1
|
Dong R, Zhang L, Wang X, Hu X, Sun J, Bao M, Li H. Biological/physical particles interact to degrade marine oil spills. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125494. [PMID: 40279751 DOI: 10.1016/j.jenvman.2025.125494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/01/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
After marine oil spills, suspended physical particles and extracellular polymeric substances (EPS) secreted by bacteria can aggregate with oil to form marine oil snow (MOS), which determines the vertical migration and biodegradation processes of the submerged oil. Here, we investigated the biodegradation of oil spills during the formation of MOS under different average energy dissipation rates (ε) and different ratios of particles. Furthermore, we elucidated the biodegradation mechanism of oil spills from a spatiotemporal perspective. The ε plays a major role (either promoting or inhibiting) in the biodegradation effect of oil spills, and there is a proportional threshold for biological/physical particles, which can regulate the ε's effect on degradation. The oil-water interfacial tension, the encapsulation of oil droplets by particles, hydrogen bonds, and the vertical distribution of oil droplets (suspended or deposited) will also jointly affect the particles threshold on this basis, thereby influencing the biodegradation of oil spills. When the proportion of XG exceeds the threshold (kaolinite: XG = 1:3 at 150 rpm and 1:1 at 200 rpm), the originally promotive role of ε on n-alkane degradation shifts to inhibition, while its inhibition impact on PAHs biodegradation shifts to enhancement, respectively. Notably, in nearshore and extreme environments (storm or strong wave conditions), particles are more conducive to the degradation of n-alkanes and PAHs, respectively. This study will further broaden the research perspective on the environmental behavior of marine oil spills in the presence of MOS and providing a theoretical basis for predicting the fate of oil spills in nearshore environments.
Collapse
Affiliation(s)
- Ranran Dong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Li Zhang
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536015, China
| | - Xinping Wang
- North China Sea Ecological Center, Ministry of Natural Resources, Qingdao, 266033, China
| | - Xin Hu
- Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Junqing Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
2
|
Xu W, Xu Y, Sun R, Rey Redondo E, Leung KK, Wan SH, Li J, Yung CCM. Revealing the intricate temporal dynamics and adaptive responses of prokaryotic and eukaryotic microbes in the coastal South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:176019. [PMID: 39236827 DOI: 10.1016/j.scitotenv.2024.176019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
This comprehensive two-year investigation in the coastal South China Sea has advanced our understanding of marine microbes at both community and genomic levels. By combining metagenomics and metatranscriptomics, we have revealed the intricate temporal dynamics and remarkable adaptability of microbial communities and phytoplankton metagenome-assembled genomes (MAGs) in response to environmental fluctuations. We observed distinct seasonal shifts in microbial community composition and function: cyanobacteria were predominant during warmer months, whereas photosynthetic protists were more abundant during colder seasons. Notably, metabolic marker KOs of photosynthesis were consistently active throughout the year, underscoring the persistent role of these processes irrespective of seasonal changes. Our analysis reveals that environmental parameters such as temperature, salinity, and nitrate concentrations profoundly influence microbial community composition, while temperature and silicate have emerged as crucial factors shaping their functional traits. Through the recovery and analysis of 37 phytoplankton MAGs, encompassing nine prokaryotic cyanobacteria and 28 eukaryotic protists from diverse phyla, we have gained insights into their genetic diversity and metabolic capabilities. Distinct profiles of photosynthesis-related pathways including carbon fixation, carotenoid biosynthesis, photosynthesis-antenna proteins, and photosynthesis among the MAGs indicated their genetic adaptations to changing environmental conditions. This study not only enhances our understanding of microbial dynamics in coastal marine ecosystems but also sheds light on the ecological roles and adaptive responses of different microbial groups to environmental changes.
Collapse
Affiliation(s)
- Wenqian Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yangbing Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruixian Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Elvira Rey Redondo
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ka Kiu Leung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Siu Hei Wan
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiying Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Charmaine C M Yung
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
3
|
Cao Y, Zhang B, Chen B. Challenging plastic pollution with hydrocarbonoclastic lineages. Trends Biotechnol 2024:S0167-7799(24)00292-0. [PMID: 39510852 DOI: 10.1016/j.tibtech.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The hydrocarbonoclastic lineages that have existed for millennia are responsible for the degradation of diverse aliphatic and aromatic compounds, regulating the ocean hydrocarbon cycles. Given the metabolic similarities in breaking down plastics and hydrocarbons, a thorough understanding and leveraging of these processes can provide biotechnologically based solutions to tackle global plastic pollution.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St John's, NL A1B 3X5, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St John's, NL A1B 3X5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St John's, NL A1B 3X5, Canada
| |
Collapse
|
4
|
Góngora E, Lirette AO, Freyria NJ, Greer CW, Whyte LG. Metagenomic survey reveals hydrocarbon biodegradation potential of Canadian high Arctic beaches. ENVIRONMENTAL MICROBIOME 2024; 19:72. [PMID: 39294752 PMCID: PMC11411865 DOI: 10.1186/s40793-024-00616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Decreasing sea ice coverage across the Arctic Ocean due to climate change is expected to increase shipping activity through previously inaccessible shipping routes, including the Northwest Passage (NWP). Changing weather conditions typically encountered in the Arctic will still pose a risk for ships which could lead to an accident and the uncontrolled release of hydrocarbons onto NWP shorelines. We performed a metagenomic survey to characterize the microbial communities of various NWP shorelines and to determine whether there is a metabolic potential for hydrocarbon degradation in these microbiomes. RESULTS We observed taxonomic and functional gene evidence supporting the potential of NWP beach microbes to degrade various types of hydrocarbons. The metagenomic and metagenome-assembled genome (MAG) taxonomy showed that known hydrocarbon-degrading taxa are present in these beaches. Additionally, we detected the presence of biomarker genes of aerobic and anaerobic degradation pathways of alkane and aromatic hydrocarbons along with complete degradation pathways for aerobic alkane degradation. Alkane degradation genes were present in all samples and were also more abundant (33.8 ± 34.5 hits per million genes, HPM) than their aromatic hydrocarbon counterparts (11.7 ± 12.3 HPM). Due to the ubiquity of MAGs from the genus Rhodococcus (23.8% of the MAGs), we compared our MAGs with Rhodococcus genomes from NWP isolates obtained using hydrocarbons as the carbon source to corroborate our results and to develop a pangenome of Arctic Rhodococcus. Our analysis revealed that the biodegradation of alkanes is part of the core pangenome of this genus. We also detected nitrogen and sulfur pathways as additional energy sources and electron donors as well as carbon pathways providing alternative carbon sources. These pathways occur in the absence of hydrocarbons allowing microbes to survive in these nutrient-poor beaches. CONCLUSIONS Our metagenomic analyses detected the genetic potential for hydrocarbon biodegradation in these NWP shoreline microbiomes. Alkane metabolism was the most prevalent type of hydrocarbon degradation observed in these tidal beach ecosystems. Our results indicate that bioremediation could be used as a cleanup strategy, but the addition of adequate amounts of N and P fertilizers, should be considered to help bacteria overcome the oligotrophic nature of NWP shorelines.
Collapse
Affiliation(s)
- Esteban Góngora
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada.
| | - Antoine-O Lirette
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| | - Nastasia J Freyria
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| | - Charles W Greer
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
- Energy, Mining and Environment Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, Canada
| | - Lyle G Whyte
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
5
|
Cao Y, Zhang B, Song X, Dong G, Zhang Y, Chen B. Polyhydroxybutyrate Plastics Show Rapid Disintegration and More Straightforward Biogeochemical Impacts than Polyethylene under Marine Biofragmentation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39047231 DOI: 10.1021/acs.est.4c04639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Although massive studies have investigated the spatiotemporally occurring marine plastisphere, a new microbial ecosystem colonizing the surfaces of plastics, the resulting biofragmentation process and impacts of plastics on biogeochemical cycles remain largely unknown. Here, we leverage synchrotron-based Fourier transform infrared spectromicroscopy (FTIR mapping) and metagenomic sequencing to explore independent marine microcosms amended with petroleum-based polyethylene (PE) and biobased polyhydroxybutyrate (PHB) plastic films. FTIR mapping results demonstrate unequal fragmentation scenarios by which the PE plastic rarely releases oxidized fragments while PHB disintegrates quickly, gradually forming fragments composed of extracellular polymeric substances resembling plastic films. Metagenomic analysis shows the critical role of hydrocarbonoclastic lineages in the biodegradation of the two plastics by the fatty acid degradation pathway, where the PE plastics host different microbial trajectories between the plastisphere (dominated by Alcanivorax) and surrounding seawater. In contrast, the PHB addition demonstrates decreased microbial richness and diversity, consistent community composition (dominated by Phaeobacter and Marinobacter), and apparently stimulated sulfur cycle and denitrification pathways in both the plastisphere and surrounding seawater. Our study gives scientific evidence on the marine biotic processes distinguishing petroleum- and biobased plastics, highlighting marine PHB input exerting straightforward impacts on the water phase and deserving critical management practices.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Xing Song
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Yuanmei Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
6
|
Seshan H, Santillan E, Constancias F, Chandra Segaran US, Williams RBH, Wuertz S. Metagenomics and metatranscriptomics suggest pathways of 3-chloroaniline degradation in wastewater reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166066. [PMID: 37549699 DOI: 10.1016/j.scitotenv.2023.166066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Biological wastewater treatment systems are often affected by shifts in influent quality, including the input of toxic chemicals. Yet the mechanisms underlying the adaptation of activated sludge process performance are rarely studied in a controlled and replicated experimental setting, particularly when challenged with a sustained toxin input. Three replicate bench-scale bioreactors were subjected to a chemical disturbance in the form of 3-chloroaniline (3-CA) over 132 days, after an acclimation period of 58 days, while three control reactors received no 3-CA input. Ammonia oxidation was initially affected by 3-CA. Within three weeks of the experiment, microbial communities in all three treatment reactors adapted to biologically degrade 3-CA resulting in partial ammonia oxidation recovery. Combining process and microbial community data from amplicon sequencing with potential functions gleaned from assembled metagenomics and metatranscriptomics data, two putative degradation pathways for 3-CA were identified. The first pathway, determined from metagenomics data, involves a benzoate dioxygenase and subsequent meta-cleavage of the aromatic ring. The second, determined from intensive short-term sampling for gene expression data in tandem with 3-CA degradation, involves a phenol monooxygenase followed by ortho-cleavage of the aromatic ring. The relative abundances of amplicon sequence variants associated with the genera Gemmatimonas, OLB8, and Taibaiella correlated significantly with 3-CA degradation. Metagenome-assembled genome data also showed the genus OLB8 to be differentially enriched in treatment reactors, making it a strong candidate as 3-CA degrader. Using replicated reactors, this study has demonstrated the impact of a sustained stress on the activated sludge process. The unique and novel features of this study include the identification of putative pathways and potential degraders of 3-CA using long-term and short-term sampling in tandem with multiple methods in a controlled and replicated experiment.
Collapse
Affiliation(s)
- Hari Seshan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA
| | - Ezequiel Santillan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA
| | - Florentin Constancias
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Uma Shankari Chandra Segaran
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, 119077, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore..
| |
Collapse
|
7
|
Hu X, Wang X, Zhao S, Cao L, Pan Y, Li F, Li F, Lu J, Li Y, Song G, Zhang H, Sun P, Bao M. Uncovering the dynamic evolution of microbes and n-alkanes: Insights from the Kuroshio Extension in the Northwest Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162418. [PMID: 36858214 DOI: 10.1016/j.scitotenv.2023.162418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Biomarkers offer unique insights into the state of the environment, but little is known about how they interact with microbial communities in the open ocean. This study investigated the correlative effects between microbial communities and n-alkane distribution in surface seawater and sediments from the Kuroshio Extension in the Northwest Pacific Ocean. The n-alkanes in both surface seawater and surface sediments were mostly derived from algae and higher plants, with some minor contributions from anthropogenic and biological sources. The composition of microbial communities in surface seawater and sediments was different. In surface seawater, the dominant taxa were Vibrio, Alteromonas, Clade_Ia, Pseudoalteromonas, and Synechococcus_CC9902, while the taxa in the sediments were mostly unclassified. These variations/fluctuations of n-alkanes in three areas caused the aggregation of specialized microbial communities (Alteromonas). As the characteristic composition indexes of two typical n-alkanes, Short-chain n-alkane carbon preference index (CPI-L) and long-chain n-alkane carbon preference index (CPI-H) significantly influenced the microbial community structure in surface seawater, but not in surface sediments. Effect of CPI on microbial communities may be attributed to anthropogenic inputs or petroleum pollution. The abundance of hydrocarbon degradation genes also varied across the three different areas. Our work underscores that n-alkanes in the oceans alter the microbial community structure and enrich associated degradation genes. The functional differences in microbial communities within different areas contribute to their ecological uniqueness.
Collapse
Affiliation(s)
- Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China
| | - Shanshan Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Lixin Cao
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China
| | - Yaping Pan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Fujuan Li
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China
| | - Fengshu Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Jinren Lu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Guodong Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Honghai Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China.
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China.
| |
Collapse
|
8
|
Artika IM, Dewi YP, Nainggolan IM, Siregar JE, Antonjaya U. Real-Time Polymerase Chain Reaction: Current Techniques, Applications, and Role in COVID-19 Diagnosis. Genes (Basel) 2022; 13:genes13122387. [PMID: 36553654 PMCID: PMC9778061 DOI: 10.3390/genes13122387] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Successful detection of the first SARS-CoV-2 cases using the real-time polymerase chain reaction (real-time PCR) method reflects the power and usefulness of this technique. Real-time PCR is a variation of the PCR assay to allow monitoring of the PCR progress in actual time. PCR itself is a molecular process used to enzymatically synthesize copies in multiple amounts of a selected DNA region for various purposes. Real-time PCR is currently one of the most powerful molecular approaches and is widely used in biological sciences and medicine because it is quantitative, accurate, sensitive, and rapid. Current applications of real-time PCR include gene expression analysis, mutation detection, detection and quantification of pathogens, detection of genetically modified organisms, detection of allergens, monitoring of microbial degradation, species identification, and determination of parasite fitness. The technique has been used as a gold standard for COVID-19 diagnosis. Modifications of the standard real-time PCR methods have also been developed for particular applications. This review aims to provide an overview of the current applications of the real-time PCR technique, including its role in detecting emerging viruses such as SARS-CoV-2.
Collapse
Affiliation(s)
- I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Bogor 16911, Indonesia
- Correspondence:
| | - Yora Permata Dewi
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
| | - Ita Margaretha Nainggolan
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Ungke Antonjaya
- Eijkman Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta 10430, Indonesia
| |
Collapse
|
9
|
Cao Y, Zhang B, Cai Q, Zhu Z, Liu B, Dong G, Greer CW, Lee K, Chen B. Responses of Alcanivorax species to marine alkanes and polyhydroxybutyrate plastic pollution: Importance of the ocean hydrocarbon cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120177. [PMID: 36116568 DOI: 10.1016/j.envpol.2022.120177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Understanding microbial responses to hydrocarbon and plastic pollution are crucial for limiting the detrimental impacts of environmental contaminants on marine ecosystems. Herein, we reported a new Alcanivorax species isolated from the North Atlantic Ocean capable of degrading alkanes and polyhydroxybutyrate (PHB) plastic (one of the emerging bioplastics that may capture the future plastic market). The whole-genome sequencing showed that the species harbors three types of alkane 1-monooxygenases (AlkB) and one PHB depolymerase (PhaZ) to initiate the degradation of alkanes and plastics. Growth profiling demonstrated that n-pentadecane (C15, the main alkane in the marine environment due to cyanobacterial production other than oil spills) and PHB could serve as preferential carbon sources. However, the cell membrane composition, PhaZ activity, and expression of three alkB genes were utterly different when grown on C15 and PHB. Further, Alcanivorax was a well-recognized alkane-degrader that participated in the ocean hydrocarbon cycles linking with hydrocarbon production and removal. Our discovery supported that the existing biogeochemical processes may add to the marine ecosystem's resilience to the impacts of plastics.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Qinhong Cai
- Gaia Refinery, Saint John, NB E2J 2E7, Canada
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Bo Liu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
10
|
Song X, Zhang B, Cao Y, Liu B, Chen B. Shrimp-waste based dispersant as oil spill treating agent: Biodegradation of dispersant and dispersed oil. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129617. [PMID: 35872457 DOI: 10.1016/j.jhazmat.2022.129617] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The emerging demand for the enhancement of biodegradation of persistent organic pollutants from marine oil spills using oil-treating agents to minimize the environmental impacts promotes the development of green dispersants. Shrimp waste is a potential raw material to generate green dispersants. The biodegradability of dispersed oil and dispersants themselves are key factors for the national consideration of the approval, stockpile, and usage of dispersants. However, it is unknown whether shrimp-waste-based dispersant (SWD) has high bioavailability or facilitates the biodegradation of dispersed oil. In this study, we tackled the biodegradation of oil dispersed by a purified SWD. Furthermore, the SWD biodegradability was evaluated by exploring the degradation genes via metagenomic sequencing, analyzing the enzymatic activities for dispersant biodegradation by molecular docking, and discussing the SWD toxicity. We discovered that the SWD facilitated the biodegradation of two crude oils (Alaska North Slope and Marine Fuel-No.6). The metagenomic analysis with molecular docking showed that fresh seawater had feasible enzymes to degrade the SWD to safety components. Additionally, the SWD was low toxic and high bioactive. The findings helped confirm that the purified SWD is an effective and eco-sustainable marine oil spill treating agent and tracked the biodegradation of dispersed oil and the SWD.
Collapse
Affiliation(s)
- Xing Song
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada.
| | - Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Bo Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| |
Collapse
|
11
|
Péquin B, Cai Q, Lee K, Greer CW. Natural attenuation of oil in marine environments: A review. MARINE POLLUTION BULLETIN 2022; 176:113464. [PMID: 35231783 DOI: 10.1016/j.marpolbul.2022.113464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Natural attenuation is an important process for oil spill management in marine environments. Natural attenuation affects the fate of oil by physical, chemical, and biological processes, which include evaporation, dispersion, dissolution, photo-oxidation, emulsification, oil particle aggregation, and biodegradation. This review examines the cumulative knowledge regarding these natural attenuation processes as well as their simulation and prediction using modelling approaches. An in-depth discussion is provided on how oil type, microbial community and environmental factors contribute to the biodegradation process. It describes how our understanding of the structure and function of indigenous oil degrading microbial communities in the marine environment has been advanced by the application of next generation sequencing tools. The synergetic and/or antagonist effects of oil spill countermeasures such as the application of chemical dispersants, in-situ burning and nutrient enrichment on natural attenuation were explored. Several knowledge gaps were identified regarding the synergetic and/or antagonistic effects of active response countermeasures on the natural attenuation/biodegradation process. This review highlighted the need for field data on both the effectiveness and potential detrimental effects of oil spill response options to support modelling and decision-making on their selection and application.
Collapse
Affiliation(s)
- Bérangère Péquin
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada.
| | - Qinhong Cai
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, Ontario, Canada
| | - Charles W Greer
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|