1
|
Vico P, Iriarte A, Bonilla S, Piccini C. Metagenomic analysis of Raphidiopsisraciborskii microbiome: beyond the individual. Biodivers Data J 2021; 9:e72514. [PMID: 34754266 PMCID: PMC8553701 DOI: 10.3897/bdj.9.e72514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Raphidiopsisraciborskii is a toxic, invasive bacteria with a defined biogeographic pattern attributed to the generation of ecotypes subjected to local environmental filters and to phenotypic plasticity. The interactions taking place between the cyanobacterium and the other bacteria inhabiting the external polysaccharide-rich matrix surrounding the cells, or phycosphere, may be ecotype-specific and would have different influence on the carbon and nutrient cycling in the ecosystem. Here, we describe the bacterial community or microbiome (assessed by 16S rRNA metagenomics) associated to two R.raciborskii strains that have been described as different ecotypes: the saxitoxin-producer MVCC19 and the non-toxic LB2897. Our results showed that both ecotypes share 50% of their microbiomes and differ in their dominant taxa. The taxon having the highest abundance in the microbiome of MVCC19 was Neorhizobium (22.5% relative abundance), while the dominant taxon in LB2897 was the PlanctomycetesSM1A02 (26.2% relative abundance). These groups exhibit different metabolic capabilities regarding nitrogen acquisition (symbiotic nitrogen-fixing in Neorhizobium vs. anammox in SM1A02), suggesting the existence of ecotype-specific microbiomes that play a relevant role in cyanobacterial niche-adaptation. In addition, as saxitoxin and analogues are nitrogen-rich (7 atoms per molecule), we hypothesise that saxitoxin-producing R.raciborskii benefits from external sources of nitrogen provided by the microbiome bacteria. Based on these findings, we propose that the mechanisms involved in the assembly of the cyanobacterial microbiome community are ecotype-dependent.
Collapse
Affiliation(s)
- Paula Vico
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Andrés Iriarte
- Instituto de Higiene, Facultad de Medicina, UDELAR, Montevideo, Uruguay Instituto de Higiene, Facultad de Medicina, UDELAR Montevideo Uruguay
| | - Sylvia Bonilla
- Sección Limnología. Facultad de Ciencias, UDELAR, Montevideo, Uruguay Sección Limnología. Facultad de Ciencias, UDELAR Montevideo Uruguay
| | - Claudia Piccini
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| |
Collapse
|
2
|
Vico P, Bonilla S, Cremella B, Aubriot L, Iriarte A, Piccini C. Biogeography of the cyanobacterium Raphidiopsis (Cylindrospermopsis) raciborskii: Integrating genomics, phylogenetic and toxicity data. Mol Phylogenet Evol 2020; 148:106824. [PMID: 32294544 DOI: 10.1016/j.ympev.2020.106824] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/07/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
Raphidiopsis (Cylindrospermopsis) raciborskii, a globally distributed bloom-forming cyanobacterium, produces either the cytotoxin cylindrospermopsin (CYL) in Oceania, Asia and Europe or the neurotoxin saxitoxin (STX) and analogues (paralytic shellfish poison, PSP) in South America (encoded by sxt genetic cluster) and none of them in Africa. Nevertheless, this particular geographic pattern is usually overlooked in current hypotheses about the species dispersal routes. Here, we combined genomics, phylogenetic analyses, toxicity data and a literature survey to unveil the evolutionary history and spread of the species. Phylogenies based on 354 orthologous genes from all the available genomes and ribosomal ITS sequences of the taxon showed two well-defined clades: the American, having the PSP producers; and the Oceania/Europe/Asia, including the CYL producers. We propose central Africa as the original dispersion center (non-toxic populations), reaching North Africa and North America (in former Laurasia continent). The ability to produce CYL probably took place in populations that advanced to sub-Saharan Africa and then to Oceania and South America. According to the genomic context of the sxt cluster found in PSP-producer strains, this trait was acquired once by horizontal transfer in South America, where the ability to produce CYL was lost.
Collapse
Affiliation(s)
- Paula Vico
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Avenida A. Navarro 3051, 11600 Montevideo, Uruguay
| | - Sylvia Bonilla
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay
| | - Bruno Cremella
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay; Laboratory of Environmental Analysis, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luis Aubriot
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Avenida A. Navarro 3051, 11600 Montevideo, Uruguay.
| | - Claudia Piccini
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay.
| |
Collapse
|
3
|
Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VF, Rangel LM, Azevedo SMFOE, Neilan BA. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. HARMFUL ALGAE 2016; 54:44-53. [PMID: 28073481 DOI: 10.1016/j.hal.2015.10.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/14/2015] [Indexed: 05/06/2023]
Abstract
The cyanobacterium Cylindrospermopsis raciborskii is a widespread species increasingly being recorded in freshwater systems around the world. It is of particular concern because strains in some geographic areas are capable of producing toxins with implications for human and animal health. Studies of this species have increased rapidly in the last two decades, especially in the southern hemisphere where toxic strains are prevalent. A clearer picture is emerging of the strategies adopted by this species to bloom and out-compete other species. This species has a high level of flexibility with respect to light and nutrients, with higher temperatures and carbon dioxide also promoting growth. There are two types of toxins produced by C. raciborskii: cylindrospermopsins (CYNs) and saxitoxins (STXs). The toxins CYNs are constitutively produced irrespective of environmental conditions and the ecological or physiological role is unclear, while STXs appear to serve as protection against high salinity and/or water hardness. It is also apparent that strains of this species can vary substantially in their physiological responses to environmental conditions, including CYNs production, and this may explain discrepancies in findings from studies in different geographical areas. The combination of a flexible strategy with respect to environmental conditions, and variability in strain response makes it a challenging species to manage. Our ability to improve bloom prediction will rely on a more detailed understanding of the complex physiology of this species.
Collapse
Affiliation(s)
- Michele A Burford
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia.
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Anusuya Willis
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia.
| | - Philip T Orr
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia; School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Valeria F Magalhaes
- Institute of Biophysics Carlos Chagas Filho - CCS, Federal University of Rio, Rio de Janeiro 21941-902, Brazil.
| | - Luciana M Rangel
- Institute of Biophysics Carlos Chagas Filho - CCS, Federal University of Rio, Rio de Janeiro 21941-902, Brazil.
| | - Sandra M F O E Azevedo
- Institute of Biophysics Carlos Chagas Filho - CCS, Federal University of Rio, Rio de Janeiro 21941-902, Brazil.
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Jiang Y, Xiao P, Yu G, Shao J, Liu D, Azevedo SMFO, Li R. Sporadic distribution and distinctive variations of cylindrospermopsin genes in cyanobacterial strains and environmental samples from Chinese freshwater bodies. Appl Environ Microbiol 2014; 80:5219-30. [PMID: 24928879 PMCID: PMC4136083 DOI: 10.1128/aem.00551-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/05/2014] [Indexed: 11/20/2022] Open
Abstract
Increasing reports of cylindrospermopsins (CYNs) in freshwater ecosystems have promoted the demand for identifying all of the potential CYN-producing cyanobacterial species. The present study explored the phylogenetic distribution and evolution of cyr genes in cyanobacterial strains and water samples from China. Four Cylindrospermopsis strains and two Raphidiopsis strains were confirmed to produce CYNs. Mutant cyrI and cyrK genes were observed in these strains. Cloned cyr gene sequences from eight water bodies were clustered with cyr genes from Cylindrospermopsis and Raphidiopsis (C/R group) in the phylogenetic trees with high similarities (99%). Four cyrI sequence types and three cyrJ sequence types were observed to have different sequence insertions and repeats. Phylogenetic analysis of the rpoC1 sequences of the C/R group revealed four conserved clades, namely, clade I, clade II, clade III, and clade V. High sequence similarities (>97%) in each clade and a divergent clade IV were observed. Therefore, CYN producers were sporadically distributed in congeneric and paraphyletic C/R group species in Chinese freshwater ecosystems. In the evolution of cyr genes, intragenomic translocations and intergenomic transfer between local Cylindrospermopsis and Raphidiopsis were emphasized and probably mediated by transposases. This research confirms the existence of CYN-producing Cylindrospermopsis in China and reveals the distinctive variations of cyr genes.
Collapse
Affiliation(s)
- Yongguang Jiang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peng Xiao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jihai Shao
- Resources and Environment College, Hunan Agricultural University, Changsha, People's Republic of China
| | - Deming Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, People's Republic of China
| | - Sandra M F O Azevedo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, Brazil
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
5
|
de la Cruz AA, Hiskia A, Kaloudis T, Chernoff N, Hill D, Antoniou MG, He X, Loftin K, O'Shea K, Zhao C, Pelaez M, Han C, Lynch TJ, Dionysiou DD. A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:1979-2003. [PMID: 24056894 DOI: 10.1039/c3em00353a] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cylindrospermopsin is an important cyanobacterial toxin found in water bodies worldwide. The ever-increasing and global occurrence of massive and prolonged blooms of cylindrospermopsin-producing cyanobacteria poses a potential threat to both human and ecosystem health. Its toxicity is associated with metabolic activation and may involve mechanisms that adversely affect a wide variety of targets in an organism. Cylindrospermopsin has been shown to be cytotoxic, dermatotoxic, genotoxic, hepatotoxic in vivo, developmentally toxic, and may be carcinogenic. Human exposure may occur through drinking water, during recreational activities and by consuming foods in which the toxin may have bioaccumulated. Drinking water shortages of sufficient quality coupled with growing human pressures and climate variability and change necessitate an integrated and sustainable water management program. This review presents an overview of the importance of cylindrospermopsin, its detection, toxicity, worldwide distribution, and lastly, its chemical and biological degradation and removal by natural processes and drinking water treatment processes.
Collapse
Affiliation(s)
- Armah A de la Cruz
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cylindrospermopsin and saxitoxin synthetase genes in Cylindrospermopsis raciborskii strains from Brazilian freshwater. PLoS One 2013; 8:e74238. [PMID: 24015317 PMCID: PMC3756036 DOI: 10.1371/journal.pone.0074238] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
The Cylindrospermopsis raciborskii population from Brazilian freshwater is known to produce saxitoxin derivatives (STX), while cylindrospermopsin (CYN), which is commonly detected in isolates from Australia and Asia continents, has thus far not been detected in South American strains. However, during the investigation for the presence of cyrA, cyrB, cyrC and cyrJ CYN synthetase genes in the genomes of four laboratory-cultured C. raciborskii Brazilian strains, the almost complete cyrA gene sequences were obtained for all strains, while cyrB and cyrC gene fragments were observed in two strains. These nucleotide sequences were translated into amino acids, and the predicted protein functions and domains confirmed their identity as CYN synthetase genes. Attempts to PCR amplify cyrJ gene fragments from the four strains were unsuccessful. Phylogenetic analysis grouped the nucleotide sequences together with their homologues found in known CYN synthetase clusters of C. raciborskii strains with high bootstrap support. In addition, fragments of sxtA, sxtB and sxtI genes involved in STX production were also obtained. Extensive LC-MS analyses were unable to detect CYN in the cultured strains, whereas the production of STX and its analogues was confirmed in CENA302, CENA305 and T3. To our knowledge, this is the first study reporting the presence of cyr genes in South American strains of C. raciborskii and the presence of sxt and cyr genes in a single C. raciborskii strain. This discovery suggests a shift in the type of cyanotoxin production over time of South American strains of C. raciborskii and contributes to the reconstruction of the evolutionary history and diversification of cyanobacterial toxins.
Collapse
|
7
|
Dittmann E, Fewer DP, Neilan BA. Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 2013; 37:23-43. [DOI: 10.1111/j.1574-6976.2012.12000.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 11/27/2022] Open
|
8
|
Sinha R, Pearson LA, Davis TW, Burford MA, Orr PT, Neilan BA. Increased incidence of Cylindrospermopsis raciborskii in temperate zones--is climate change responsible? WATER RESEARCH 2012; 46:1408-1419. [PMID: 22284981 DOI: 10.1016/j.watres.2011.12.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/23/2011] [Accepted: 12/06/2011] [Indexed: 05/31/2023]
Abstract
The bloom-forming, toxic cyanobacterium, Cylindrospermopsis raciborskii exhibits global distribution. In recent years both the occurrence and dominance of this species, particularly in temperate regions, has increased. Whilst this may be due to increased sensitivity of analytical detection methods or more rigorous sampling routines, it is possible that this expansion has been assisted by a number of changing conditions in these environments. The geographical expansion of both the organism and toxin production can be attributed to phenomena such as eutrophication and climate change. In this review, we discuss the occurrence of C. raciborskii with respect to current literature against the backdrop of increasing global temperatures. Critically, we identify a concerning trend between the geographical spread of this organism and global climate change.
Collapse
Affiliation(s)
- Rati Sinha
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Jiang Y, Xiao P, Yu G, Sano T, Pan Q, Li R. Molecular basis and phylogenetic implications of deoxycylindrospermopsin biosynthesis in the cyanobacterium Raphidiopsis curvata. Appl Environ Microbiol 2012; 78:2256-63. [PMID: 22287011 PMCID: PMC3302619 DOI: 10.1128/aem.07321-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/13/2012] [Indexed: 11/20/2022] Open
Abstract
New insights into the distribution and biochemistry of the cyanotoxin cylindrospermopsin (CYN) have been provided by the recent determination of its biosynthesis gene cluster (cyr) in several cyanobacterial species. Raphidiopsis curvata CHAB1150 isolated from China was analyzed for CYN analogues. Only 7-deoxy-CYN was detected in the cell extracts. The cyr gene cluster of R. curvata CHAB1150 was sequenced, and the cyr genes of this strain were found to have extremely high similarities (96% to 100%) to those from other nostocalean species. These species include Cylindrospermopsis raciborskii AWT205, Aphanizomenon sp. strain 10E6, and Aphanizomenon ovalisporum ILC-146. Insertion mutation was identified within the cyrI gene, and transcripts of cyrI and another functional gene cyrJ were detected in R. curvata CHAB1150. General congruence between the phylogenetic trees based on both cyr and 16S rrn was displayed. Neutral evolution was found on the whole sequences of the cyr genes, and 0 to 89 negative selected codons were detected in each gene. Therefore, the function of CyrI is to catalyze the oxygenation of 7-deoxy-CYN in CYN biosynthesis. The transcripts of the mutated cyrI gene may result from polycistronic transcription. The high conservation of the cyr genes may be ascribed to purifying selection and horizontal gene transfer.
Collapse
Affiliation(s)
- Yongguang Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate School of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peng Xiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate School of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Gongliang Yu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Tomoharu Sano
- National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Qianqian Pan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- Graduate School of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Renhui Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
10
|
Moisander PH, Cheshire LA, Braddy J, Calandrino ES, Hoffman M, Piehler MF, Paerl HW. Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability. FEMS Microbiol Ecol 2012; 79:800-11. [DOI: 10.1111/j.1574-6941.2011.01264.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 11/15/2011] [Accepted: 11/17/2011] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Lou Anne Cheshire
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; Morehead City; NC; USA
| | - Jeremy Braddy
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; Morehead City; NC; USA
| | - Elizabeth S. Calandrino
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; Morehead City; NC; USA
| | - Melissa Hoffman
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; Morehead City; NC; USA
| | - Michael F. Piehler
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; Morehead City; NC; USA
| | - Hans W. Paerl
- Institute of Marine Sciences; University of North Carolina at Chapel Hill; Morehead City; NC; USA
| |
Collapse
|