machinery. Nucleic Acids Res 2013; 41:9800-11. [PMID: 23982514 PMCID: PMC3834832 DOI: 10.1093/nar/gkt764] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Selenoprotein expression in Escherichia coli redefines specific single UGA codons from translational termination to selenocysteine (Sec) insertion. This process requires the presence of a Sec Insertion Sequence (SECIS) in the mRNA, which forms a secondary structure that binds a unique Sec-specific elongation factor that catalyzes Sec insertion at the predefined UGA instead of release factor 2-mediated termination. During overproduction of recombinant selenoproteins, this process nonetheless typically results in expression of UGA-truncated products together with the production of recombinant selenoproteins. Here, we found that premature termination can be fully avoided through a SECIS-dependent Sec-mediated suppression of UGG, thereby yielding either tryptophan or Sec insertion without detectable premature truncation. The yield of recombinant selenoprotein produced with this method approached that obtained with a classical UGA codon for Sec insertion. Sec-mediated suppression of UGG thus provides a novel method for selenoprotein production, as here demonstrated with rat thioredoxin reductase. The results also reveal that the E. coli selenoprotein synthesis machinery has the inherent capability to promote wobble decoding.
Collapse
Affiliation(s)
- Jianqiang Xu
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden and Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Proteomics Karolinska (PK/KI), Karolinska Institutet, Stockholm SE-171 77, Sweden
| | | | | | | | | |
Collapse
|
9
|
Effects of combinatorial expression of selA, selB and selC genes on the efficiency of selenocysteine incorporation in Escherichia coli. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Cheng Q, Antholine WE, Myers JM, Kalyanaraman B, Arnér ESJ, Myers CR. The selenium-independent inherent pro-oxidant NADPH oxidase activity of mammalian thioredoxin reductase and its selenium-dependent direct peroxidase activities. J Biol Chem 2010; 285:21708-23. [PMID: 20457604 DOI: 10.1074/jbc.m110.117259] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian thioredoxin reductase (TrxR) is an NADPH-dependent homodimer with three redox-active centers per subunit: a FAD, an N-terminal domain dithiol (Cys(59)/Cys(64)), and a C-terminal cysteine/selenocysteine motif (Cys(497)/Sec(498)). TrxR has multiple roles in antioxidant defense. Opposing these functions, it may also assume a pro-oxidant role under some conditions. In the absence of its main electron-accepting substrates (e.g. thioredoxin), wild-type TrxR generates superoxide (O ), which was here detected and quantified by ESR spin trapping with 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO). The peroxidase activity of wild-type TrxR efficiently converted the O adduct (DEPMPO/HOO(*)) to the hydroxyl radical adduct (DEPMPO/HO(*)). This peroxidase activity was Sec-dependent, although multiple mutants lacking Sec could still generate O . Variants of TrxR with C59S and/or C64S mutations displayed markedly reduced inherent NADPH oxidase activity, suggesting that the Cys(59)/Cys(64) dithiol is required for O generation and that O is not derived directly from the FAD. Mutations in the Cys(59)/Cys(64) dithiol also blocked the peroxidase and disulfide reductase activities presumably because of an inability to reduce the Cys(497)/Sec(498) active site. Although the bulk of the DEPMPO/HO(*) signal generated by wild-type TrxR was due to its combined NADPH oxidase and Sec-dependent peroxidase activities, additional experiments showed that some free HO(*) could be generated by the enzyme in an H(2)O(2)-dependent and Sec-independent manner. The direct NADPH oxidase and peroxidase activities of TrxR characterized here give insights into the full catalytic potential of this enzyme and may have biological consequences beyond those solely related to its reduction of thioredoxin.
Collapse
Affiliation(s)
- Qing Cheng
- Department of Pharmacology and Toxicology, MedicalCollege of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
11
|
Yoshizawa S, Böck A. The many levels of control on bacterial selenoprotein synthesis. Biochim Biophys Acta Gen Subj 2009; 1790:1404-14. [DOI: 10.1016/j.bbagen.2009.03.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/28/2022]
|
12
|
Rengby O, Cheng Q, Vahter M, Jörnvall H, Arnér ESJ. Highly active dimeric and low-activity tetrameric forms of selenium-containing rat thioredoxin reductase 1. Free Radic Biol Med 2009; 46:893-904. [PMID: 19146949 DOI: 10.1016/j.freeradbiomed.2008.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/16/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
Abstract
Mammalian thioredoxin reductase 1 (TrxR1) is a selenoprotein that contains a selenocysteine (Sec) residue at the penultimate C-terminal position. When rat TrxR1 is expressed recombinantly in Escherichia coli, partial truncation at the Sec-encoding UGA gives rise to additional protein species that lack Sec. Phenylarsine oxide (PAO) Sepharose can subsequently be used to enrich the Sec-containing protein and yield activity corresponding to that of native enzyme. Herein we extensively purified recombinant rat TrxR1 over PAO Sepharose, which gave an enzyme with about 53 U/mg specific activity. Surprisingly, only about 65% of the subunits of this TrxR1 preparation contained Sec, whereas about 35% were protein products derived from UGA truncation. Further analyses revealed a theoretical maximal specific activity of 70-80 U/mg for the homodimeric enzyme with full Sec content, i.e., significantly higher than that reported for native TrxR1. We also discovered the formation of highly stable noncovalently linked tetrameric forms of TrxR1, having full FAD content but about half the specific activity in relation to the selenium content compared to the dimeric protein. The characterization of these different forms of recombinant TrxR1 revealed that inherent turnover capacity of the enzyme must be revised, that multimeric states of the protein may be formed, and that the yield of bacterial selenoprotein production may be lower than earlier reported. The biological significance of the hitherto unsurpassed high specific activity of the enzyme involves the capacity to support a higher turnover in vivo than previously believed. The tetrameric forms of the protein could represent hitherto unknown regulatory states of the enzyme.
Collapse
Affiliation(s)
- Olle Rengby
- Division of Biochemistry, Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
13
|
Anestål K, Prast-Nielsen S, Cenas N, Arnér ESJ. Cell death by SecTRAPs: thioredoxin reductase as a prooxidant killer of cells. PLoS One 2008; 3:e1846. [PMID: 18382651 PMCID: PMC2268967 DOI: 10.1371/journal.pone.0001846] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/20/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND SecTRAPs (selenium compromised thioredoxin reductase-derived apoptotic proteins) can be formed from the selenoprotein thioredoxin reductase (TrxR) by targeting of its selenocysteine (Sec) residue with electrophiles, or by its removal through C-terminal truncation. SecTRAPs are devoid of thioredoxin reductase activity but can induce rapid cell death in cultured cancer cell lines by a gain of function. PRINCIPAL FINDINGS Both human and rat SecTRAPs killed human A549 and HeLa cells. The cell death displayed both apoptotic and necrotic features. It did not require novel protein synthesis nor did it show extensive nuclear fragmentation, but it was attenuated by use of caspase inhibitors. The redox active disulfide/dithiol motif in the N-terminal domain of TrxR had to be maintained for manifestation of SecTRAP cytotoxicity. Stopped-flow kinetics showed that NADPH can reduce the FAD moiety in SecTRAPs at similar rates as in native TrxR and purified SecTRAPs could maintain NADPH oxidase activity, which was accelerated by low molecular weight substrates such as juglone. In a cellular context, SecTRAPs triggered extensive formation of reactive oxygen species (ROS) and consequently antioxidants could protect against the cell killing by SecTRAPs. CONCLUSIONS We conclude that formation of SecTRAPs could contribute to the cytotoxicity seen upon exposure of cells to electrophilic agents targeting TrxR. SecTRAPs are prooxidant killers of cells, triggering mechanisms beyond those of a mere loss of thioredoxin reductase activity.
Collapse
Affiliation(s)
- Karin Anestål
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Prast-Nielsen
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Elias S. J. Arnér
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Novoselov SV, Lobanov AV, Hua D, Kasaikina MV, Hatfield DL, Gladyshev VN. A highly efficient form of the selenocysteine insertion sequence element in protozoan parasites and its use in mammalian cells. Proc Natl Acad Sci U S A 2007; 104:7857-62. [PMID: 17470795 PMCID: PMC1876537 DOI: 10.1073/pnas.0610683104] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Selenoproteins are an elite group of proteins containing a rare amino acid, selenocysteine (Sec), encoded by the codon, UGA. In eukaryotes, incorporation of Sec requires a Sec insertion sequence (SECIS) element, a stem-loop structure located in the 3'-untranslated regions of selenoprotein mRNAs. Here we report identification of a noncanonical form of SECIS element in Toxoplasma gondii and Neospora canine, single-celled apicomplexan parasites of humans and domestic animals. This SECIS has a GGGA sequence in the SBP2-binding site in place of AUGA previously considered invariant. Using a combination of computational and molecular techniques, we show that Toxoplasma and Neospora possess both canonical and noncanonical SECIS elements. The GGGA-type SECIS element supported Sec insertion in mammalian HEK 293 and NIH 3T3 cells and did so more efficiently than the natural mammalian SECIS elements tested. In addition, mammalian type I and type II SECIS elements mutated into the GGGA forms were functional but manifested decreased Sec insertion efficiency. We carried out computational searches for both AUGA and GGGA forms of SECIS elements in Toxoplasma and detected five selenoprotein genes, including one coding for a previously undescribed selenoprotein, designated SelQ, and two containing the GGGA form of the SECIS element. In contrast, the GGGA-type SECIS elements were not detected in mammals and nematodes. As a practical outcome of the study, we developed pSelExpress1, a vector for convenient expression of selenoproteins in mammalian cells. It contains an SBP2 gene and the most efficient tested SECIS element: an AUGA mutant of the GGGA-type Toxoplasma SelT structure.
Collapse
Affiliation(s)
| | - Alexey V. Lobanov
- *Department of Biochemistry, University of Nebraska, Lincoln, NE 68588; and
| | - Deame Hua
- *Department of Biochemistry, University of Nebraska, Lincoln, NE 68588; and
| | | | - Dolph L. Hatfield
- Section on the Molecular Biology of Selenium, Laboratory of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Vadim N. Gladyshev
- *Department of Biochemistry, University of Nebraska, Lincoln, NE 68588; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|