1
|
Huang X, Yu C, Lu L. Isolation and characterization of a roseophage representing a novel genus in the N4-like Rhodovirinae subfamily distributed in estuarine waters. BMC Genomics 2025; 26:295. [PMID: 40133813 PMCID: PMC11934525 DOI: 10.1186/s12864-025-11463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Roseobacteraceae, often referred to as the marine roseobacter clade (MRC), are pivotal constituents of bacterial communities in coastal and pelagic marine environments. During the past two decades, 75 roseophages that infect various Roseobacteraceae lineages have been isolated. The N4-like roseophage clade, which encompasses 15 members, represents the largest clade among these roseophages. N4-like phages form a monophyletic group, classified as family Schitoviridae. And all N4-like roseophages form a unique clade within Schitoviridae and has been classified as the Rhodovirinae subfamily. RESULTS In this study, we isolated a novel roseophage, vB_DshP-R7L, that infects Dinoroseobacter shibae DFL12 from Xiamen Bay in the East China Sea. Conserved genes of Schitoviridae have been identified in the genome of vB_DshP-R7L, and following phylogenetic analysis suggests that the newly isolated phage is a member of the Rhodovirinae subfamily and represents the sole member of a novel genus, Gonggongvirus. The genome of vB_DshP-R7L harbors six auxiliary metabolic genes (AMGs), most of which potentially enhance DNA de novo synthesis. Additionally, a gene encoding ribosomal protein was identified. Comparative genomic analysis of AMG content among Rhodovirinae indicates a distinct evolutionary history characterized by independent ancient horizontal gene transfer events. Read-mapping analysis reveals the prevalence of vB_DshP-R7L and other Rhodovirinae roseophages in estuarine waters. CONCLUSIONS Our work illustrates the genomic features of a novel roseophage clade among the subfamily Rhodovirinae. The AMG content of vB_DshP-R7L is under severe purification selection, which reveals their possible ecological importance. We also demonstrated that vB_DshP-R7L and other Rhodovirinae roseophages are only detected in estuaries. Our isolation and characterization of this novel phage expands the understanding of the phylogeny, gene transfer history, and biogeography of Rhodovirinae infecting marine Roseobacteraceae.
Collapse
Affiliation(s)
- Xingyu Huang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Chen Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Longfei Lu
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Ministry of Natural Resources, Fourth Institute of Oceanography, Beihai, 536000, China.
| |
Collapse
|
2
|
Wei N, Lu L, Li Y, Ding B, Cai L, Yang Y. A novel roseosiphovirus infecting dinoroseobacter shibae DFL12 T represents a new genus. BMC Genomics 2025; 26:121. [PMID: 39923004 PMCID: PMC11806900 DOI: 10.1186/s12864-025-11274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/22/2025] [Indexed: 02/10/2025] Open
Abstract
Bacteria belonging to the Roseobacter clade are key players in marine ecosystems, contributing significantly to carbon and sulfur cycles. Marine viruses, particularly those targeting Roseobacter, play crucial roles in regulating microbial communities and biogeochemical processes. Despite their importance, phages infecting organisms of the Roseobacter clade remain poorly understood. In this study, a novel roseophage, vB_DshS-R26L (R26L), infecting Dinoroseobacter shibae DFL12T, was isolated and characterized in terms of physiological and genomic properties. R26L has siphovirus morphology with an elongated head and a long, non-flexible tail. The phage has a narrow host range and demonstrates a long infection cycle with a latent period of 3.5 h and a burst size of 22 plaque-forming units (PFU cell- 1). R26L possesses a circular, double-stranded DNA genome of 79,534 bp with a G + C content of 62.6%, encoding a total of 116 open reading frames. Notably, seven auxiliary metabolic genes (AMGs), including those related to phosphate metabolism and queuosine biosynthesis, were identified. Phylogenetic and taxonomic analyses revealed that R26L represents a new genus, with its highest intergenomic similarities being 54.7% to another roseophage (R5C). By elucidating the unique characteristics of R26L, this study highlights the complexity of phage infections and the genomic diversity of roseophages, offering valuable insights into the ecological significance of Roseobacter-phage interactions in marine environments.
Collapse
Affiliation(s)
- Nana Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, 518055, China
| | - Longfei Lu
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Yingying Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Bo Ding
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lanlan Cai
- Earth, Ocean and Atmospheric Sciences Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China.
| | - Yunlan Yang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Hyde JR, Armond T, Herring JA, Hope S, Grose JH, Breakwell DP, Pickett BE. Diversity and conservation of the genome architecture of phages infecting the Alphaproteobacteria. Microbiol Spectr 2024; 12:e0282723. [PMID: 37991376 PMCID: PMC10783043 DOI: 10.1128/spectrum.02827-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE This study reports the results of the largest analysis of genome sequences from phages that infect the Alphaproteobacteria class of bacterial hosts. We analyzed over 100 whole genome sequences of phages to construct dotplots, categorize them into genetically distinct clusters, generate a bootstrapped phylogenetic tree, compute protein orthologs, and predict packaging strategies. We determined that the phage sequences primarily cluster by the bacterial host family, phage morphotype, and genome size. We expect that the findings reported in this seminal study will facilitate future analyses that will improve our knowledge of the phages that infect these hosts.
Collapse
Affiliation(s)
- Jonathan R. Hyde
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Thomas Armond
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Jacob A. Herring
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Donald P. Breakwell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Brett E. Pickett
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
4
|
Bárdy P, MacDonald CI, Pantůček R, Antson AA, Fogg PC. Jorvik: A membrane-containing phage that will likely found a new family within Vinavirales. iScience 2023; 26:108104. [PMID: 37867962 PMCID: PMC10589892 DOI: 10.1016/j.isci.2023.108104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/23/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Although membrane-containing dsDNA bacterial viruses are some of the most prevalent predators in aquatic environments, we know little about how they function due to their intractability in the laboratory. Here, we have identified and thoroughly characterized a new type of membrane-containing bacteriophage, Jorvik, that infects the freshwater mixotrophic model bacterium Rhodobacter capsulatus. Jorvik is extremely virulent, can persist in the host integrated into the RuBisCo operon and encodes two experimentally verified cell wall hydrolases. Jorvik-like prophages are abundant in the genomes of Alphaproteobacteria, are distantly related to known viruses of the class Tectiliviricetes, and we propose they should be classified as a new family. Crucially, we demonstrate how widely used phage manipulation methods should be adjusted to prevent loss of virus infectivity. Our thorough characterization of environmental phage Jorvik provides important experimental insights about phage diversity and interactions in microbial communities that are often unexplored in common metagenomic analyses.
Collapse
Affiliation(s)
- Pavol Bárdy
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Conor I.W. MacDonald
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York YO10 5NG, UK
| | - Paul C.M. Fogg
- York Biomedical Research Institute, University of York, Wentworth Way, York YO10 5NG, UK
- Biology Department, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
5
|
Locke H, Bidle KD, Thamatrakoln K, Johns CT, Bonachela JA, Ferrell BD, Wommack KE. Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Adv Virus Res 2022; 114:67-146. [PMID: 39492214 DOI: 10.1016/bs.aivir.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus-host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean-the physical, chemical, and biological landscape-influences the likelihood of both virus-host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.
Collapse
Affiliation(s)
- Hannah Locke
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - Kay D Bidle
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | | | - Christopher T Johns
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | - Juan A Bonachela
- Rutgers Univ., Dept. of Ecology, Evolution & Natural Resources, New Brunswick, NJ, United States
| | - Barbra D Ferrell
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - K Eric Wommack
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States.
| |
Collapse
|
6
|
A novel method to create efficient phage cocktails via use of phage-resistant bacteria. Appl Environ Microbiol 2022; 88:e0232321. [PMID: 35080902 DOI: 10.1128/aem.02323-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid anti-phage mutation of pathogens is a big challenge often encountered in the application of phages in aquaculture, animal husbandry and human disease prevention. A cocktail composed of phages with different infection strategies can better suppress the anti-phage resistance of pathogens. However, randomly selecting phages with different infection strategies is time-consuming and labor-intensive. Here, we verified that using a resistant pathogen quickly-evolved under single phage infection as the new host can easily obtain phages with different infection strategies. We randomly isolated two lytic phages (i.e., Va1 and Va2) that infect the opportunistic pathogen Vibrio alginolyticus. Whether they were used alone or in combination, the pathogen easily gained resistance. Using a mutated pathogen resistant to Va1 as a new host, a third lytic phage Va3 was isolated. These three phages have a similar infection cycle and lytic ability, but quite different morphologies and genome information. Notably, phage Va3 is a jumbo phage containing a larger and more complex genome (240 kb) than Va1 and Va2. Furthermore, the 34 tRNAs and multiple genes encoding receptor binding proteins and NAD+ synthesis proteins in the Va3 genome implicated its quite different infection strategy compared to Va1 and Va2. Although the wild-type pathogen could still readily evolve resistance under single phage infection by Va3, when Va3 was used in combination with Va1 and Va2, pathogen resistance was strongly suppressed. This study provides a novel approach for rapid isolation of phages with different infection strategies, which will be highly beneficial when designing effective phage cocktails. Importance The rapid anti-phage mutation of pathogens is a big challenge often encountered in phage therapy. Using a cocktail composed of phages with different infection strategies can better overcome this problem. However, randomly selecting phages with different infection strategies is time-consuming and labor-intensive. To address this problem, we developed a method to efficiently obtain phages with disparate infection strategies. The trick is to use the characteristics of the pathogenic bacteria that are prone to develop resistance to single phage infection, to rapidly obtain the anti-phage variant of the pathogen. Using this anti-phage variant as the host results in other phages with different infection strategies being efficiently isolated. We also verified the reliability of this method by demonstrating the ideal phage control effects on two pathogens, and thus revealed its potential importance in the development of phage therapies.
Collapse
|
7
|
Li C, Wang Z, Zhao J, Wang L, Xie G, Huang J, Zhang Y. A Novel Vibriophage vB_VcaS_HC Containing Lysogeny-Related Gene Has Strong Lytic Ability against Pathogenic Bacteria. Virol Sin 2021; 36:281-290. [PMID: 32767211 PMCID: PMC8087747 DOI: 10.1007/s12250-020-00271-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
To avoid the negative effects of antibiotics, using phage to prevent animal disease becomes a promising method in aquaculture. Here, a lytic phage provisionally named vB_VcaS_HC that can infect the pathogen (i.e., Vibrio campbellii 18) of prawn was isolated. The phage has an isometric head and a non-contractile tail. During phage infection, the induced host mortality in 5.5 h reached ca. 96%, with a latent period of 1.5 h and a burst size of 172 PFU/cell. It has an 81,566 bp circular dsDNA genome containing 121 open reading frames (ORFs), and ca. 71% of the ORFs are functionally unknown. Comparative genomic and phylogenetic analysis revealed that it is a novel phage belonging to Delepquintavirus, Siphoviridae, Caudovirales. In the phage genome, besides the ordinary genes related to structure assembly and DNA metabolism, there are 10 auxiliary metabolic genes. For the first time, the pyruvate phosphate dikinase (PPDK) gene was found in phages whose product is a key rate-limiting enzyme involving Embden-Meyerhof-Parnas (EMP) reaction. Interestingly, although the phage has a strong bactericidal activity and contains a potential lysogeny related gene, i.e., the recombinase (RecA) gene, we did not find the phage turned into a lysogenic state. Meanwhile, the phage genome does not contain any bacterial virulence gene or antimicrobial resistance gene. This study represents the first comprehensive characterization of a lytic V. campbellii phage and indicates that it is a promising candidate for the treatment of V. campbellii infections.
Collapse
Affiliation(s)
- Chengcheng Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengmeng Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiulong Zhao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guosi Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Baum L, Nguyen MTHD, Jia Y, Biazik J, Thomas T. Characterization of a novel roseophage and the morphological and transcriptional response of the sponge symbiont Ruegeria AU67 to infection. Environ Microbiol 2021; 23:2532-2549. [PMID: 33754443 DOI: 10.1111/1462-2920.15474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/18/2021] [Indexed: 12/31/2022]
Abstract
Sponges have recently been recognized to contain complex communities of bacteriophages; however, little is known about how they interact with their bacterial hosts. Here, we isolated a novel phage, called Ruegeria phage Tedan, and characterized its impact on the bacterial sponge symbiont Ruegeria AU67 on a morphological and molecular level. Phage Tedan was structurally, genomically and phylogenetically characterized to be affiliated with the genus Xiamenvirus of the family Siphoviridae. Through microscopic observations and transcriptomic analysis, we show that phage Tedan upon infection induces a process leading to metabolic and morphological changes in its host. These changes would render Ruegeria AU67 better adapted to inhabit the sponge holobiont due to an improved utilization of ecologically relevant energy and carbon sources as well as a potential impediment of phagocytosis by the sponge through cellular enlargement. An increased survival or better growth of the bacterium in the sponge environment will likely benefit the phage reproduction. Our results point towards the possibility that phages from host-associated environments require, and have thus evolved, different strategies to interact with their host when compared to those phages from free-living or planktonic environments.
Collapse
Affiliation(s)
- Lisa Baum
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mary T H D Nguyen
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yunke Jia
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joanna Biazik
- Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
9
|
Wang Z, Zhao J, Wang L, Li C, Liu J, Zhang L, Zhang Y. A Novel Benthic Phage Infecting Shewanella with Strong Replication Ability. Viruses 2019; 11:v11111081. [PMID: 31752437 PMCID: PMC6893657 DOI: 10.3390/v11111081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 12/31/2022] Open
Abstract
The coastal sediments were considered to contain diverse phages playing important roles in driving biogeochemical cycles based on genetic analysis. However, till now, benthic phages in coastal sediments were very rarely isolated, which largely limits our understanding of their biological characteristics. Here, we describe a novel lytic phage (named Shewanella phage S0112) isolated from the coastal sediments of the Yellow Sea infecting a sediment bacterium of the genus Shewanella. The phage has a very high replication capability, with the burst size of ca. 1170 phage particles per infected cell, which is 5–10 times higher than that of most phages isolated before. Meanwhile, the latent period of this phage is relatively longer, which might ensure adequate time for phage replication. The phage has a double-stranded DNA genome comprising 62,286 bp with 102 ORFs, ca. 60% of which are functionally unknown. The expression products of 16 ORF genes, mainly structural proteins, were identified by LC-MS/MS analysis. Besides the general DNA metabolism and structure assembly genes in the phage genome, there is a cluster of auxiliary metabolic genes that may be involved in 7-cyano-7-deazaguanine (preQ0) biosynthesis. Meanwhile, a pyrophosphohydrolase (MazG) gene being considered as a regulator of programmed cell death or involving in host stringer responses is inserted in this gene cluster. Comparative genomic and phylogenetic analysis both revealed a great novelty of phage S0112. This study represents the first report of a benthic phage infecting Shewanella, which also sheds light on the phage–host interactions in coastal sediments.
Collapse
Affiliation(s)
- Zengmeng Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Z.W.); (J.Z.); (L.W.); (C.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiulong Zhao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Z.W.); (J.Z.); (L.W.); (C.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Z.W.); (J.Z.); (L.W.); (C.L.)
| | - Chengcheng Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Z.W.); (J.Z.); (L.W.); (C.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhui Liu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (J.L.); (L.Z.)
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; (J.L.); (L.Z.)
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Z.W.); (J.Z.); (L.W.); (C.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-80662680
| |
Collapse
|
10
|
Cobaviruses - a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems. ISME JOURNAL 2019; 13:1404-1421. [PMID: 30718806 PMCID: PMC6775973 DOI: 10.1038/s41396-019-0362-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 11/13/2022]
Abstract
Bacteriophages are widely considered to influence bacterial communities, however most phages are still unknown or not studied well enough to understand their ecological roles. We have isolated two phages infecting Lentibacter sp. SH36, affiliated with the marine Roseobacter group, and retrieved similar phage genomes from publicly available metagenomics databases. Phylogenetic analysis placed the new phages within the Cobavirus group, in the here newly proposed genus Siovirus and subfamily Riovirinae of the Podoviridae. Gene composition and presence of direct terminal repeats in cultivated cobaviruses point toward a genome replication and packaging strategy similar to the T7 phage. Investigation of the genomes suggests that viral lysis of the cell proceeds via the canonical holin-endolysin pathway. Cobaviral hosts include members of the genera Lentibacter, Sulfitobacter and Celeribacter of the Roseobacter group within the family Rhodobacteraceae (Alphaproteobacteria). Screening more than 5,000 marine metagenomes, we found cobaviruses worldwide from temperate to tropical waters, in the euphotic zone, mainly in bays and estuaries, but also in the open ocean. The presence of cobaviruses in protist metagenomes as well as the phylogenetic neighborhood of cobaviruses in glutaredoxin and ribonucleotide reductase trees suggest that cobaviruses could infect bacteria associated with phototrophic or grazing protists. With this study, we expand the understanding of the phylogeny, classification, genomic organization, biogeography and ecology of this phage group infecting marine Rhodobacteraceae.
Collapse
|
11
|
Zhan Y, Chen F. Bacteriophages that infect marine roseobacters: genomics and ecology. Environ Microbiol 2019; 21:1885-1895. [DOI: 10.1111/1462-2920.14504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 12/01/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Yuanchao Zhan
- Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental Science Baltimore MD USA
| | - Feng Chen
- Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental Science Baltimore MD USA
| |
Collapse
|
12
|
Zheng Q, Chen Q, Xu Y, Suttle CA, Jiao N. A Virus Infecting Marine Photoheterotrophic Alphaproteobacteria ( Citromicrobium spp.) Defines a New Lineage of ssDNA Viruses. Front Microbiol 2018; 9:1418. [PMID: 29997609 PMCID: PMC6030365 DOI: 10.3389/fmicb.2018.01418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/08/2018] [Indexed: 12/02/2022] Open
Abstract
In recent metagenomic studies, single-stranded DNA (ssDNA) viruses that infect bacteria have been shown to be diverse and prevalent in the ocean; however, there are few isolates of marine ssDNA phages. Here, we report on a cultivated ssDNA phage (vB_Cib_ssDNA_P1) that infects Citromicrobium bathyomarinum RCC1878 (family Sphingomonadaceae), and other members of the genus. This is the first ssDNA phage reported to infect marine alphaproteobacteria, and represents a newly recognized lineage of the Microviridae infecting members of Sphingomonadaceae, the Amoyvirinae. The ∼26 nm diameter polyhedral capsid contains a 4,360 bp genome with 6 open reading frames (ORFs) and a 59.3% G+C content. ORF1 encodes the capsid protein and ORF3 encodes the replication initiator protein. The replication cycle is ∼5 h, followed by a burst releasing about 180 infectious particles. The closest relative of vB_Cib_ssDNA_P1 is a prophage within the genome of Novosphingobium tardaugens strain NBRC16725. Phylogenetic analysis indicates that the vB_Cib_ssDNA_P1 phage and two related prophages, as well as an environmental sequence, form a novel group within the Microviridae. Our results indicate that this is a previously unknown lineage of ssDNA viruses which also supplies a new model system for studying interactions between ssDNA phages and marine bacteria.
Collapse
Affiliation(s)
- Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qi Chen
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yongle Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Institute of Marine Science and Technology, Shandong University, Jinan, China
| | - Curtis A. Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology, Botany, The Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC, Canada
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae. ISME JOURNAL 2018; 12:1994-2010. [PMID: 29795276 PMCID: PMC6052148 DOI: 10.1038/s41396-018-0150-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/24/2023]
Abstract
The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA-like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae.
Collapse
|
14
|
Lang AS, Westbye AB, Beatty JT. The Distribution, Evolution, and Roles of Gene Transfer Agents in Prokaryotic Genetic Exchange. Annu Rev Virol 2017; 4:87-104. [DOI: 10.1146/annurev-virology-101416-041624] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, A1B 3X9, Canada
| | - Alexander B. Westbye
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - J. Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
15
|
Isolation and characterization of the first phage infecting ecologically important marine bacteria Erythrobacter. Virol J 2017; 14:104. [PMID: 28592325 PMCID: PMC5463345 DOI: 10.1186/s12985-017-0773-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/01/2017] [Indexed: 11/24/2022] Open
Abstract
Background Erythrobacter comprises a widespread and ecologically significant genus of marine bacteria. However, no phage infecting Erythrobacter spp. has been reported to date. This study describes the isolation and characterization of phage vB_EliS-R6L from Erythrobacter. Methods Standard virus enrichment and double-layer agar methods were used to isolate and characterize the phage. Morphology was observed by transmission electron microscopy, and a one-step growth curve assay was performed. The phage genome was sequenced using the Illumina Miseq platform and annotated using standard bioinformatics tools. Phylogenetic analyses were performed based on the deduced amino acid sequences of terminase, endolysin, portal protein, and major capsid protein, and genome recruitment analysis was conducted using Jiulong River Estuary Virome, Pacific Ocean Virome and Global Ocean Survey databases. Results A novel phage, vB_EliS-R6L, from coastal waters of Xiamen, China, was isolated and found to infect the marine bacterium Erythrobacter litoralis DSM 8509. Morphological observation and genome analysis revealed that phage vB_EliS-R6L is a siphovirus with a 65.7-kb genome that encodes 108 putative gene products. The phage exhibits growth at a wide range of temperature and pH conditions. Genes encoding five methylase-related proteins were found in the genome, and recognition site predictions suggested its resistance to restriction-modification host systems. Genomic comparisons and phylogenetic analyses indicate that phage vB_EliS-R6L is distinct from other known phages. Metagenomic recruitment analysis revealed that vB_EliS-R6L-like phages are widespread in marine environments, with likely distribution in coastal waters. Conclusions Isolation of the first Erythrobacter phage (vB_EliS-R6L) will contribute to our understanding of host-phage interactions, the ecology of marine Erythrobacter and viral metagenome annotation efforts.
Collapse
|
16
|
Yang Y, Cai L, Ma R, Xu Y, Tong Y, Huang Y, Jiao N, Zhang R. A Novel Roseosiphophage Isolated from the Oligotrophic South China Sea. Viruses 2017; 9:v9050109. [PMID: 28505134 PMCID: PMC5454422 DOI: 10.3390/v9050109] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/22/2017] [Accepted: 05/10/2017] [Indexed: 12/30/2022] Open
Abstract
The Roseobacter clade is abundant and widespread in marine environments and plays an important role in oceanic biogeochemical cycling. In this present study, a lytic siphophage (labeled vB_DshS-R5C) infecting the strain type of Dinoroseobacter shibae named DFL12T, which is part of the Roseobacter clade, was isolated from the oligotrophic South China Sea. Phage R5C showed a narrow host range, short latent period and low burst size. The genome length of phage R5C was 77, 874 bp with a G+C content of 61.5%. Genomic comparisons detected no genome matches in the GenBank database and phylogenetic analysis based on DNA polymerase I revealed phylogenetic features that were distinct to other phages, suggesting the novelty of R5C. Several auxiliary metabolic genes (e.g., phoH gene, heat shock protein and queuosine biosynthesis genes) were identified in the R5C genome that may be beneficial to the host and/or offer a competitive advantage for the phage. Among siphophages infecting the Roseobacter clade (roseosiphophages), four gene transfer agent-like genes were commonly located with close proximity to structural genes, suggesting that their function may be related to the tail of siphoviruses. The isolation and characterization of R5C demonstrated the high genomic and physiological diversity of roseophages as well as improved our understanding of host-phage interactions and the ecology of the marine Roseobacter.
Collapse
Affiliation(s)
- Yunlan Yang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Lanlan Cai
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Yongle Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Yigang Tong
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
| | - Yong Huang
- Beijing Institute of Microbiology and Epidemiology, State Key Laboratory of Pathogen and Biosecurity, Beijing 100071, China.
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen 361102, Fujian, China.
| |
Collapse
|
17
|
A novel roseobacter phage possesses features of podoviruses, siphoviruses, prophages and gene transfer agents. Sci Rep 2016; 6:30372. [PMID: 27460944 PMCID: PMC4961962 DOI: 10.1038/srep30372] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/30/2016] [Indexed: 11/09/2022] Open
Abstract
Bacteria in the Roseobacter lineage have been studied extensively due to their significant biogeochemical roles in the marine ecosystem. However, our knowledge on bacteriophage which infects the Roseobacter clade is still very limited. Here, we report a new bacteriophage, phage DSS3Φ8, which infects marine roseobacter Ruegeria pomeroyi DSS-3. DSS3Φ8 is a lytic siphovirus. Genomic analysis showed that DSS3Φ8 is most closely related to a group of siphoviruses, CbK-like phages, which infect freshwater bacterium Caulobacter crescentus. DSS3Φ8 contains a smaller capsid and has a reduced genome size (146 kb) compared to the CbK-like phages (205-279 kb). DSS3Φ8 contains the DNA polymerase gene which is closely related to T7-like podoviruses. DSS3Φ8 also contains the integrase and repressor genes, indicating its potential to involve in lysogenic cycle. In addition, four GTA (gene transfer agent) genes were identified in the DSS3Φ8 genome. Genomic analysis suggests that DSS3Φ8 is a highly mosaic phage that inherits the genetic features from siphoviruses, podoviruses, prophages and GTAs. This is the first report of CbK-like phages infecting marine bacteria. We believe phage isolation is still a powerful tool that can lead to discovery of new phages and help interpret the overwhelming unknown sequences in the viral metagenomics.
Collapse
|
18
|
Liang Y, Zhang Y, Zhou C, Chen Z, Yang S, Yan C, Jiao N. Complete genome sequence of the siphovirus Roseophage RDJLΦ 2 infecting Roseobacter denitrificans OCh114. Mar Genomics 2016; 25:17-19. [DOI: 10.1016/j.margen.2015.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 10/22/2022]
|
19
|
Hammerl JA, Göllner C, Al Dahouk S, Nöckler K, Reetz J, Hertwig S. Analysis of the First Temperate Broad Host Range Brucellaphage (BiPBO1) Isolated from B. inopinata. Front Microbiol 2016; 7:24. [PMID: 26858702 PMCID: PMC4729917 DOI: 10.3389/fmicb.2016.00024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
Brucella species are important human and animal pathogens. Though, only little is known about mobile genetic elements of these highly pathogenic bacteria. To date, neither plasmids nor temperate phages have been described in brucellae. We analyzed genomic sequences of various reference and type strains and identified a number of putative prophages residing within the Brucella chromosomes. By induction, phage BiPBO1 was isolated from Brucella inopinata. BiPBO1 is a siphovirus that infects several Brucella species including Brucella abortus and Brucella melitensis. Integration of the phage genome occurs adjacent to a tRNA gene in chromosome 1 (chr 1). The bacterial (attB) and phage (attP) attachment sites comprise an identical sequence of 46 bp. This sequence exists in many Brucella and Ochrobactrum species. The BiPBO1 genome is composed of a 46,877 bp double-stranded DNA. Eighty-seven putative gene products were determined, of which 32 could be functionally assigned. Strongest similarities were found to a temperate phage residing in the chromosome of Ochrobactrum anthropi ATCC 49188 and to prophages identified in several families belonging to the order rhizobiales. The data suggest that horizontal gene transfer may occur between Brucella and Ochrobactrum and underpin the close relationship of these environmental and pathogenic bacteria.
Collapse
Affiliation(s)
- Jens A. Hammerl
- Department of Biological Safety, Federal Institute for Risk AssessmentBerlin, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Chan JZM, Millard AD, Mann NH, Schäfer H. Comparative genomics defines the core genome of the growing N4-like phage genus and identifies N4-like Roseophage specific genes. Front Microbiol 2014; 5:506. [PMID: 25346726 PMCID: PMC4193335 DOI: 10.3389/fmicb.2014.00506] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/08/2014] [Indexed: 12/26/2022] Open
Abstract
Two bacteriophages, RPP1 and RLP1, infecting members of the marine Roseobacter clade were isolated from seawater. Their linear genomes are 74.7 and 74.6 kb and encode 91 and 92 coding DNA sequences, respectively. Around 30% of these are homologous to genes found in Enterobacter phage N4. Comparative genomics of these two new Roseobacter phages and 23 other sequenced N4-like phages (three infecting members of the Roseobacter lineage and 20 infecting other Gammaproteobacteria) revealed that N4-like phages share a core genome of 14 genes responsible for control of gene expression, replication and virion proteins. Phylogenetic analysis of these genes placed the five N4-like roseophages (RN4) into a distinct subclade. Analysis of the RN4 phage genomes revealed they share a further 19 genes of which nine are found exclusively in RN4 phages and four appear to have been acquired from their bacterial hosts. Proteomic analysis of the RPP1 and RLP1 virions identified a second structural module present in the RN4 phages similar to that found in the Pseudomonas N4-like phage LIT1. Searches of various metagenomic databases, including the GOS database, using CDS sequences from RPP1 suggests these phages are widely distributed in marine environments in particular in the open ocean environment.
Collapse
Affiliation(s)
| | - Andrew D Millard
- Division of Microbiology and Infection, Warwick Medical School, University of Warwick Coventry, UK
| | | | | |
Collapse
|
21
|
Genome Analysis of Pseudomonas aeruginosa Bacteriophage KPP23, Belonging to the Family Siphoviridae. GENOME ANNOUNCEMENTS 2014; 2:2/3/e00233-14. [PMID: 24855291 PMCID: PMC4031330 DOI: 10.1128/genomea.00233-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteriophage (phage) therapy is expected to become an alternative therapy for Pseudomonas aeruginosa infections. P. aeruginosa phage KPP23 is a newly isolated phage belonging to the family Siphoviridae and may be a therapeutic phage candidate. We report its complete genome, which comprises 62,774 bp of double-stranded DNA containing 95 open reading frames.
Collapse
|
22
|
Allers E, Moraru C, Duhaime MB, Beneze E, Solonenko N, Barrero-Canosa J, Amann R, Sullivan MB. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ Microbiol 2013; 15:2306-18. [PMID: 23489642 PMCID: PMC3884771 DOI: 10.1111/1462-2920.12100] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/18/2013] [Accepted: 01/19/2013] [Indexed: 11/29/2022]
Abstract
Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage–host interactions is technique-limited. Here, we introduce phageFISH – a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus–gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage–host system, and debut phageFISH as a much-needed tool for studying phage–host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages.
Collapse
Affiliation(s)
- Elke Allers
- Department of Ecology and Evolutionary Biology, University of Arizona, Life Sciences South, 1007 East Lowell Street, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Conway CA, Esiobu N, Lopez JV. Co-cultures of Pseudomonas aeruginosa and Roseobacter denitrificans reveal shifts in gene expression levels compared to solo cultures. ScientificWorldJournal 2012; 2012:120108. [PMID: 22566756 PMCID: PMC3330761 DOI: 10.1100/2012/120108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/08/2011] [Indexed: 11/17/2022] Open
Abstract
Consistent biosynthesis of desired secondary metabolites (SMs) from pure microbial cultures is often unreliable. In a proof-of-principle study to induce SM gene expression and production, we describe mixed "co-culturing" conditions and monitoring of messages via quantitative real-time PCR (qPCR). Gene expression of model bacterial strains (Pseudomonas aeruginosa PAO1 and Roseobacter denitrificans Och114) was analyzed in pure solo and mixed cocultures to infer the effects of interspecies interactions on gene expression in vitro, Two P. aeruginosa genes (PhzH coding for portions of the phenazine antibiotic pathway leading to pyocyanin (PCN) and the RhdA gene for thiosulfate: cyanide sulfurtransferase (Rhodanese)) and two R. denitrificans genes (BetaLact for metallo-beta-lactamase and the DMSP gene for dimethylpropiothetin dethiomethylase) were assessed for differential expression. Results showed that R. denitrificans DMSP and BetaLact gene expression became elevated in a mixed culture. In contrast, P. aeruginosa co-cultures with R. denitrificans or a third species did not increase target gene expression above control levels. This paper provides insight for better control of target SM gene expression in vitro and bypass complex genetic engineering manipulations.
Collapse
Affiliation(s)
- Crystal A Conway
- Oceanographic Center, Nova Southeastern University, Dania Beach, FL 33004, USA
| | | | | |
Collapse
|
24
|
Abstract
Over the past two decades, marine virology has progressed from a curiosity to an intensely studied topic of critical importance to oceanography. At concentrations of approximately 10 million viruses per milliliter of surface seawater, viruses are the most abundant biological entities in the oceans. The majority of these viruses are phages (viruses that infect bacteria). Through lysing their bacterial hosts, marine phages control bacterial abundance, affect community composition, and impact global biogeochemical cycles. In addition, phages influence their hosts through selection for resistance, horizontal gene transfer, and manipulation of bacterial metabolism. Recent work has also demonstrated that marine phages are extremely diverse and can carry a variety of auxiliary metabolic genes encoding critical ecological functions. This review is structured as a scientific "truth or dare," revealing several well-established "truths" about marine viruses and presenting a few "dares" for the research community to undertake in future studies.
Collapse
Affiliation(s)
- Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida 33701, USA.
| |
Collapse
|
25
|
Host responses of a marine bacterium, Roseobacter denitrificans OCh114, to phage infection. Arch Microbiol 2011; 194:323-30. [PMID: 22033766 DOI: 10.1007/s00203-011-0765-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/07/2011] [Accepted: 10/12/2011] [Indexed: 01/25/2023]
Abstract
RDJLΦ1 is a marine siphophage infecting Roseobacter denitrificans OCh114. In this study, host responses of R. denitrificans OCh114 to phage infection were investigated through in situ real-time atomic force microscopy (AFM) and proteomics approaches. As seen from the AFM observations, during phage infection processes, depression areas appeared on the host cell surface in a few minutes after infection and expanded in both diameter and depth over time and finally led to the collapse of host cells within 30 min. The two-dimensional polyacrylamide gel electrophoresis revealed significant changes in the proteomic composition of the host cells during infection. The expression of 91 proteins, including some involved in DNA transcription regulation and substrate transportation, was changed with at least twofold up- or downregulation as compared to the control without phage infection. This observed rapid lysis of host cells and the great changes in protein expression caused by phage infection added more perspectives to the documented important roles of viruses in mediating carbon cycling in the ocean.
Collapse
|
26
|
Huang S, Zhang Y, Chen F, Jiao N. Complete genome sequence of a marine roseophage provides evidence into the evolution of gene transfer agents in alphaproteobacteria. Virol J 2011; 8:124. [PMID: 21414219 PMCID: PMC3070671 DOI: 10.1186/1743-422x-8-124] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 03/17/2011] [Indexed: 11/26/2022] Open
Abstract
Roseophage RDJLΦ1 is a siphovirus isolated from South China Sea on Roseobacter denitrificans OCh114. Its virion encapsulates 62.7 kb genome that encodes 87 gene products. RDJLΦ1 shares similar genome organization and gene content with the marine bacteriophage ΦJL001 and Pseudomonas phages YuA and M6, which are different from those of typical λ- or Mu-like phages. Four hallmark genes (ORFs 81 to 84) of RDJLΦ1 were highly homologous to RcGTA-like genes 12 to 15. The largest gene (ORF 84) was predicted to encode a tail fibre protein that could be involved in host recognition. Extended phylogenetic and comparative genomic analyses based on 77 RcGTA-like element-containing bacterial genomes revealed that RcGTA-like genes 12 to 15 together appear to be a conserved modular element that could also be found in some phage or prophage genomes. Our study suggests that RcGTA-like genes-containing phages and prophages and complete RcGTAs possibly descended from a same prophage ancestor that had diverged and then evolved vertically. The complete genome of RDJLΦ1 provides evidence into the hypothesis that extant RcGTA may be a prophage remnant.
Collapse
Affiliation(s)
- Sijun Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | | | | | | |
Collapse
|
27
|
Lehours AC, Cottrell MT, Dahan O, Kirchman DL, Jeanthon C. Summer distribution and diversity of aerobic anoxygenic phototrophic bacteria in the Mediterranean Sea in relation to environmental variables. FEMS Microbiol Ecol 2010; 74:397-409. [PMID: 21039650 DOI: 10.1111/j.1574-6941.2010.00954.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria (AAP) represent an important fraction of bacterioplankton assemblages in various oceanic regimes. Although their abundance and distribution have been explored recently in diverse oceanic regions, the environmental factors controlling the population structure and diversity of these photoheterotrophic bacteria remain poorly understood. Here, we investigate the horizontal and vertical distributions and the genetic diversity of AAP populations collected in late summer throughout the Mediterranean Sea using pufM-temporal temperature gel gradient electrophoresis (TTGE) and clone library analyses. The TTGE profiles and clone libraries analyzed using multivariate statistical methods demonstrated a horizontal and vertical zonation of AAP assemblages. Physicochemical parameters such as pH, inorganic nitrogen compounds, photosynthetically active radiation, total organic carbon and to a lesser extent particulate organic nitrogen and phosphorus, and biogenic activities (e.g. bacterial production, cell densities), acted in synergy to explain the population changes with depth. About half of the pufM sequences were <94% identical to known sequences. The AAP populations were predominantly (~80%) composed of Gammaproteobacteria, unlike most previously explored marine systems. Our results suggest that genetically distinct ecotypes inhabiting different niches may exist in natural AAP populations of the Mediterranean Sea whose genetic diversity is typical of oligotrophic environments.
Collapse
Affiliation(s)
- Anne-Catherine Lehours
- UPMC Univ Paris 06, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | | | | | | | | |
Collapse
|
28
|
Huang C, Zhang Y, Jiao N. Phage resistance of a marine bacterium, Roseobacter denitrificans OCh114, as revealed by comparative proteomics. Curr Microbiol 2010; 61:141-7. [PMID: 20107991 DOI: 10.1007/s00284-010-9588-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 01/11/2010] [Indexed: 11/30/2022]
Abstract
Roseobacter is a dominant lineage in the marine environment. This group of bacteria is diverse in terms of both their phylogenetic composition and their physiological potential. Roseobacter denitrificans OCh114 is one of the most studied bacteria of the Roseobacter lineage. Recently, a lytic phage (RDJLPhi1) that infects this bacterium was isolated and a mutant strain (M1) of OCh114 that is resistant to RDJLPhi1 was also obtained. Here, we investigate the mechanisms supporting phage resistance of M1. Our results excluded the possibilities of several phage resistance mechanisms, including abortive infection, lysogeny, and the clustered regularly interspaced short palindromic repeats (CRISPRs) related mechanism. Adsorption kinetics assays revealed that adsorption inhibition might be a potential cause for the phage resistance of M1. Comparative proteomic analysis of M1 and OCh114 revealed significant changes in the membrane protein compliment of these bacteria. Five membrane proteins with important biological functions were significantly down-regulated in the phage-resistant M1. Meanwhile, several outer membrane porins with different modifications and an OmpA family domain protein were markedly up-regulated. We hypothesize that the down-regulated membrane proteins in M1 may serve as the potential phage receptors, whose absence prevented the adsorption of phage RDJLPhi1 to host cells and subsequent infection.
Collapse
|
29
|
Angly F, Youle M, Nosrat B, Srinagesh S, Rodriguez-Brito B, McNairnie P, Deyanat-Yazdi G, Breitbart M, Rohwer F. Genomic analysis of multiple Roseophage SIO1 strains. Environ Microbiol 2009; 11:2863-73. [PMID: 19659499 DOI: 10.1111/j.1462-2920.2009.02021.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Roseophage SIO1 is a lytic marine phage that infects Roseobacter SIO67, a member of the Roseobacter clade of near-shore alphaproteobacteria. Roseophage SIO1 was first isolated in 1989 and sequenced in 2000. We have re-sequenced and re-annotated the original isolate. Our current annotation could only assign functions to seven additional open reading frames, indicating that, despite the advances in bioinformatics tools and increased genomic resources, we are still far from being able to translate phage genomic sequences into biological functions. In 2001, we isolated four new strains of Roseophage SIO1 from California near-shore locations. The genomes of all four were sequenced and compared against the original Roseophage SIO1 isolated in 1989. A high degree of conservation was evident across all five genomes; comparisons at the nucleotide level yielded an average 97% identity. The observed differences were clustered in protein-encoding regions and were mostly synonymous. The one strain that was found to possess an expanded host range also showed notable changes in putative tail protein-coding regions. Despite the possibly rapid evolution of phage and the mostly uncharacterized diversity found in viral metagenomic data sets, these findings indicate that viral genomes such as the genome of SIO1-like Roseophages can be stably maintained over ecologically significant time and distance (i.e. over a decade and approximately 50 km).
Collapse
Affiliation(s)
- Florent Angly
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|