1
|
Dias MKHM, Jayathilaka ET, Jayasinghe JNC, Tennakoon N, Nikapitiya C, Whang I, De Zoysa M. Exploring the Proteomic Landscape and Immunomodulatory Functions of Edwardsiella piscicida Derived Extracellular Vesicles. J Microbiol Biotechnol 2024; 35:e2410001. [PMID: 39849936 PMCID: PMC11813346 DOI: 10.4014/jmb.2410.10001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 01/25/2025]
Abstract
Extracellular vesicles (EVs) have garnered attention in research for their potential as biochemical transporters and immune modulators, crucial for regulating the host immune system. The present study was conducted to isolate and characterize EVs from Gram negative bacteria Edwardsiella piscicida (EpEVs) and investigate their proteomic profile and immune responses. Isolation of EpEVs was carried out using ultracentrifugation method. Transmission electron microscopy results confirmed the spherical shape of EpEVs. The average size and zeta potential were 85.3 ± 1.8 nm and -8.28 ± 0.41 mV, respectively. EpEVs consisted of 1,487 distinct proteins. Subcellular localization analysis revealed that "cell" and "cell part" were the most predominant areas for protein localization. Proteins associated with virulence, along with several chaperones that facilitate protein folding and stability, were also present. No toxicity was detected when EpEVs were treated to fathead minnow (FHM) cells up to 100 μg/ml. Fluorescent-labeled EpEVs showed cellular internalization in FHM cells at 24 h post treatment (hpt). In-vitro gene expression in Raw 264.7 cells showed upregulation of interleukin (Il)6, Il1β, and interferon (Ifn)β with simultaneous upregulation of anti-inflammatory Il10. In vivo, gene expression revealed that except for heat shock protein (hsp)70, all other genes were upregulated suggesting that EpEVs induced the expression of immune-related genes. Western blot analysis showed increased protein levels of tumor necrosis factor (Tnf)α in EpEVs-treated spleen tissue of zebrafish. Our results confirm that EpEVs can be successfully isolated using the ultracentrifugation method. Furthermore, exploring immunomodulatory mechanism of EpEVs is essential for their potential use as novel therapeutics in fish medicine.
Collapse
Affiliation(s)
| | - E.H.T. Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Nipuna Tennakoon
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ilson Whang
- National Marine Biodiversity Institute of Korea (MABIK), Janghang-eup, Seocheon 33662, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
2
|
McLaughlin RW, Wang Y, Zhang S, Xie H, Wan X, Liu H, Hao Y, Wang C, Zheng J. Proteus faecis: a potentially pathogenic bacterium isolated from the freshwater Yangtze finless porpoise. Antonie Van Leeuwenhoek 2024; 118:7. [PMID: 39305395 DOI: 10.1007/s10482-024-02023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/12/2024] [Indexed: 01/18/2025]
Abstract
Proteus faecis is a gram-negative facultative anaerobic rod-shaped bacterium capable of swarming motility. It has been isolated from numerous sources such as humans, animals, and refuse and is considered potentially pathogenic towards humans. In this study, bacteria were isolated from the blowhole of a Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) living in captivity in China. One bacterium, P. faecis porpoise, was isolated and whole genome sequencing done. Biofilm formation, motility and antimicrobial resistance were also investigated. To find putative virulence factors, the genome of P. faecis strain porpoise was compared to the genomic sequences of eight other P. faecis isolates using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) ( https://www.bv-brc.org/ ). The goal of this study was to initially characterize the pathogenicity of this bacterium isolated from a cetacean species using both pathogenomics and conventional approaches.
Collapse
Affiliation(s)
- Richard William McLaughlin
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Liberal Arts & Sciences, Gateway Technical College, Kenosha, WI, 53144, USA
| | - YaLu Wang
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - ShuYa Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - HaiXia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - XiaoLing Wan
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hui Liu
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - YuJiang Hao
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - ChaoQun Wang
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - JinSong Zheng
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
3
|
Liu YL, Chen XW, Tian SQ, Tan XH, Peng B. Edwardsiella tarda Attenuates Virulence upon Oxytetracycline Resistance. J Proteome Res 2024; 23:2576-2586. [PMID: 38860290 DOI: 10.1021/acs.jproteome.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The relationship between antibiotic resistance and bacterial virulence has not yet been fully explored. Here, we use Edwardsiella tarda as the research model to investigate the proteomic change upon oxytetracycline resistance (LTB4-ROTC). Compared to oxytetracycline-sensitive E. tarda (LTB4-S), LTB4-ROTC has 234 differentially expressed proteins, of which the abundance of 84 proteins is downregulated and 15 proteins are enriched to the Type III secretion system, Type VI secretion system, and flagellum pathways. Functional analysis confirms virulent phenotypes, including autoaggregation, biofilm formation, hemolysis, swimming, and swarming, are impaired in LTB4-ROTC. Furthermore, the in vivo bacterial challenge in both tilapia and zebrafish infection models suggests that the virulence of LTB4-ROTC is attenuated. Analysis of immune gene expression shows that LTB4-ROTC induces a stronger immune response in the spleen but a weaker response in the head kidney than that induced by LTB4-S, suggesting it's a potential vaccine candidate. Zebrafish and tilapia were challenged with a sublethal dose of LTB4-ROTC as a live vaccine followed by LTB4-S challenge. The relative percentage of survival of zebrafish is 60% and that of tilapia is 75% after vaccination. Thus, our study suggests that bacteria that acquire antibiotic resistance may attenuate virulence, which can be explored as a potential live vaccine to tackle bacterial infection in aquaculture.
Collapse
Affiliation(s)
- Ying-Li Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xuan-Wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Si-Qi Tian
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xiao-Hua Tan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| |
Collapse
|
4
|
Qiao K, Zhao T, Wang L, Zhang W, Meng W, Liu F, Gao X, Zhu J. Screening and identification of functional bacterial attachment genes in aerobic granular sludge. J Environ Sci (China) 2024; 141:205-214. [PMID: 38408821 DOI: 10.1016/j.jes.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 02/28/2024]
Abstract
The screening and identification of attachment genes is important to exploring the formation mechanism of biofilms at the gene level. It is helpful to the development of key culture technologies for aerobic granular sludge (AGS). In this study, genome-wide sequencing and gene editing were employed for the first time to investigate the effects and functions of attachment genes in AGS. With the help of whole-genome analysis, ten attachment genes were screened from thirteen genes, and the efficiency of gene screening was greatly improved. Then, two attachment genes were selected as examples to further confirm the gene functions by constructing gene-knockout recombinant mutants of Stenotrophomonas maltophilia; when the two attachment genes were knocked out, the attachment potential was reduced by 50.67% and 43.93%, respectively. The results provide a new theoretical principle and efficient method for the development of AGS from the perspective of attachment genes.
Collapse
Affiliation(s)
- Kai Qiao
- School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Simulation, Beijing 100875, China
| | - Tingting Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China; R & D Centre of Aerobic Granule Technology, Beijing 100875, China
| | - Lei Wang
- School of Environment, Beijing Normal University, Beijing 100875, China; R & D Centre of Aerobic Granule Technology, Beijing 100875, China
| | - Wei Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Meng
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Fan Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xu Gao
- School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Simulation, Beijing 100875, China
| | - Jianrong Zhu
- School of Environment, Beijing Normal University, Beijing 100875, China; R & D Centre of Aerobic Granule Technology, Beijing 100875, China.
| |
Collapse
|
5
|
Guan Y, Zhang M, Wang Y, Liu Z, Zhao Z, Wang H, An D, Qian A, Kang Y, Sun W, Shan X. Functional analysis of ascP in Aeromonas veronii TH0426 reveals a key role in the regulation of virulence. JOURNAL OF MICROBIOLOGY 2022; 60:1153-1161. [PMCID: PMC9647756 DOI: 10.1007/s12275-022-2373-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yongchao Guan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Meng Zhang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Yingda Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Zhongzhuo Liu
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Zelin Zhao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Hong Wang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Dingjie An
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Aidong Qian
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Yuanhuan Kang
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Wuwen Sun
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| | - Xiaofeng Shan
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 P. R. China
| |
Collapse
|
6
|
Nwoko ESQA, Okeke IN. Bacteria autoaggregation: how and why bacteria stick together. Biochem Soc Trans 2021; 49:1147-1157. [PMID: 34110370 PMCID: PMC8286834 DOI: 10.1042/bst20200718] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/02/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Autoaggregation, adherence between identical bacterial cells, is important for colonization, kin and kind recognition, and survival of bacteria. It is directly mediated by specific interactions between proteins or organelles on the surfaces of interacting cells or indirectly by the presence of secreted macromolecules such as eDNA and exopolysaccharides. Some autoaggregation effectors are self-associating and present interesting paradigms for protein interaction. Autoaggregation can be beneficial or deleterious at specific times and niches. It is, therefore, typically regulated through transcriptional or post-transcriptional mechanisms or epigenetically by phase variation. Autoaggregation can contribute to bacterial adherence, biofilm formation or other higher-level functions. However, autoaggregation is only required for these phenotypes in some bacteria. Thus, autoaggregation should be detected, studied and measured independently using both qualitative and quantitative in vitro and ex vivo methods. If better understood, autoaggregation holds the potential for the discovery of new therapeutic targets that could be cost-effectively exploited.
Collapse
Affiliation(s)
- El-shama Q. A. Nwoko
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
7
|
Edrees A, Abdelhamed H, Nho SW, Ozdemir O, Karsi A, Essa M, Lawrence ML. An Edwardsiella piscicida esaS mutant reveals contribution to virulence and vaccine potential. Microb Pathog 2020; 143:104108. [PMID: 32145320 DOI: 10.1016/j.micpath.2020.104108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 11/15/2022]
Abstract
Edwardsiella piscicida is a Gram-negative pathogen that causes disease in diverse aquatic organisms. The disease leads to extensive losses in commercial aquaculture species, including farmed U.S. catfish. The type III secretion system (T3SS) often contributes to virulence of Gram-negative bacteria. The E. piscicida esaS gene encodes a predicted T3SS export apparatus protein. In the current study, an E. piscicida esaS mutant was constructed and characterized to increase our understanding of the role of T3SS in E. piscicida virulence. Deletion of esaS did not significantly affect biofilm formation and hemolytic activity of E. piscicida, but it had significant effects on expression of hemolysis and T3SS effector genes during biofilm growth. EpΔesaS showed significantly (P < 0.05) reduced virulence in catfish compared to the parent strain. No mortalities occurred in fish infected with EpΔesaS at 6.3 × 105 and 1.26 × 106 CFU/fish compared to 26% mortality in fish infected with wild-type E. piscicida at 7.5 × 105 CFU/fish. Bioluminescence imaging indicated that EpΔesaS invades catfish and colonizes for a short period in the organs. Furthermore, catfish immunized with EpΔesaS at 6.3 × 105 and 1.26 × 106 CFU provided 47% and 87% relative percent survival, respectively. These findings demonstrated that esaS plays a role in E. piscicida virulence, and the deletion mutant has vaccine potential for protection against wild-type E. piscicida infection.
Collapse
Affiliation(s)
- Asmaa Edrees
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Seong-Won Nho
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ozan Ozdemir
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Manal Essa
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mark L Lawrence
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
8
|
Shi YJ, Fang QJ, Huang HQ, Gong CG, Hu YH. HutZ is required for biofilm formation and contributes to the pathogenicity of Edwardsiella piscicida. Vet Res 2019; 50:76. [PMID: 31578154 PMCID: PMC6775658 DOI: 10.1186/s13567-019-0693-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Edwardsiella piscicida is a severe fish pathogen. Haem utilization systems play an important role in bacterial adversity adaptation and pathogenicity. In this study, a speculative haem utilization protein, HutZEp, was characterized in E. piscicida. hutZEp is encoded with two other genes, hutW and hutX, in an operon that is similar to the haem utilization operon hutWXZ identified in V. cholerae. However, protein activity analysis showed that HutZEp is probably not related to hemin utilization. To explore the biological role of HutZEp, a markerless hutZEp in-frame mutant strain, TX01ΔhutZ, was constructed. Deletion of hutZEp did not significantly affect bacterial growth in normal medium, in iron-deficient conditions, or in the presence of haem but significantly retarded bacterial biofilm growth. The expression of known genes related to biofilm growth was not affected by hutZEp deletion, which indicated that HutZEp was probably a novel factor promoting biofilm formation in E. piscicida. Compared to the wild-type TX01, TX01ΔhutZ exhibited markedly compromised tolerance to acid stress and host serum stress. Pathogenicity analysis showed that inactivation of hutZEp significantly impaired the ability of E. piscicida to invade and reproduce in host cells and to infect host tissue. In contrast to TX01, TX01ΔhutZ was defective in blocking host macrophage activation. The expression of hutZEp was directly regulated by the ferric uptake regulator Fur. This study is the first functional characterization of HutZ in a fish pathogen, and these findings suggested that HutZEp is essential for E. piscicida biofilm formation and contributes to host infection.
Collapse
Affiliation(s)
- Yan-Jie Shi
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066000, China.,Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qing-Jian Fang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hui-Qin Huang
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066000, China.,Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Chun-Guang Gong
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066000, China.
| | - Yong-Hua Hu
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066000, China. .,Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China. .,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
9
|
Putative virulence factors of Plesiomonas shigelloides. Antonie van Leeuwenhoek 2019; 112:1815-1826. [PMID: 31372945 DOI: 10.1007/s10482-019-01303-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022]
Abstract
Plesiomonas shigelloides is a Gram-negative rod-shaped bacterium which has been isolated from humans, animals and the environment. It has been associated with diarrhoeal disease in humans and various epizootic diseases in animals. In this study P. shigelloides strains were isolated from the faecal material of a captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) living in semi-natural conditions in China. Plesiomonas shigelloides strain EE2 was subjected to whole genome sequencing. The draft genome was then compared to the genome sequences of ten other P. shigelloides isolates using the Pathosystems Resource Integration Center pipeline. In addition to several virulence factors which have been previously reported, we are proposing new candidate virulence factors such as a repeats-in-toxin protein, lysophospholipase, a twin-arginine translocation system and the type VI secretion effector Phospholipase A1.
Collapse
|