1
|
Wan L, Kimball K, Cusick A, Morocco F. Achromobacter xylosoxidans: An uncommon scalp infection leading to alopecia and biofilm formation. Diagn Microbiol Infect Dis 2025; 112:116797. [PMID: 40096799 DOI: 10.1016/j.diagmicrobio.2025.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Achromobacter xylosoxidans is an emerging opportunistic pathogen causing respiratory and systemic infections, mainly in immunocompromised individuals. Cutaneous infections remain uncommon. We present a unique case of a 60-year-old immunocompetent female with a persistent, pruritic, and malodorous scalp infection for over a year, leading to alopecia and biofilm formation, complicating treatment by increasing antibiotic resistance. Despite lacking typical risk factors, wound culture identified A. xylosoxidans with susceptibility to trimethoprim-sulfamethoxazole, which led to successful treatment alongside surgical debridement. This case highlights the need for clinicians to consider A. xylosoxidans in differential diagnoses of unusual skin infections, especially when biofilm formation is evident, and underscores the importance of targeted antibiotic therapy due to this pathogen's multidrug resistance.
Collapse
Affiliation(s)
- Leo Wan
- West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA, Address: 400 Lee St, Lewisburg, WV 24901, USA
| | - Kelly Kimball
- Division of Dermatology, OhioHealth Riverside Methodist Hospital, Columbus, OH, USA, Address: 1040 Delaware Ave, Marion, OH 43302, USA
| | - Austin Cusick
- Division of Dermatology, OhioHealth Riverside Methodist Hospital, Columbus, OH, USA, Address: 1040 Delaware Ave, Marion, OH 43302, USA
| | - Frank Morocco
- Division of Dermatology, OhioHealth Riverside Methodist Hospital, Columbus, OH, USA, Address: 1040 Delaware Ave, Marion, OH 43302, USA.
| |
Collapse
|
2
|
Kirikae M, Oshiro S, Takei S, Mizutani N, Itakura A, Soe PE, Htoon TT, Setk S, Tin HH, Kirikae T, Tada T. Highly carbapenem-resistant Achromobacter xylosoxidans harboring blaNDM-1 in Myanmar. Microbiol Spectr 2025:e0008025. [PMID: 40387330 DOI: 10.1128/spectrum.00080-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/07/2025] [Indexed: 05/20/2025] Open
Abstract
Achromobacter xylosoxidans is a multidrug-resistant, non-glucose-fermenting, gram-negative bacterium with intrinsic resistance to many antimicrobial agents. Between 2016 and 2017, five A. xylosoxidans isolates were obtained from five patients at three hospitals in Myanmar. Minimum inhibitory concentrations (MICs) against various antimicrobial agents were determined using the microdilution method. Whole genome sequencing was performed with the MiSeq and MinION platforms. Resistance genes and their surrounding structures were identified and compared. All five isolates were resistant to amikacin and aztreonam. Among them, one isolate, MyNCGM749, was resistant to imipenem and meropenem with MICs of 256 µg/mL and amikacin with MIC of >512 µg/mL but intermediate to ciprofloxacin with MIC of 2 µg/mL. The isolate carried blaNDM-1 encoding metallo-β-lactamase, blaPSE-1 encoding extended-spectrum-β-lactamase, and blaOXA-114 (encoding intrinsic -β-lactamase present in A. xylosoxidans), along with five aminoglycoside modification encoding genes including aac(6')-Ib, aph (6)-Id, aph(3'')-Ib, ant(4')-Iib, and aph(3')-VI on its chromosome. The genetic structure surrounding blaNDM-1 contained four IS91 elements identical to those found in carbapenem-resistant Pseudomonas asiatica isolates in Myanmar. This is the first report of A. xylosoxidans in Myanmar. Although A. xylosoxidans harboring blaNDM-1 has been reported in a single strain from India, its genomic details have not been previously described. This study indicates that the blaNDM-1-containing structure flanked by IS91 is spreading among gram-negative, non-glucose-fermenting bacteria in Myanmar and neighboring countries.IMPORTANCEAchromobacter species were originally environmental organisms that became opportunistic pathogens with multidrug resistance. Achromobacter xylosoxidans is associated with nosocomially acquired infections affecting multiple organ systems, including the respiratory and urinary tracts, and, less commonly, the cardiovascular and central nervous systems. To date, carbapenem-resistant A. xylosoxidans carrying carbapenemase-encoding genes has been reported in several countries, including Greece, India, Italy, Japan, Korea, Libya, and the Netherlands. In this molecular epidemiological study on A. xylosoxidans in Myanmar, we identified the genomic structure surrounding blaNDM-1, flanked by IS91. This structure may facilitate the spread of non-glucose-fermenting gram-negative bacteria, such as Achromobacter, Pseudomonas, and Stenotrophomonas species, in Asian countries.
Collapse
Affiliation(s)
- Maiko Kirikae
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | - Satoshi Oshiro
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | - Satomi Takei
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naeko Mizutani
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Pan Ei Soe
- National Health Laboratory, Yangon, Myanmar
| | | | - Swe Setk
- National Health Laboratory, Yangon, Myanmar
| | | | - Teruo Kirikae
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Tokyo, Japan
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Laboratory Technology, Juntendo University Faculty of Medical Science, Chiba, Japan
| |
Collapse
|
3
|
Juárez Zapata S, Benjumea Moreno C, Porrón C, Alonso-Tarrés C. Detection and analysis of an Achromobacter xylosoxidans outbreak in a urodynamics unit. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2025:S2529-993X(25)00047-4. [PMID: 40038030 DOI: 10.1016/j.eimce.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 03/06/2025]
Abstract
INTRODUCTION Achromobacter xylosoxidans is a gramnegative bacillus resistant to multiple antibiotics, present both in the environment and in hospitals. This study describes an outbreak of colonizations and infections by A. xylosoxidans in the urodynamics unit of the Puigvert Foundation. METHODS On November 11, 2022, a patient developed a fever, and A. xylosoxidans was detected in their urine and blood. The case was linked to a recent urodynamic study. As a result, all A. xylosoxidans cases since 2018 were reviewed, and inspections were conducted in the unit, along with the collection of 24 environmental samples. RESULTS The review identified 21 patients with A. xylosoxidans infections after urodynamic procedures since April 2022. Environmental microbiological controls revealed that pressure transducers were the likely source of infection. Corrective measures included the temporary closure of the unit, thorough cleaning with hypochlorite, use of single-use urinary catheters, daily replacement of equipment lines and pressure transducers, as well as other improvements in disinfection, handling, and workflows. A multidisciplinary team was formed to implement and supervise these actions. CONCLUSIONS The measures resulted in the elimination of the outbreak and the safe resumption of activities in the unit. This incident highlights the importance of continuous surveillance and rapid response in clinical settings to prevent infections and improve patient safety.
Collapse
Affiliation(s)
| | | | - Charo Porrón
- Enfermera Control de Infección, Centro Coordinador Programa VINCat, Hospitalet de Llobregat, Barcelona, Spain
| | - Carles Alonso-Tarrés
- Microbiología, Fundación Puigvert, Barcelona, Spain; Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
4
|
Zhang Y, Li K, Ru Y, Ma Y. Biofilm Compositions and Bacterial Diversity on Kitchen Towels in Daily Use. Microorganisms 2025; 13:97. [PMID: 39858865 PMCID: PMC11767729 DOI: 10.3390/microorganisms13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Towels with complex woven structures are susceptible to biofilm formation during daily use. The composition of biofilms formed on towels used under real-life conditions has yet to be studied. Thus, we investigated the color changes, structural integrity, and biofilm development on towels used continuously for 10 weeks by 12 volunteers in specific kitchen environments. Apparent biofilms composed of bacteria and extracellular polymeric substances (EPSs) were found on all used towels. The bacteria concentrations ranged from 4 to 7 log CFU/g. Proteins were the most abundant EPS, followed by polysaccharides and eDNA. A high-throughput sequencing method was employed to investigate the bacterial diversity on the towels. The predominant bacterial genera differed from towel to towel. Kocuria, Rothia, Psychrobacter, Enhydrobacter, and Pseudomonas are genera of relatively high abundance that may originate from the human body and foods. In addition, correlations among environmental factors, major bacterial genera, physical properties, and biofilm formation of the towels were analyzed, which could provide a scientific reference for maintaining towel hygiene.
Collapse
Affiliation(s)
| | | | | | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.Z.); (K.L.); (Y.R.)
| |
Collapse
|
5
|
Sfeir MM. Whatever Happened to Ticarcillin-clavulanate? We need to Resurrect it in the Era of Multidrug-resistant Gram-negative Bacteria. Clin Microbiol Infect 2024:S1198-743X(24)00547-0. [PMID: 39550031 DOI: 10.1016/j.cmi.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Affiliation(s)
- Maroun M Sfeir
- Department of Medicine, Saint George Medical Center, Ajaltoun, Lebanon.
| |
Collapse
|
6
|
Walker AC, Bhargava R, Bucher MJ, Argote YM, Brust AS, Czyż DM. Identification of proteotoxic and proteoprotective bacteria that non-specifically affect proteins associated with neurodegenerative diseases. iScience 2024; 27:110828. [PMID: 39310761 PMCID: PMC11414702 DOI: 10.1016/j.isci.2024.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/05/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
There are no cures for neurodegenerative protein conformational diseases (PCDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Emerging evidence suggests the gut microbiota plays a role in their pathogenesis, though the influences of specific bacteria on disease-associated proteins remain elusive. Here, we reveal the effects of 229 human bacterial isolates on the aggregation and toxicity of Aβ1-42, α-synuclein, and polyglutamine tracts in Caenorhabditis elegans expressing these culprit proteins. Our findings demonstrate that bacterial effects on host protein aggregation are consistent across different culprit proteins, suggesting that microbes affect protein stability by modulating host proteostasis rather than selectively targeting disease-associated proteins. Furthermore, we found that feeding C. elegans proteoprotective Prevotella corporis activates the heat shock response, revealing an unexpected discovery of a microbial influence on host proteostasis. Insight into how individual bacteria affect PCD proteins could open new strategies for prevention and treatment by altering the abundance of microbes.
Collapse
Affiliation(s)
- Alyssa C. Walker
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Rohan Bhargava
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Michael J. Bucher
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Yoan M. Argote
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Amanda S. Brust
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M. Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Hamed KE, Alsaif AN, Alhewairini SS, Sayyed RZ. Comprehensive analysis of microbiome biodiversity in popular date palm (Phoenix dactylifera L.) fruit varieties. Sci Rep 2024; 14:20658. [PMID: 39232047 PMCID: PMC11375083 DOI: 10.1038/s41598-024-71249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Due to its nutritional value and health benefits, the date palm (Phoenix dactylifera L.) is an essential dietary food crop throughout Middle Eastern and African countries. Consumers are concerned about the possible microbial contamination of dates, especially since most dates arriving in local markets are unprocessed. The absence of processing increases the possibility of microbial contamination, which raises the probability of microbial contamination. This study aims to analyze and evaluate the variability of fungal and bacterial microbiota identified in the most popular date palm fruits in Saudi Arabia. The study assessed ten date variety fruits from the most popular date palm varieties for consumption in Saudi Arabia and analyzed the microbial count. Morphological and molecular characterization and comparison of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences identified 78 fungi, including 36 distinct species across 15 fungal genera. Alternaria, Fusarium, Curvilaria, Aspergillus, and Penicillium were the most frequent genera among the ten fruit cultivars studied, according to ITS-rDNA sequence analysis. Furthermore, 36 bacterial isolates were obtained from ten date varieties studied, each with a unique colony morphology. These isolates were identified based on sequence alignment and comparison of their 16S rDNA internal spacer regions to those available in public databases. The results showed that the bacterial isolates included 15 species from five bacterial genera. The results suggested that Bacillus, Stenotrophomonas, and Brucella were the prevailing genera among the ten tested fruit varieties. Some bacterial genera, such as Brucella, Achromobacter, and Stenotrophomonas, are well-known potential human pathogens. Chaetomium globosum was also recognized as air pollution causing adverse health effects such as allergies and as the causal agent of human fungal infections among the tested date varieties; the Rashodiah type exhibited the highest fungal contamination, whereas the Sagai variety displayed the lowest fungal contamination. Conversely, the Sukkari, Barhi, and Mejdool varieties were the most contaminated with bacteria among the ten tested varieties, while the Khalas variety showed the least bacterial contamination. To the best of the authors' knowledge, this study provides the initial comprehensive account of the molecular and morphological identification of all fungal and bacterial genera associated with date palm (P. dactylifera) fruits.
Collapse
Affiliation(s)
- Khalid E Hamed
- Department of Plant Protection, College of Agriculture and Food, Qassim University, PO Box 6622, 51452, Buraidah, Qassim, Saudi Arabia
| | - Abdullah N Alsaif
- Department of Plant Protection, College of Agriculture and Food, Qassim University, PO Box 6622, 51452, Buraidah, Qassim, Saudi Arabia
| | - Saleh S Alhewairini
- Department of Plant Protection, College of Agriculture and Food, Qassim University, PO Box 6622, 51452, Buraidah, Qassim, Saudi Arabia.
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S. I. Patil Arts, G. B. Patel Science and STKV Sangh Commerce College, Shahada, 425409, India.
| |
Collapse
|
8
|
Kryuchkova YV, Neshko AA, Gogoleva NE, Balkin AS, Safronova VI, Kargapolova KY, Shagimardanova EI, Gogolev YV, Burygin GL. Genomics and taxonomy of the glyphosate-degrading, copper-tolerant rhizospheric bacterium Achromobacter insolitus LCu2. Antonie Van Leeuwenhoek 2024; 117:105. [PMID: 39043973 DOI: 10.1007/s10482-024-01989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/15/2024] [Indexed: 07/25/2024]
Abstract
A rhizosphere strain, Achromobacter insolitus LCu2, was isolated from alfalfa (Medicago sativa L.) roots. It was able to degrade of 50% glyphosate as the sole phosphorus source, and was found resistant to 10 mM copper (II) chloride, and 5 mM glyphosate-copper complexes. Inoculation of alfalfa seedlings and potato microplants with strain LCu2 promoted plant growth by 30-50%. In inoculated plants, the toxicity of the glyphosate-copper complexes to alfalfa seedlings was decreased, as compared with the noninoculated controls. The genome of A. insolitus LCu2 consisted of one circular chromosome (6,428,890 bp) and encoded 5843 protein genes and 76 RNA genes. Polyphasic taxonomic analysis showed that A. insolitus LCu2 was closely related to A. insolitus DSM23807T on the basis of the average nucleotide identity of the genomes of 22 type strains and the multilocus sequence analysis. Genome analysis revealed genes putatively responsible for (1) plant growth promotion (osmolyte, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase biosynthesis and auxin metabolism); (2) degradation of organophosphonates (glyphosate oxidoreductase and multiple phn clusters responsible for the transport, regulation and C-P lyase cleavage of phosphonates); and (3) tolerance to copper and other heavy metals, effected by the CopAB-CueO system, responsible for the oxidation of copper (I) in the periplasm, and by the efflux Cus system. The putative catabolic pathways involved in the breakdown of phosphonates are predicted. A. insolitus LCu2 is promising in the production of crops and the remediation of soils contaminated with organophosphonates and heavy metals.
Collapse
Affiliation(s)
- Yelena V Kryuchkova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, Russia, 410049.
| | - Alexandra A Neshko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Natalia E Gogoleva
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, 11 Pionerskaya Street, Orenburg, Russia, 460000
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420111
| | - Alexander S Balkin
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, 11 Pionerskaya Street, Orenburg, Russia, 460000
| | - Vera I Safronova
- All-Russia Research Institute for Agricultural Microbiology, 3 Podbelsky Shausse, Pushkin 8, St. Petersburg, Russia, 196608
| | - Kristina Yu Kargapolova
- Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, 4 Pyotr Stolypin Avenue, Saratov, Russia, 410012
| | - Elena I Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420111
- Moscow Clinical Scientific Center named after Loginov MHD, 1 Novogireevskaya Street, Moscow, Russia, 111123
| | - Yuri V Gogolev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420111
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, Kazan, Russia, 420111
| | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, Russia, 410049
- Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, 4 Pyotr Stolypin Avenue, Saratov, Russia, 410012
- Institute of Chemistry, Chernyshevsky Saratov State University, 83 Astrakhanskaya Street, Saratov, Russia, 410012
| |
Collapse
|
9
|
Yang SY, Lai CY, Zhao HP. Influence of microbial inoculation site on trichloroethylene degradation in electrokinetic-enhanced bioremediation of low-permeability soils. ENVIRONMENTAL RESEARCH 2024; 252:118899. [PMID: 38604486 DOI: 10.1016/j.envres.2024.118899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The integration of electrokinetic and bioremediation (EK-BIO) represents an innovative approach for addressing trichloroethylene (TCE) contamination in low-permeability soil. However, there remains a knowledge gap in the impact of the inoculation approach on TCE dechlorination and the microbial response with the presence of co-existing substances. In this study, four 1-dimensional columns were constructed with different inoculation treatments. Monitoring the operation conditions revealed that a stabilization period (∼40 days) was required to reduce voltage fluctuation. The group with inoculation into the soil middle (Group B) exhibited the highest TCE dechlorination efficiency, achieving a TCE removal rate of 84%, which was 1.1-3.2 fold higher compared to the others. Among degraded products in Group B, 39% was ethylene. The physicochemical properties of the post-soil at different regions illustrated that dechlorination coincided with the Fe(III) and SO42- reduction, meaning that the EK-BIO system promoted the formation of a reducing environment. Microbial community analysis demonstrated that Dehalococcoides was only detected in the treatment of injection at soil middle or near the cathode, with abundance enriched by 2.1%-7.2%. The principal components analysis indicated that the inoculation approach significantly affected the evolution of functional bacteria. Quantitative polymerase chain reaction (qPCR) analysis demonstrated that Group B exhibited at least 2.8 and 4.2-fold higher copies of functional genes (tceA, vcrA) than those of other groups. In conclusion, this study contributes to the development of effective strategies for enhancing TCE biodechlorination in the EK-BIO system, which is particularly beneficial for the remediation of low-permeability soils.
Collapse
Affiliation(s)
- Si-Ying Yang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Jean-Pierre V, Sorlin P, Pantel A, Chiron R, Lavigne JP, Jeannot K, Marchandin H. Cefiderocol susceptibility of Achromobacter spp.: study of an accurately identified collection of 230 strains. Ann Clin Microbiol Antimicrob 2024; 23:54. [PMID: 38886694 PMCID: PMC11184864 DOI: 10.1186/s12941-024-00709-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Achromobacter spp. are opportunistic pathogens, mostly infecting immunocompromised patients and patients with cystic fibrosis (CF) and considered as difficult-to-treat pathogens due to both intrinsic resistance and the possibility of acquired antimicrobial resistance. Species identification remains challenging leading to imprecise descriptions of resistance in each taxon. Cefiderocol is a broad-spectrum siderophore cephalosporin increasingly used in the management of Achromobacter infections for which susceptibility data remain scarce. We aimed to describe the susceptibility to cefiderocol of a collection of Achromobacter strains encompassing different species and isolation sources from CF or non-CF (NCF) patients. METHODS We studied 230 Achromobacter strains (67 from CF, 163 from NCF patients) identified by nrdA gene-based analysis, with available susceptibility data for piperacillin-tazobactam, meropenem and trimethoprim-sulfamethoxazole. Minimal inhibitory concentrations (MICs) of cefiderocol were determined using the broth microdilution reference method according to EUCAST guidelines. RESULTS Strains belonged to 15 species. A. xylosoxidans represented the main species (71.3%). MICs ranged from ≤ 0.015 to 16 mg/L with MIC50/90 of ≤ 0.015/0.5 mg/L overall and 0.125/2 mg/L against 27 (11.7%) meropenem-non-susceptible strains. Cefiderocol MICs were not related to CF/NCF origin or species although A. xylosoxidans MICs were statistically lower than those of other species considered as a whole. Considering the EUCAST non-species related breakpoint (2 mg/L), 228 strains (99.1%) were susceptible to cefiderocol. The two cefiderocol-resistant strains (A. xylosoxidans from CF patients) represented 3.7% of meropenem-non-susceptible strains and 12.5% of MDR strains. CONCLUSIONS Cefiderocol exhibited excellent in vitro activity against a large collection of accurately identified Achromobacter strains, irrespective of species and origin.
Collapse
Affiliation(s)
- Vincent Jean-Pierre
- HydroSciences Montpellier, Univ. Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU de Nîmes, 34093, Montpellier, France
| | - Pauline Sorlin
- HydroSciences Montpellier, Univ. Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU de Nîmes, 34093, Montpellier, France
| | - Alix Pantel
- VBIC, INSERM U1047, Univ. Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU de Nîmes, 30029, Nîmes Cedex 9, France
| | - Raphaël Chiron
- HydroSciences Montpellier, Univ. Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU de Montpellier, 34093, Montpellier, France
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Univ. Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU de Nîmes, 30029, Nîmes Cedex 9, France
| | - Katy Jeannot
- Laboratoire Associé Au Centre National de Référence de La Résistance Aux Antibiotiques, CHU de Besançon, 25000, Besançon, France
| | - Hélène Marchandin
- HydroSciences Montpellier, Univ. Montpellier, CNRS, IRD, Service de Microbiologie et Hygiène Hospitalière, CHU de Nîmes, 34093, Montpellier, France.
| |
Collapse
|
11
|
Sorlin P, Brivet E, Jean-Pierre V, Aujoulat F, Besse A, Dupont C, Chiron R, Jumas-Bilak E, Menetrey Q, Marchandin H. Prevalence and variability of siderophore production in the Achromobacter genus. Microbiol Spectr 2024; 12:e0295323. [PMID: 38315029 PMCID: PMC10913535 DOI: 10.1128/spectrum.02953-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024] Open
Abstract
Achromobacter spp. are opportunistic pathogens of environmental origin increasingly isolated in patients with underlying conditions like cystic fibrosis (CF). Despite recent advances, their virulence factors remain incompletely studied, and siderophore production has not yet been investigated in this genus. The aim of this study was to evaluate the production of siderophores in a large collection of Achromobacter spp. and evaluate the variability according to the origin of the strain and species. A total of 163 strains were studied, including 128 clinical strains (CF and non-CF patients) and 35 strains of environmental origin. Siderophores were quantified by the liquid chrome azurol-sulphonate assay. Species were identified by nrdA gene-based phylogeny. Strains were assigned to 20 species, with Achromobacter xylosoxidans being the most represented (51.5% of strains). Siderophore production was observed in 72.4% of the strains, with amounts ranging from 10.1% to 90% siderophore units. A significantly higher prevalence of siderophore-producing strains and greater production of siderophores were observed for clinical strains compared with strains of environmental origin. Highly variable observations were made according to species: A. xylosoxidans presented unique characteristics (one of the highest prevalence of producing strains and highest amounts produced, particularly by CF strains). Siderophores are important factors for bacterial growth commonly produced by members of the Achromobacter genus. The significance of the observations made during this study must be further investigated. Indeed, the differences observed according to species and the origin of strains suggest that siderophores may represent important determinants of the pathophysiology of Achromobacter spp. infections and also contribute to the particular epidemiological success of A. xylosoxidans in human infections. IMPORTANCE Achromobacter spp. are recognized as emerging opportunistic pathogens in humans with various underlying diseases, including cystic fibrosis (CF). Although their pathophysiological traits are increasingly studied, their virulence factors remain incompletely described. Particularly, siderophores that represent important factors of bacterial growth have not yet been studied in this genus. A population-based study was performed to explore the ability of members of the Achromobacter genus to produce siderophores, both overall and in relevant subgroups (Achromobacter species; strain origin, either clinical-from CF or non-CF patients-or environmental). This study provides original data showing that siderophore production is a common trait of Achromobacter strains, particularly observed among clinical strains. The major species, Achromobacter xylosoxidans, encompassed both one of the highest prevalence of siderophore-producing strains and strains producing the largest amounts of siderophores, particularly observed for CF strains. These observations may represent additional advantages accounting for the epidemiological success of this species.
Collapse
Affiliation(s)
- P. Sorlin
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - E. Brivet
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - V. Jean-Pierre
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Service de Microbiologie et d’Hygiène hospitalière, CHU de Nîmes, Nîmes, France
| | - F. Aujoulat
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - A. Besse
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - C. Dupont
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Laboratoire de Bactériologie, CHU de Montpellier, Montpellier, France
| | - R. Chiron
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Centre de Ressources et de Compétences de la Mucoviscidose, CHU de Montpellier, Montpellier, France
| | - E. Jumas-Bilak
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Laboratoire d’Écologie Microbienne Hospitalière, CHU de Montpellier, Montpellier, France
| | - Q. Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, Lille, France
| | - H. Marchandin
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Service de Microbiologie et d’Hygiène hospitalière, CHU de Nîmes, Nîmes, France
| |
Collapse
|
12
|
Kar M, Singh R, Tejan N, Jamwal A, Dubey A, Chaudhary R, Sahu C, Patel SS, Kumari P, Ghar M. One year experience of Achromobacter bacteremia at a tertiary care hospital in Northern India. Access Microbiol 2023; 5:000588.v3. [PMID: 37841106 PMCID: PMC10569658 DOI: 10.1099/acmi.0.000588.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/18/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Achromobacter is a Gram-negative, motile, obligate aerobic and non-fermentative bacterium. It is an emerging pathogen in the hospital environment as it is frequently found in various solutions. Hypothesis/Gap Statement Information about the incidence and risk factors of Achromobacter bacteremia from India is limited. Aim We conducted this study to identify the risk factors and underlying conditions predisposing to bacteremia by Achromobacter spp. and analyse the antibiotic resistance pattern of the isolates. Methodology We performed a retrospective observational study where automated blood cultures positive for Achromobacter spp. were assessed for clinical characteristics and antibiotic susceptibility patterns from January 2022 to December 2022 in the microbiology laboratory of a tertiary care centre in Northern India. Results A total of 14 cases (14/2435, 0.57 %) of Achromobacter spp. were identified from bloodstream infections in one year. The mean age of the patients was 37.59±23.17 years with a male predominance (8/14, 57.1 %). All patients were managed on intravenous antibiotics and intravenous access as peripheral line catheters and only 5(5/14, 35.7 %) patients were managed on central line catheters. The isolates were found highly susceptible to ticarcillin-clavulanic acid (14/14, 100.0 %) followed by fluoroquinolones (12/14, 85.72 %) and trimethoprim-sulphamethoxazole (12/14, 85.72 %). Only 57.14 % (8/14, 57.14 %) of the patients were susceptible to piperacillin-tazobactam. The all-cause 40 day mortality was observed in 35.7 % (5/14, 35.7 %) with two deaths that were directly attributable to sepsis. Conclusion This study provides insight into the incidence of Achromobacter bacteremia at our centre and the necessary antibiotic therapy to combat it.
Collapse
Affiliation(s)
- Mitra Kar
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Romya Singh
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Nidhi Tejan
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Ashima Jamwal
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Akanksha Dubey
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Radhika Chaudhary
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Sangram Singh Patel
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Pooja Kumari
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| | - Malay Ghar
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh-226014, India
| |
Collapse
|
13
|
Burnett AJN, Rodriguez E, Constable S, Lowrance B, Fish M, Weadge JT. WssI from the Gram-Negative Bacterial Cellulose Synthase is an O-acetyltransferase that Acts on Cello-oligomers with Several Acetyl Donor Substrates. J Biol Chem 2023:104849. [PMID: 37224964 PMCID: PMC10302187 DOI: 10.1016/j.jbc.2023.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
In microbial biofilms, bacterial cells are encased in a self-produced matrix of polymers (e.g., exopolysaccharides) that enable surface adherence and protect against environmental stressors. For example, the wrinkly spreader phenotype of Pseudomonas fluorescens colonizes food/water sources and human tissue to form robust biofilms that can spread across surfaces. This biofilm largely consists of bacterial cellulose produced by the cellulose synthase proteins encoded by the wss operon, which also occurs in other species, including pathogenic Achromobacter species. Although phenotypic mutant analysis of the wssFGHI genes has previously shown that they are responsible for acetylation of bacterial cellulose, their specific roles remain unknown and distinct from the recently identified cellulose phosphoethanolamine modification found in other species. Here we have purified the C-terminal soluble form of WssI from P. fluorescens and A. insuavis and demonstrated acetyl-esterase activity with chromogenic substrates. The kinetic parameters (kcat/KM values of 13 and 8.0 M-1∙ s-1, respectively) indicate that these enzymes are up to four times more catalytically efficient than the closest characterized homolog, AlgJ from the alginate synthase. Unlike AlgJ and its cognate alginate polymer, WssI also demonstrated acetyltransferase activity onto cellulose oligomers (e.g., cellotetraose to cellohexaose) with multiple acetyl-donor substrates (pNP-Ac, MU-Ac and acetyl-CoA). Finally, a high-throughput screen identified three low micromolar WssI inhibitors that may be useful for chemically interrogating cellulose acetylation and biofilm formation.
Collapse
Affiliation(s)
| | - Emily Rodriguez
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Shirley Constable
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Brian Lowrance
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Michael Fish
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Joel T Weadge
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
14
|
Ong HS, Sharma N, Phee LM, Mehta JS. Atypical microbial keratitis. Ocul Surf 2023; 28:424-439. [PMID: 34768003 DOI: 10.1016/j.jtos.2021.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/16/2023]
Abstract
Atypical microbial keratitis refers to corneal infections caused by micro-organisms not commonly encountered in clinical practice. Unlike infections caused by common bacteria, cases of atypical microbial keratitis are often associated with worse clinical outcomes and visual prognosis. This is due to the challenges in the identification of causative organisms with standard diagnostic techniques, resulting in delays in the initiation of appropriate therapies. Furthermore, due to the comparatively lower incidence of atypical microbial keratitis, there is limited literature on effective management strategies for some of these difficult to manage corneal infections. This review highlights the current management and available evidence of atypical microbial keratitis, focusing on atypical mycobacteria keratitis, nocardia keratitis, achromobacter keratitis, and pythium keratitis. It will also describe the management of two uncommonly encountered conditions, infectious crystalline keratopathy and post-refractive infectious keratitis. This review can be used as a guide for clinicians managing patients with such challenging corneal infections.
Collapse
Affiliation(s)
- Hon Shing Ong
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore; Tissue Engineering and Cell Therapy Department, Singapore Eye Research Institute, Singapore; Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore.
| | - Namrata Sharma
- Department of Ophthalmology, Dr Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Lynette M Phee
- Department of Pathology, Sengkang General Hospital, SingHealth, Singapore
| | - Jodhbir S Mehta
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore; Tissue Engineering and Cell Therapy Department, Singapore Eye Research Institute, Singapore; Department of Ophthalmology and Visual Science, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore; School of Material Science & Engineering and School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
15
|
Wu YR, Dong YH, Liu CJ, Tang XD, Zhang NN, Shen J, Wu Z, Li XR, Shao JY. Microbiological composition of follicular fluid in patients undergoing IVF and its association with infertility. Am J Reprod Immunol 2023; 89:e13652. [PMID: 36397134 DOI: 10.1111/aji.13652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/13/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
PROBLEM In recent years, the incidence of female infertility has risen sharply, which is affected by many factors. It was recognized that female reproductive tract microbes play a role in the process of female conception. If the reproductive tract microbes could solve a certain proportion of infertility, it would certainly reduce the pain and economic burden of many patients. The objective of this study was to investigate the microbial community composition of follicular fluid in infertile patients and its potential impact on infertility. METHOD OF STUDY Follicular fluid from 49 primary infertility and 52 secondary infertility patients was collected by a negative pressure needle, and the microbiota was analyzed by 16S rDNA sequencing. RESULTS It was found that Lactobacillus, especially L. crispatus, might have a positive effect on female pregnancy. Considering the presence or absence of male factors and different body mass indices, L. iners might inhibit female pregnancy. However, L. iners seemed to play a positive role in egg maturation, while Gardnerella and Cutibacterium acnes might have a negative effect on female pregnancy. CONCLUSIONS This study suggested the potential role of Lactobacillus in follicular fluid in improving female infertility and provided a theoretical basis for the future microbiological treatment of female infertility.
Collapse
Affiliation(s)
- Yue-Rong Wu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Reproductive Medical Center of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yong-Hong Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Dan Tang
- Gastroenterology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Gastroenterology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ning-Nan Zhang
- Urology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Urology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Shen
- Urology Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Urology Department, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ze Wu
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Reproductive Medical Center of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Ran Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jing-Yi Shao
- Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Reproductive Medical Center of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
16
|
Filipić B, Malešević M, Vasiljević Z, Novović K, Kojić M, Jovčić B. Comparative genomics of trimethoprim-sulfamethoxazole-resistant Achromobacter xylosoxidans clinical isolates from Serbia reveals shortened variant of class 1 integron integrase gene. Folia Microbiol (Praha) 2022; 68:431-440. [PMID: 36567375 DOI: 10.1007/s12223-022-01026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
Trimethoprim-sulfamethoxazole (SXT) is the preferable treatment option of the infections caused by Achromobacter spp. Our study aimed to analyze the SXT resistance of 98 Achromobacter spp. isolates from pediatric patients, among which 33 isolates were SXT-resistant. The presence of intI1 was screened by PCR and genome sequence analyses. The intI1 gene was detected in 10 of SXT-resistant isolates that had shorter intI1 PCR fragments named intI1S. Structural changes in intI1S were confirmed by genome sequencing and analyses which revealed 86 amino acids deletion in IntI1S protein compared to canonical IntI1 protein. All IntI1S isolates were of non-CF origin. Pan-genome analysis of intI1S bearing A. xylosoxidans isolates comprised 9052 genes, with the core genome consisting of 5455 protein-coding genes. Results in this study indicate that IntI1S isolates were derived from clinical settings and that cystic fibrosis (CF) patients were potential reservoirs for healthcare-associated infections that occurred in non-CF patients.
Collapse
Affiliation(s)
| | - Milka Malešević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branko Jovčić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia. .,Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
17
|
Armando M, Barthélémi L, Couret I, Verdier C, Dupont C, Jumas-Bilak E, Grau D. Recurrent environmental contamination in a centralized radiopharmacy unit by Achromobacter spp: results of a large microbiological investigation. Am J Infect Control 2022; 51:557-562. [PMID: 35870659 DOI: 10.1016/j.ajic.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Radiopharmaceuticals preparation unit, such as every aseptic preparation units, are strictly monitored in terms of microbiological contamination. Despite all biocontamination control procedures, our radiopharmacy unit faced repeated environnmental contamination by Achromobacter spp which necessitated a large environmental investigation. METHOD Microbiological controls were carried out using Count Tact agars (Biomérieux) for flat surfaces, dry swabbing for hard to reach areas and containers were filled with a sterile water solution (then filtrated on 0.45µm membrane and seeded). Microbiological identification was performed by mass spectrometry (MALDI-TOF-MS, Brucker) on each positive sample. RESULTS Achromobacter spp was found in 10% of the 413 samples during the 8 months investigation period. The proportion of positive samples was stable among time but their location was unpredictable. The highest inoculum was finally found in the buckets used for biocleaning. DISCUSSION Samples from cleaning buckets taken by dry swabbing were at first negative, but the use of a non-routinely used sampling method allowed to discover the reservoir of this persistent contamination. CONCLUSION This investigation alerted us on the high microbiological risk associated with reusable plastic containers and the importance of a sampling method adapted to critical locations.
Collapse
Affiliation(s)
- M Armando
- Radiopharmacy Unit, Department of Preparations and controls, University Teaching Hospital (UTH) of Montpellier, France
| | - L Barthélémi
- Radiopharmacy Unit, Department of Preparations and controls, University Teaching Hospital (UTH) of Montpellier, France
| | - I Couret
- Radiopharmacy Unit, Department of Preparations and controls, University Teaching Hospital (UTH) of Montpellier, France; Unit 1194 INSERM, Team Radiobiology and targeted radiotherapy, Cancer Research Institute of Montpellier, Montpellier, France
| | - C Verdier
- Pharmaceutical Controls Laboratory, Department of Preparations and controls, UTH of Montpellier, France
| | - C Dupont
- UMR 5569 HSM, Team "Pathogènes Hydriques Santé et Environnements", Unit of Bacteriology, University of Pharmacy, Montpellier, France
| | - E Jumas-Bilak
- Infection Control Department, UTH of Montpellier, France; UMR 5569 HSM, Team "Pathogènes Hydriques Santé et Environnements", Unit of Bacteriology, University of Pharmacy, Montpellier, France
| | - D Grau
- Infection Control Department, UTH of Montpellier, France; UMR 5569 HSM, Team "Pathogènes Hydriques Santé et Environnements", Unit of Bacteriology, University of Pharmacy, Montpellier, France
| |
Collapse
|
18
|
Imani AS, Lee AR, Vishwanathan N, de Waal F, Freeman MF. Diverse Protein Architectures and α- N-Methylation Patterns Define Split Borosin RiPP Biosynthetic Gene Clusters. ACS Chem Biol 2022; 17:908-917. [PMID: 35297605 PMCID: PMC9019853 DOI: 10.1021/acschembio.1c01002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Borosins are ribosomally synthesized and post-translationally modified peptides (RiPPs) with α-N-methylations installed on the peptide backbone that impart unique properties like proteolytic stability to these natural products. The borosin RiPP family was initially reported only in fungi until our recent discovery and characterization of a Type IV split borosin system in the metal-respiring bacterium Shewanella oneidensis. Here, we used hidden Markov models and sequence similarity networks to identify over 1600 putative pathways that show split borosin biosynthetic gene clusters are widespread in bacteria. Noteworthy differences in precursor and α-N-methyltransferase open reading frame sizes, architectures, and core peptide properties allow further subdivision of the borosin family into six additional discrete structural types, of which five have been validated in this study.
Collapse
Affiliation(s)
| | | | | | - Floris de Waal
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | | |
Collapse
|
19
|
Neidhöfer C, Berens C, Parčina M. An 18-Year Dataset on the Clinical Incidence and MICs to Antibiotics of Achromobacter spp. (Labeled Biochemically or by MAL-DI-TOF MS as A. xylosoxidans), Largely in Patient Groups Other than Those with CF. Antibiotics (Basel) 2022; 11:311. [PMID: 35326774 PMCID: PMC8944543 DOI: 10.3390/antibiotics11030311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Achromobacter spp. are intrinsically multidrug-resistant environmental microorganisms which are known to cause opportunistic, nosocomial, and sometimes chronic infections. The existing literature yields scarcely any larger datasets, especially with regard to the incidence in patient groups other than those with cystic fibrosis. The aim of this study was to fill this gap. We present a retrospective analysis of 314 clinical and 130 screening isolates detected in our diagnostic unit between 2004 and 2021, combined with patients' demographic and clinical information (ward type and length of hospitalization), and the results of routine diagnostic antibiotic MIC determination. We found the apparent increase in prevalence in our diagnostic unit, in which cystic fibrosis patients are an underrepresented group, in large part to be attributable to an overall increase in the number of samples and, more importantly, changes in the diagnostic setting, such as the introduction of rigorous screening for Gram-negative multidrug-resistant pathogens. We found these Achromobacter spp. to be most commonly detected in urine, stool, wounds and airway samples, and found the resistance rates to vary strongly between different sample types. Intestinal carriage is frequently not investigated, and its frequency is likely underestimated. Isolates resistant to meropenem can hardly be treated.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany; (C.B.); (M.P.)
| | | | | |
Collapse
|
20
|
Clara L, Staneloni MI, Salazar E, Greco G, Visus M, Lizzi A, Alexander V, Gutkind G, Radice M, Papalia M. Report of two events of nosocomial outbreak and pseudo-outbreak due to contamination with Achromobacter spp. Rev Argent Microbiol 2022; 54:175-180. [PMID: 35012807 DOI: 10.1016/j.ram.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/24/2021] [Accepted: 10/03/2021] [Indexed: 10/19/2022] Open
Abstract
Achromobacter spp. are increasingly recognized as emerging pathogens in immunocompromised patients or suffering cystic fibrosis, but unusual in immunocompetent hosts or individuals that underwent surgery. In this study we describe two simultaneous events attributable to two different Achromobacter spp. contaminated sources. One event was related to an episode of pseudo-bacteremia due to sodium citrate blood collection tubes contaminated with Achromobacter insuavis and the other to Achromobacter genogroup 20 infection and colonization caused by an intrinsically contaminated chlorhexidine soap solution. Both threatened the appropriate use of antimicrobials. Molecular approaches were critical to achieving the accurate species identification and to assess the clonal relationship, strengthening the need for dedicated, multidisciplinary and collaborative work of microbiologists, specialists in infectious diseases, epidemiologists and nurses in the control of infections to clarify these epidemiological situations.
Collapse
Affiliation(s)
- Liliana Clara
- Hospital Italiano de Buenos Aires, Sección Infectología, Servicio de Clínica Médica, Pres. Tte. Gral. Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, C1199, Argentina; Hospital Italiano de Buenos Aires, Comité de Control de Infecciones, Pres. Tte. Gral. Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, C1199, Argentina
| | - María Ines Staneloni
- Hospital Italiano de Buenos Aires, Sección Infectología, Servicio de Clínica Médica, Pres. Tte. Gral. Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, C1199, Argentina; Hospital Italiano de Buenos Aires, Comité de Control de Infecciones, Pres. Tte. Gral. Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, C1199, Argentina
| | - Estela Salazar
- Hospital Italiano de Buenos Aires, Sección Infectología, Servicio de Clínica Médica, Pres. Tte. Gral. Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, C1199, Argentina
| | - Graciela Greco
- Hospital Italiano de Buenos Aires, Sección Bacteriología Laboratorio Central, Pres. Tte. Gral. Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, C1199, Argentina
| | - Mariangeles Visus
- Hospital Italiano de Buenos Aires, Sección Bacteriología Laboratorio Central, Pres. Tte. Gral. Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, C1199, Argentina
| | - Alicia Lizzi
- Hospital Italiano de Buenos Aires, Comité de Control de Infecciones, Pres. Tte. Gral. Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, C1199, Argentina
| | - Valeria Alexander
- Hospital Italiano de Buenos Aires, Sección Bacteriología Laboratorio Central, Pres. Tte. Gral. Juan Domingo Perón 4190, Ciudad Autónoma de Buenos Aires, C1199, Argentina
| | - Gabriel Gutkind
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IBaViM, Laboratorio de Resistencia Bacteriana, Junín 956, 8vo. Piso, Ciudad Autónoma de Buenos Aires, CP 1113, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcela Radice
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IBaViM, Laboratorio de Resistencia Bacteriana, Junín 956, 8vo. Piso, Ciudad Autónoma de Buenos Aires, CP 1113, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Mariana Papalia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, IBaViM, Laboratorio de Resistencia Bacteriana, Junín 956, 8vo. Piso, Ciudad Autónoma de Buenos Aires, CP 1113, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
21
|
Vázquez Castellanos JL, Copado Villagrana ED, Torres Mendoza BMG, Gallegos Durazo DL, González Plascencia J, Mejía-Zárate AK. First bacteremia outbreak due Achromobacter spp. in hemodialysis patients in Mexico. Nefrologia 2022; 42:101-103. [PMID: 36153889 DOI: 10.1016/j.nefroe.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/26/2020] [Accepted: 08/13/2020] [Indexed: 06/16/2023] Open
Affiliation(s)
| | | | | | | | - Juana González Plascencia
- Hospital General Regional Núm. 110, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | | |
Collapse
|
22
|
Steiner V, Rosel AC, Ruppitsch W, Allerberger F, Carranza Valencia A, Markovic M, Luckschander-Zeller N, Szostak MP, Spergser J, Loncaric I, Künzel F. The First Bacterial Endocarditis Due to Achromobacter xylosoxidans in a Dog. Pathogens 2021; 10:pathogens10121580. [PMID: 34959535 PMCID: PMC8709460 DOI: 10.3390/pathogens10121580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 12/04/2022] Open
Abstract
Infectious endocarditis (IE) in dogs is often associated with a high mortality rate as diagnostic work-up as well as antibiotic treatment might be challenging. The present case describes bacteremia in a dog caused by Achromobacter xylosoxidans, leading to an infectious endocarditis. Achromobacter xylosoxidans (A. xylosoxidans) is an aerobic Gram-negative rod-shaped bacterium, which has been associated with multiple nosocomial opportunistic diseases in human medicine. One such manifestation of A. xylosoxidans infection is endocarditis. A. xylosoxidans infections are challenging to treat due to the reduced effectiveness of a wide range of antimicrobial agents. To date, only a few case reports of infections with A. xylosoxidans in animals have been described. This is the first case report of A. xylosoxidans endocarditis in a dog. Whole-genome sequencing was performed to determine the sequencing type and to gain more information about this bacterium regarding its intrinsic resistance genes. With this case report, we seek to increase awareness of A. xylosoxidans as an opportunistic nosocomial pathogen in dogs and to provide a short summary regarding the current state of general knowledge and known resistance patterns.
Collapse
Affiliation(s)
- Verena Steiner
- Department for Companion Animals and Horses, Clinical Unit of Internal Medic and Small Animals, University of Veterinary Medicine, 1210 Vienna, Austria; (A.C.V.); (M.M.); (N.L.-Z.); (F.K.)
- Correspondence:
| | - Adriana Cabal Rosel
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (A.C.R.); (W.R.); (F.A.)
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (A.C.R.); (W.R.); (F.A.)
| | - Franz Allerberger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (A.C.R.); (W.R.); (F.A.)
| | - Alejandra Carranza Valencia
- Department for Companion Animals and Horses, Clinical Unit of Internal Medic and Small Animals, University of Veterinary Medicine, 1210 Vienna, Austria; (A.C.V.); (M.M.); (N.L.-Z.); (F.K.)
| | - Mato Markovic
- Department for Companion Animals and Horses, Clinical Unit of Internal Medic and Small Animals, University of Veterinary Medicine, 1210 Vienna, Austria; (A.C.V.); (M.M.); (N.L.-Z.); (F.K.)
| | - Nicole Luckschander-Zeller
- Department for Companion Animals and Horses, Clinical Unit of Internal Medic and Small Animals, University of Veterinary Medicine, 1210 Vienna, Austria; (A.C.V.); (M.M.); (N.L.-Z.); (F.K.)
| | - Michael P. Szostak
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (M.P.S.); (J.S.); (I.L.)
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (M.P.S.); (J.S.); (I.L.)
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, 1210 Vienna, Austria; (M.P.S.); (J.S.); (I.L.)
| | - Frank Künzel
- Department for Companion Animals and Horses, Clinical Unit of Internal Medic and Small Animals, University of Veterinary Medicine, 1210 Vienna, Austria; (A.C.V.); (M.M.); (N.L.-Z.); (F.K.)
| |
Collapse
|
23
|
Abstract
Papaya (Carica papaya) waste cause significant commercial and environmental damage, mainly due to the economic losses and foul odours they emit when decomposing. Therefore, this work provides an innovative way to generate electricity for the benefit of society and companies dedicated to the import and export of this fruit. Microbial fuel cells are a technology that allows electricity generation. These cells were produced with low-cost materials using zinc and copper electrodes; while a 150 mL polymethylmethacrylate tube was used as a substrate collection chamber (papaya waste). Maximum values of 0.736 ± 0.204 V and 5.57 ± 0.45 mA were generated, while pH values increased from 3.848 to 8.227 ± 0.35 and Brix decreased slowly from the first day. The maximum power density value was 878.38 mW/cm2 at a current density of 7.245 A/cm2 at a maximum voltage of 1072.77 mV. The bacteria were identified with an identity percentage of 99.32% for Achromobacter xylosoxidans species, 99.93% for Acinetobacter bereziniae, and 100.00% for Stenotrophomonas maltophilia. This research gives a new way for the use of papaya waste for bioelectricity generation.
Collapse
|
24
|
Dunne EM, Hylsky D, Peterson E, Voermans R, Ward A, Turner K, Hahn C, Arduino M, Ball C, Carter KK, Lee JR. A cluster of Achromobacter xylosoxidans led to identification of Pseudomonas aeruginosa and Serratia marcescens contamination at a long-term-care facility. Am J Infect Control 2021; 49:1331-1333. [PMID: 33887423 DOI: 10.1016/j.ajic.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
A cluster of Achromobacter xylosoxidans, an emerging multidrug-resistant aquaphilic bacterium, was identified in 3 long-term-care facility residents. As Pseudomonas aeruginosa and Serratia marcescens were also present in clinical specimens, we conducted an investigation of all 3 water-associated species and identified P. aerguniosa and S. marcescens contamination at the facility. Sequencing analysis linked P. aeruginosa to a clinical isolate. Findings highlight the need for precautionary measures to prevent transmission of water-associated multidrug-resistant bacteria in long-term-care facilities.
Collapse
|
25
|
Marion-Sanchez K, Olive C, Platon MG, Cesarine M, Derancourt C, Pailla K. Achromobacter xylosoxidans in hospital environments: still waters run deep! Trans R Soc Trop Med Hyg 2021; 114:470-472. [PMID: 31836888 DOI: 10.1093/trstmh/trz109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/01/2019] [Accepted: 10/12/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Hospital reservoirs of Achromobacter xylosoxidans, responsible for nosocomial infections, are poorly known. METHODS We examined the growth, survival and biofilm formation of five A. xylosoxidans strains for up to 2 y in distilled, dialysis or microfiltered water. Each strain was inoculated at 102 CFU/ml without adding nutrients. RESULTS All strains grew at a level of 3x103 to 1.5x107 CFU/ml; each strain showed a preferred water type. Strains isolated from quaternary ammoniums showed the highest ability to grow and form biofilms in nutrient-poor waters. CONCLUSION Medical waters and notably sterile distilled water bottles appear to be long-lasting reservoirs of A. xylosoxidans.
Collapse
Affiliation(s)
| | - Claude Olive
- CHU Martinique, Bacteriology Laboratory, F-97200 Fort-de-France, Martinique
| | | | - Myriam Cesarine
- CHU Martinique, Bacteriology Laboratory, F-97200 Fort-de-France, Martinique
| | - Christian Derancourt
- EA 7524, Université des Antilles, F-97200 Fort-de-France, Martinique; CH Briançon F-05100 Briançon, France; CH Gap, Department of Internal Medicine, F-05007 Gap, France
| | - Karine Pailla
- CHU Martinique, Bacteriology Laboratory, F-97200 Fort-de-France, Martinique
| |
Collapse
|
26
|
Park SJ, Park JW, Ahn GR, Choi SY, Yoo KH, Li K, Kim BJ. A study of the microbiological profile of filler-induced skin necrosis. Clin Exp Dermatol 2021; 46:901-905. [PMID: 33763910 DOI: 10.1111/ced.14653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 11/28/2022]
Abstract
Skin necrosis is one of the most severe complications following filler injections, and can result in permanent aesthetic defects. Although an increasing number of studies have addressed the management of dermal filler complications, no study has described the spectrum of microbial pathogens. The aim of this study was to delineate the bacterial profile and prognostic factors of filler-related skin necrosis by reviewing the clinical and microbiological features of these patients. A retrospective medical record review of patients undergoing treatment for skin necrosis induced by fillers was conducted. In total, 10 cases were identified, with injection sites being the nasolabial fold (70%; n = 7), nasal dorsum (20%; n = 2) and nasal tip (10%; n = 1). Reviewing the culture results, the true culture-positive rate was found to be 50% after cases of contamination were excluded. To avoid permanent sequelae, all physicians should be aware of possible secondary infections when treating filler-induced skin necrosis.
Collapse
Affiliation(s)
- S J Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - J W Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - G R Ahn
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - S Y Choi
- Department of Dermatology, Seoul Paik Hospital, Inje University, Seoul, South Korea
| | - K H Yoo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - K Li
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - B J Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Enrichment of Hydrogen Oxidizing Bacteria from High Temperature and Salinity Environments. Appl Environ Microbiol 2021; 87:AEM.02439-20. [PMID: 33257312 PMCID: PMC7851685 DOI: 10.1128/aem.02439-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There is an urgent need for sustainable protein supply routes with low environmental footprint. Recently, the use of hydrogen oxidizing bacteria (HOB) as a platform for high quality microbial protein (MP) production has regained interest. This study aims to investigate the added value of using conditions such as salt and temperature to steer HOB communities to lower diversities, while maintaining a high protein content and a high quality amino acid profile. Pressure drop and hydrogen consumption were measured for 56 days to evaluate autotrophy of a total of six communities in serum flasks. Of the six communities, four were enriched under saline (0.0, 0.25, 0.5 and 1.0 mol NaCl l-1) and two under thermophilic conditions (65°C). Five communities enriched for HOB were subsequently cultivated in continuously stirred reactors under the same conditions to evaluate their potential as microbial protein producers. The protein percentages ranged from 41 to 80%. The highest protein content was obtained for the thermophilic enrichments. Amino acid profiles were comparable to protein sources commonly used for feed purposes. Members of the genus Achromobacter were found to dominate the saline enrichments while members of the genus Hydrogenibacillus were found to dominate the thermophilic enrichments. Here we show that enriching for HOB while steering the community toward low diversity and maintaining a high quality protein content can be successfully achieved, both in saline and thermophilic conditions.IMPORTANCE Alternative feed and food supply chains are required to decrease water and land use. HOB offer a promising substitute for traditional agricultural practice to produce microbial protein (MP) from residual materials and renewable energy. To safeguard product stability, the composition of the HOB community should be controlled. Defining strategies to maintain the stability of the communities is therefore key for optimization purposes. In this study, we use salt and temperature as independent conditions to stabilize the composition of the HOB communities. Based on the results presented, we conclude that HOB communities can be steered to have low diversity using the presented conditions while producing a desirable protein content with a valuable amino acid profile.
Collapse
|
28
|
Sibanda T, Ramganesh S. Taxonomic and functional analyses reveal existence of virulence and antibiotic resistance genes in beach sand bacterial populations. Arch Microbiol 2021; 203:1753-1766. [PMID: 33474608 PMCID: PMC7816837 DOI: 10.1007/s00203-020-02165-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/25/2020] [Accepted: 12/27/2020] [Indexed: 11/21/2022]
Abstract
Coastal sands are important natural recreational facilities that have become hotspots for tourism and economic development. However, these sands harbour diverse microbial assemblages that play a critical role in the balance between public health and ecology. In this study, targeted high-throughput sequencing analysis was used to identify sand-borne bacterial populations at four public beaches in Durban. The effect of heavy metal in shaping the distribution of bacterial metacommunities was determined using canonical correspondence analysis (CCA), while the functional gene profiles were predicted using PICRUSt2 analysis. Sequences matching those of the bacterial phylum Proteobacteria were the most abundant in all samples, followed by those of the phyla Firmicutes, Actinobacteria, Bacteroidetes, and Gemmatimonadetes. Genus-level taxonomic analysis showed the presence of 1163 bacterial genera in all samples combined. The distribution of bacterial communities was shaped by heavy metal concentrations, with the distribution of Flavobacteria, Bacteroidia, and Deltaproteobacteria influenced by Pb and Zn, while B and Cr influenced the distribution of Clostridia and Gammaproteobacteria, respectively. Identified antibiotic resistance genes included the peptidoglycan biosynthesis gene II, III, IV, and V, as well as the polymyxin resistance gene, while the virulence genes included the sitA, fimB, aerobactin synthase, and pilL gene. Our findings demonstrate that beach sand-borne bacteria are reservoirs of virulence and antibiotic resistance genes. Contamination of beach sands with heavy metals selects for both heavy metal resistance and antibiotic resistance in beach sand bacterial communities. Children and immunocompromised people engaging in recreational activities on beaches may be exposed to higher risk of infection.
Collapse
Affiliation(s)
- Timothy Sibanda
- Department of Biological Sciences, University of Namibia, Windhoek, Namibia.
| | - Selvarajan Ramganesh
- Department of Environmental Sciences, UNISA Florida Campus, Johannesburg, RSA, South Africa
| |
Collapse
|
29
|
Vázquez Castellanos JL, Copado Villagrana ED, Torres Mendoza BMG, Gallegos Durazo DL, González Plascencia J, Mejía-Zárate AK. First bacteremia outbreak due Achromobacter spp. in hemodialysis patients in Mexico. Nefrologia 2020; 42:S0211-6995(20)30174-0. [PMID: 33358364 DOI: 10.1016/j.nefro.2020.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/26/2020] [Accepted: 08/13/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
| | | | | | | | - Juana González Plascencia
- Hospital General Regional Núm. 110, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | | |
Collapse
|
30
|
Volling C, Ahangari N, Bartoszko JJ, Coleman BL, Garcia-Jeldes F, Jamal AJ, Johnstone J, Kandel C, Kohler P, Maltezou HC, Maze Dit Mieusement L, McKenzie N, Mertz D, Monod A, Saeed S, Shea B, Stuart RL, Thomas S, Uleryk E, McGeer A. Are Sink Drainage Systems a Reservoir for Hospital-Acquired Gammaproteobacteria Colonization and Infection? A Systematic Review. Open Forum Infect Dis 2020; 8:ofaa590. [PMID: 33553469 PMCID: PMC7856333 DOI: 10.1093/ofid/ofaa590] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/04/2020] [Indexed: 01/23/2023] Open
Abstract
Increasing rates of antimicrobial-resistant organisms have focused attention on sink drainage systems as reservoirs for hospital-acquired Gammaproteobacteria colonization and infection. We aimed to assess the quality of evidence for transmission from this reservoir. We searched 8 databases and identified 52 studies implicating sink drainage systems in acute care hospitals as a reservoir for Gammaproteobacterial colonization/infection. We used a causality tool to summarize the quality of evidence. Included studies provided evidence of co-occurrence of contaminated sink drainage systems and colonization/infection, temporal sequencing compatible with sink drainage reservoirs, some steps in potential causal pathways, and relatedness between bacteria from sink drainage systems and patients. Some studies provided convincing evidence of reduced risk of organism acquisition following interventions. No single study provided convincing evidence across all causality domains, and the attributable fraction of infections related to sink drainage systems remains unknown. These results may help to guide conduct and reporting in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Adam Monod
- Sinai Health System, Toronto, Ontario, Canada
| | | | | | | | - Sera Thomas
- Sinai Health System, Toronto, Ontario, Canada
| | | | | |
Collapse
|
31
|
Isler B, Kidd TJ, Stewart AG, Harris P, Paterson DL. Achromobacter Infections and Treatment Options. Antimicrob Agents Chemother 2020; 64:e01025-20. [PMID: 32816734 PMCID: PMC7577122 DOI: 10.1128/aac.01025-20] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Achromobacter is a genus of nonfermenting Gram-negative bacteria under order Burkholderiales Although primarily isolated from respiratory tract of people with cystic fibrosis, Achromobacter spp. can cause a broad range of infections in hosts with other underlying conditions. Their rare occurrence and ever-changing taxonomy hinder defining their clinical features, risk factors for acquisition and adverse outcomes, and optimal treatment. Achromobacter spp. are intrinsically resistant to several antibiotics (e.g., most cephalosporins, aztreonam, and aminoglycosides), and are increasingly acquiring resistance to carbapenems. Carbapenem resistance is mainly caused by multidrug efflux pumps and metallo-β-lactamases, which are not expected to be overcome by new β-lactamase inhibitors. Among the other new antibiotics, cefiderocol, and eravacycline were used as salvage therapy for a limited number of patients with Achromobacter infections. In this article, we aim to give an overview of the antimicrobial resistance in Achromobacter species, highlighting the possible place of new antibiotics in their treatment.
Collapse
Affiliation(s)
- Burcu Isler
- University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, Brisbane, Australia
| | - Timothy J Kidd
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
- University of Queensland, Faculty of Science, School of Chemistry and Molecular Biosciences, Brisbane, Australia
| | - Adam G Stewart
- University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, Brisbane, Australia
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Patrick Harris
- University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, Brisbane, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - David L Paterson
- University of Queensland, Faculty of Medicine, UQ Center for Clinical Research, Brisbane, Australia
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
32
|
Damar-Çelik D, Mataracı-Kara E, Savage PB, Özbek-Çelik B. Antibacterial and antibiofilm activities of ceragenins against Achromobacter species isolated from cystic fibrosis patients. J Chemother 2020; 33:216-227. [PMID: 32985386 DOI: 10.1080/1120009x.2020.1819702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Achromobacter species, which are recognized as emerging pathogens isolated from patients with cystic fibrosis, are capable of forming biofilm in the respiratory tract in patients and innate multidrug resistance to antimicrobials. CSAs are cationic salt derivatives that mimic the activity of antimicrobial peptides and exhibit antimicrobial activity against bacteria. In this study, the in vitro activities of various ceragenins against Achromobacter-species biofilms were investigated comparatively with a conventional antibiotic (meropenem). Biofilm-formation inhibition and biofilm-adhesion inhibition were investigated on five strong biofilm-producing strains. The lowest MIC50 result was obtained with CSA-13. All of the tested CSAs showed significant biofilm inhibitory activity in the manner of a time- and concentration-dependent effect. To the best of our knowledge, this is the first article to evaluate the antibacterial and antibiofilm activities of tested CSAs against Achromobacter species.
Collapse
Affiliation(s)
- Damla Damar-Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey
| | - Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Berna Özbek-Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey
| |
Collapse
|
33
|
Lazzarini TA, Al-khersan H, Patel NA, Yannuzzi NA, Martinez JD, Altamirano D, Torres LK, Miller D, Batlle JF, Amescua G, Flynn HW. Chronic, Recurrent Bacterial Endophthalmitis Caused by Achromobacter xylosoxidans: Clinical Features and Management. Int Med Case Rep J 2020; 13:265-269. [PMID: 32753980 PMCID: PMC7358084 DOI: 10.2147/imcrj.s259899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/08/2020] [Indexed: 01/15/2023] Open
Abstract
A 79-year-old man presented to a tertiary referral center from the Dominican Republic with an opaque corneal graft and a diagnosis of chronic, recurrent culture-positive Achromobacter xylosoxidans endophthalmitis of the left eye. The patient had a history of penetrating keratoplasty for Fuchs' dystrophy and had undergone multiple intraocular surgeries including pars plana vitrectomy and anterior chamber wash out for the diagnosis and management of chronic endophthalmitis. After being referred, the patient underwent a third PKP, removal of his intraocular lens (IOL), capsulectomy, and injection of intravitreal antibiotics. All surgical specimens demonstrated the growth of A. xylosoxidans. Five months after surgery, the graft remained clear without evidence of infection and best-corrected visual acuity was 20/350.
Collapse
Affiliation(s)
- Thomas A Lazzarini
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Hasenin Al-khersan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Nimesh A Patel
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Nicolas A Yannuzzi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Jaime D Martinez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Diego Altamirano
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | | | - Darlene Miller
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Juan F Batlle
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Laser Center, Santo Domingo, Dominican Republic
| | - Guillermo Amescua
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Harry W Flynn
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
34
|
Price EP, Soler Arango V, Kidd TJ, Fraser TA, Nguyen TK, Bell SC, Sarovich DS. Duplex real-time PCR assay for the simultaneous detection of Achromobacter xylosoxidans and Achromobacter spp. Microb Genom 2020; 6:mgen000406. [PMID: 32667877 PMCID: PMC7478622 DOI: 10.1099/mgen.0.000406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/26/2020] [Indexed: 01/10/2023] Open
Abstract
Several members of the Gram-negative environmental bacterial genus Achromobacter are associated with serious infections, with Achromobacter xylosoxidans being the most common. Despite their pathogenic potential, little is understood about these intrinsically drug-resistant bacteria and their role in disease, leading to suboptimal diagnosis and management. Here, we performed comparative genomics for 158 Achromobacter spp. genomes to robustly identify species boundaries, reassign several incorrectly speciated taxa and identify genetic sequences specific for the genus Achromobacter and for A. xylosoxidans. Next, we developed a Black Hole Quencher probe-based duplex real-time PCR assay, Ac-Ax, for the rapid and simultaneous detection of Achromobacter spp. and A. xylosoxidans from both purified colonies and polymicrobial clinical specimens. Ac-Ax was tested on 119 isolates identified as Achromobacter spp. using phenotypic or genotypic methods. In comparison to these routine diagnostic methods, the duplex assay showed superior identification of Achromobacter spp. and A. xylosoxidans, with five Achromobacter isolates failing to amplify with Ac-Ax confirmed to be different genera according to 16S rRNA gene sequencing. Ac-Ax quantified both Achromobacter spp. and A. xylosoxidans down to ~110 genome equivalents and detected down to ~12 and ~1 genome equivalent(s), respectively. Extensive in silico analysis, and laboratory testing of 34 non-Achromobacter isolates and 38 adult cystic fibrosis sputa, confirmed duplex assay specificity and sensitivity. We demonstrate that the Ac-Ax duplex assay provides a robust, sensitive and cost-effective method for the simultaneous detection of all Achromobacter spp. and A. xylosoxidans and will facilitate the rapid and accurate diagnosis of this important group of pathogens.
Collapse
Affiliation(s)
- Erin P. Price
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Valentina Soler Arango
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Timothy J. Kidd
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Tamieka A. Fraser
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Thuy-Khanh Nguyen
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Scott C. Bell
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Derek S. Sarovich
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| |
Collapse
|
35
|
First Documented Case of Percutaneous Endoscopic Gastrostomy (PEG) Tube-Associated Bacterial Peritonitis due to Achromobacter Species with Literature Review. Case Rep Gastrointest Med 2020; 2020:4397930. [PMID: 32047677 PMCID: PMC7007964 DOI: 10.1155/2020/4397930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/24/2019] [Accepted: 11/11/2019] [Indexed: 01/25/2023] Open
Abstract
Introduction. Achromobacter species (spp.) peritonitis has seldom been identified in medical literature. Scarce cases of Achromobacter peritonitis described previously have been correlated with peritoneal dialysis and more sparingly with spontaneous bacterial peritonitis. Achromobacter exhibits intrinsic and acquired resistance, especially in chronic infections, to most antibiotics. This article conducts a literature review of all previously reported Achromobacter spp. peritonitis and describes the first reported case of Achromobacter peritonitis as a complication of percutaneous endoscopic gastrostomy (PEG) tube placement. Discussion. Achromobacter peritonitis as a complication of PEG-tube placement has not been previously reported. In our patients' case, the recently placed PEG-tube with ascitic fluid leakage was identified as the most plausible infection source. Although a rare bacterial peritonitis pathogen, Achromobacter may be associated with wide antimicrobial resistance and unfavorable outcomes. Conclusion. No current guidelines provide significant guidance on treatment of PEG-tube peritonitis regardless of microbial etiology. Infectious Disease Society of America identifies various broad-spectrum antibiotics targeting nosocomial intra-abdominal coverage; some of these antimicrobial selections (such as cefepime and metronidazole combination) may yet be inadequate for widely resistant Achromobacter spp. Recognizably, the common antibiotics utilized for spontaneous bacterial peritonitis, i.e., third generation cephalosporins and fluoroquinolones, to which Achromobacter is resistant and variably susceptible, respectively, would be extensively insufficient. Piperacillin/tazobactam (P/T) and carbapenem were identified to provide the most reliable coverage in vitro; clinically, 5 out of the 8 patients who received either P/T or a carbapenem, or both, eventually experienced clinical improvement.
Collapse
|
36
|
Prevalence of hypermutator isolates of Achromobacter spp. from cystic fibrosis patients. Int J Med Microbiol 2020; 310:151393. [PMID: 31969255 DOI: 10.1016/j.ijmm.2020.151393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 01/26/2023] Open
Abstract
Bacteria colonising the lungs of cystic fibrosis (CF) patients encounter high selective pressures. Hypermutation facilitates adaptation to fluctuating environments, and hypermutator strains are frequently isolated from CF patients. We investigated the prevalence of hypermutator isolates of Achromobacter spp. among patients affiliated with the CF Centre in Aarhus, Denmark. By exposure to rifampicin, the mutation frequency was determined for 90 isolates of Achromobacter spp. cultured from 42 CF patients; 20 infections were categorised as chronic, 22 as intermittent. The genetic mechanisms of hypermutation were examined by comparing DNA repair gene sequences from hypermutator and normomutator isolates. Achromobacter spp. cultured from 11 patients were categorised as hypermutators, and this phenotype was exclusively associated with chronic infections. Isolates of the Danish epidemic strain (DES) of Achromobacter ruhlandii cultured from patients from both Danish CF centres showed elevated mutation frequencies. The hypermutator state of Achromobacter spp. was most commonly associated with nonsynonymous mutations in the DNA mismatch repair gene mutS; a single clone had developed a substitution in the S-adenosyl-L-methionine-dependent methyltransferase putatively involved in DNA repair mechanisms, but not previously linked to the hypermutator phenotype. Hypermutation is prevalent among clinical isolates of Achromobacter spp. and could be a key determinant for the extraordinary adaptation and persistence of DES.
Collapse
|
37
|
Marion-Sanchez K, Pailla K, Olive C, Le Coutour X, Derancourt C. Achromobacter spp. healthcare associated infections in the French West Indies: a longitudinal study from 2006 to 2016. BMC Infect Dis 2019; 19:795. [PMID: 31500579 PMCID: PMC6734299 DOI: 10.1186/s12879-019-4431-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/30/2019] [Indexed: 01/14/2023] Open
Abstract
Background Bacteria of the Achromobacter genus, more particularly xylosoxidans species, are responsible for various healthcare associated infections (HAI) which are increasingly described since the last decade. Cystic fibrosis (CF) patients are considered as potential reservoirs in hospitals. We performed a retrospective study to estimate the frequencies of Achromobacter spp. HAI among patients from French West Indies, to determine characteristics of infected patients and establish a possible link between CF and infections. Methods All adults with at least one Achromobacter spp. positive sample and infection criteria in accordance with European official definitions of HAI, hospitalized in University Hospital of Martinique from 2006 to 2016 for more than 48 h, were included. Patient clinical features, immune status and underlying diseases were obtained from medical files. A list of CF patients was given by clinicians. Antibiotic-susceptibility profiles of the strains were determined using an automated method. Results Mean incidence density was 0.038/1000 days of hospitalization. Achromobacter spp. HAI evolved as an endemic situation with a low but pretty much stable incidence rate over the 11-year observation period. An epidemic peak was noticed in 2013. Among the 66 included patients, 56.1% were immunocompetent and no one had CF. Pneumonia and bacteraemia were the two main HAI. Among the 79 isolated strains, 92.4% were resistant to at least 1 major antibiotic and 16.4% met the definition of multidrug-resistant bacteria. Conclusions This microorganism, little known in our country because of the scarcity of CF patients, represents a threat for both immunosuppressed and immunocompetent patients and a therapeutic challenge because of its high resistance.
Collapse
Affiliation(s)
- Karine Marion-Sanchez
- Department of Hospital Hygiene, CHU Martinique, Fort-de-France, Martinique. .,Unité de Surveillance et de Prévention des Infections Nosocomiales, CHU de Martinique, Site Pierre-Zobda-Quitman, CS 90632, 97290, Fort-de-France Cedex, Martinique.
| | - Karine Pailla
- Bacteriology Laboratory, CHU Martinique, Fort-de-France, Martinique
| | - Claude Olive
- Bacteriology Laboratory, CHU Martinique, Fort-de-France, Martinique
| | | | | |
Collapse
|
38
|
Cameron LC, Bonis B, Phan CQ, Kent LA, Lee AK, Hunter RC. A putative enoyl-CoA hydratase contributes to biofilm formation and the antibiotic tolerance of Achromobacter xylosoxidans. NPJ Biofilms Microbiomes 2019; 5:20. [PMID: 31396394 PMCID: PMC6684605 DOI: 10.1038/s41522-019-0093-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Achromobacter xylosoxidans has attracted increasing attention as an emerging pathogen in patients with cystic fibrosis. Intrinsic resistance to several classes of antimicrobials and the ability to form robust biofilms in vivo contribute to the clinical manifestations of persistent A. xylosoxidans infection. Still, much of A. xylosoxidans biofilm formation remains uncharacterized due to the scarcity of existing genetic tools. Here we demonstrate a promising genetic system for use in A. xylosoxidans; generating a transposon mutant library which was then used to identify genes involved in biofilm development in vitro. We further described the effects of one of the genes found in the mutagenesis screen, encoding a putative enoyl-CoA hydratase, on biofilm structure and tolerance to antimicrobials. Through additional analysis, we find that a fatty acid signaling compound is essential to A. xylosoxidans biofilm ultrastructure and maintenance. This work describes methods for the genetic manipulation of A. xylosoxidans and demonstrated their use to improve our understanding of A. xylosoxidans pathophysiology.
Collapse
Affiliation(s)
- Lydia C. Cameron
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN 55455 USA
| | - Benjamin Bonis
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN 55455 USA
| | - Chi Q. Phan
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN 55455 USA
- Present Address: Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA 98195 USA
| | - Leslie A. Kent
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN 55455 USA
| | - Alysha K. Lee
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN 55455 USA
- Present Address: Department of Earth System Science, Stanford University, Stanford, CA 94305 USA
| | - Ryan C. Hunter
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN 55455 USA
| |
Collapse
|
39
|
Marion-Sanchez K, Pailla K, Cesarine M, Platon MG, Derancourt C, Olive C. Achromobacter xylosoxidans resistance to antiseptics and disinfectants is far from obvious. Trans R Soc Trop Med Hyg 2019; 113:356-358. [PMID: 30892650 DOI: 10.1093/trstmh/trz016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Achromobacter xylosoxidans is described as being resistant to antiseptics and disinfectants. We studied in vitro the ability of five strains to survive and grow in such solutions, with and without starvation. METHODS Bacterial suspensions in rich media and in distilled water were inoculated into eight antiseptics or disinfectants under conditions of use. RESULTS All strains from cultures in distilled water survived in aqueous chlorhexidine and only environmental strains survived in a quaternary ammonium-based disinfectant. Survival did not exceed 30 min and no growth was observed. CONCLUSIONS This study highlights a relationship between starvation and survival in antiseptics and disinfectants.
Collapse
Affiliation(s)
| | - Karine Pailla
- CHU Martinique, Bacteriology Laboratory, Fort-de-France, Martinique
| | - Myriam Cesarine
- CHU Martinique, Bacteriology Laboratory, Fort-de-France, Martinique
| | | | | | - Claude Olive
- CHU Martinique, Bacteriology Laboratory, Fort-de-France, Martinique
| |
Collapse
|
40
|
Amoureux L, Sauge J, Sarret B, Lhoumeau M, Bajard A, Tetu J, Bador J, Neuwirth C. Study of 109 Achromobacter spp. isolates from 9 French CF centres reveals the circulation of a multiresistant clone of A. xylosoxidans belonging to ST 137. J Cyst Fibros 2019; 18:804-807. [PMID: 31104975 DOI: 10.1016/j.jcf.2019.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/12/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022]
Abstract
We previously reported the distribution of Achromobacter spp. (species and Sequence Types (ST)) in our French Cystic Fibrosis (CF) centre. In the present study we collected 109 Achromobacter isolates (1/patient) from 9 other French CF Centres for species identification, antimicrobial susceptibility testings and Multilocus-Sequence-Typing (MLST) analysis. Ten species were detected, A. xylosoxidans being the most predominant one (73.4% of the isolates). Piperacillin-tazobactam, ceftazidime, imipenem, meropenem and ciprofloxacin were respectively active against 88, 70, 79, 72 and 23% of the isolates. Among the 79 A. xylosoxidans isolates, 46 STs were detected. Interestingly, ST 137, recovered in 4 centres (5 patients), was previously detected in our centre (2 patients). The strains from the 7 patients belonged to the same pulsotype (pulsed-field-gel-electrophoresis analysis) and harboured acquired resistance to meropenem, ceftazidime, ciprofloxacin, and except for 2 isolates, to imipenem and piperacillin-tazobactam. This is the first description in France of a circulating multiresistant A. xylosoxidans strain.
Collapse
Affiliation(s)
- Lucie Amoureux
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France; UMR/CNRS 6249 Chrono-environnement, University of Franche-Comté, Besançon, France.
| | - Juliette Sauge
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France
| | - Benoit Sarret
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France
| | - Matthieu Lhoumeau
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France
| | - Audrey Bajard
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France
| | - Jennifer Tetu
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France
| | - Julien Bador
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France; UMR/CNRS 6249 Chrono-environnement, University of Franche-Comté, Besançon, France
| | - Catherine Neuwirth
- Department of Bacteriology, University Hospital of Dijon, BP 37013, 21070, Dijon Cedex, France; UMR/CNRS 6249 Chrono-environnement, University of Franche-Comté, Besançon, France
| |
Collapse
|
41
|
Istiaq A, Shuvo MSR, Rahman KMJ, Siddique MA, Hossain MA, Sultana M. Adaptation of metal and antibiotic resistant traits in novel β-Proteobacterium Achromobacter xylosoxidans BHW-15. PeerJ 2019; 7:e6537. [PMID: 30886770 PMCID: PMC6421061 DOI: 10.7717/peerj.6537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/29/2019] [Indexed: 12/22/2022] Open
Abstract
Chromosomal co-existence of metal and antibiotic resistance genes in bacteria offers a new perspective to the bacterial resistance proliferation in contaminated environment. In this study, an arsenotrophic bacterium Achromobacter xylosoxidans BHW-15, isolated from Arsenic (As) contaminated tubewell water in the Bogra district of Bangladesh, was analyzed using high throughput Ion Torrent Personal Genome Machine (PGM) complete genome sequencing scheme to reveal its adaptive potentiality. The assembled draft genome of A. xylosoxidans BHW-15 was 6.3 Mbp containing 5,782 functional genes, 1,845 pseudo genes, and three incomplete phage signature regions. Comparative genome study suggested the bacterium to be a novel strain of A. xylosoxidans showing significant dissimilarity with other relevant strains in metal resistance gene islands. A total of 35 metal resistance genes along with arsenite-oxidizing aioSXBA, arsenate reducing arsRCDAB, and mercury resistance merRTPADE operonic gene cluster and 20 broad range antibiotic resistance genes including β-lactams, aminoglycosides, and multiple multidrug resistance (MDR) efflux gene complex with a tripartite system OM-IM-MFP were found co-existed within the genome. Genomic synteny analysis with reported arsenotrophic bacteria revealed the characteristic genetic organization of ars and mer operonic genes, rarely described in β-Proteobacteria. A transposon Tn21 and mobile element protein genes were also detected to the end of mer (mercury) operonic genes, possibly a carrier for the gene transposition. In vitro antibiotic susceptibility assay showed a broad range of resistance against antibiotics belonging to β-lactams, aminoglycosides, cephalosporins (1st, 2nd, and 3rd generations), monobactams and even macrolides, some of the resistome determinants were predicted during in silico analysis. KEGG functional orthology analysis revealed the potential of the bacterium to utilize multiple carbon sources including one carbon pool by folate, innate defense mechanism against multiple stress conditions, motility, a proper developed cell signaling and processing unit and secondary metabolism-combination of all exhibiting a robust feature of the cell in multiple stressed conditions. The complete genome of the strain BHW-15 stands as a genetic basis for the evolutionary adaptation of metal and the antibiotic coexistence phenomenon in an aquatic environment.
Collapse
Affiliation(s)
- Arif Istiaq
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Sadikur Rahman Shuvo
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | | | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
42
|
Chronic Airway Colonization by Achromobacter xylosoxidans in Cystic Fibrosis Patients Is Not Sustained by Their Domestic Environment. Appl Environ Microbiol 2018; 84:AEM.01739-18. [PMID: 30217850 DOI: 10.1128/aem.01739-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Achromobacter spp. are nonfermentative Gram-negative bacilli considered emergent pathogens in cystic fibrosis (CF). Although some cross-transmission events between CF patients have been described, Achromobacter strains were mostly patient specific, suggesting sporadic acquisitions from nonhuman reservoirs. However, sources of these emergent CF pathogens remain unknown. A large collection of specimens (n = 273) was sampled in the homes of 3 CF patients chronically colonized by Achromobacter xylosoxidans with the aim of evaluating the potential role of domestic reservoirs in sustaining airway colonization of the patients. Samples were screened for the presence of Achromobacter by using genus-specific molecular detection. Species identification, multilocus genotypes, and antimicrobial susceptibility patterns observed for environmental isolates were compared with those of clinical strains. Patient homes hosted a high diversity of Achromobacter species (n = 7), including Achromobacter mucicolens and A. animicus, two species previously isolated from human samples only, and genotypes (n = 15), all showing an overall susceptibility to antimicrobial agents. Achromobacter strains were mostly isolated from indoor moist environments and siphons, which are potential reservoirs for several CF emerging pathogens. A. xylosoxidans, the worldwide prevalent species colonizing CF patients, was not the major Achromobacter species inhabiting domestic environments. A. xylosoxidans genotypes chronically colonizing the patients were not detected in their household environments. These results support the notions that the domestic environment could not be incriminated in sustained patient colonization and that after initial colonization, the environmental survival of A. xylosoxidans clones adapted to the CF airways is probably impaired.IMPORTANCE Achromobacter spp. are worldwide emerging opportunistic pathogens in CF patients, able to chronically colonize the respiratory tract. Apart from regular consultations at the hospital CF center, patients spend most of their time at home. Colonization from nonhuman sources has been suggested, but the presence of Achromobacter spp. in CF patients' homes has not been explored. The domestic environments of CF patients chronically colonized by Achromobacter, especially wet environments, host several opportunistic pathogens, including a large diversity of Achromobacter species and genotypes. However, Achromobacter genotypes colonizing the patients were not detected in their domestic environments, making it unlikely that a shuttle between environment and CF airways is involved in persisting colonization. This also suggests that once the bacteria have adapted to the respiratory tract, their survival in the domestic environment is presumably impaired. Nevertheless, measures for reducing domestic patient exposure should be targeted on evacuation drains, which are frequently contaminated by CF opportunistic pathogens.
Collapse
|
43
|
Abstract
OBJECTIVES Ocular infections due to Achromobacter xylosoxidans are extremely uncommon; their diagnosis is a challenge and the optimal treatment remains controversial. We present a case of A. xylosoxidans in a contact lens user and a review of the literature to facilitate diagnostic suspicion and empirical therapeutic management. METHODS Review of the literature in PubMed and MEDLINE. We also document a case diagnosed in our department in January 2016. SETTING Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain. RESULTS According to the literature, clinical manifestations and antibiotic sensitivity of A. xylosoxidans varied greatly. Our patient with no history of keratopathy presented three risk factors that made the diagnosis suspicious. The infection was resolved with topical moxifloxacin and fluorometholone. CONCLUSIONS A. xylosoxidans is an uncommon cause of infection, but must be suspected in atypical keratitis, reported contact with warm or still waters, use of contact lenses, or previous corneal damage. In these cases, microbiological studies and antibiotic sensitivity testing are particularly important.
Collapse
|
44
|
Phage therapy against Achromobacter xylosoxidans lung infection in a patient with cystic fibrosis: a case report. Res Microbiol 2018; 169:540-542. [DOI: 10.1016/j.resmic.2018.05.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/24/2022]
|
45
|
Fluoroquinolone-resistant Achromobacter xylosoxidans clinical isolates from Serbia: high prevalence of the aac-(6')-Ib-cr gene among resistant isolates. Folia Microbiol (Praha) 2018; 64:153-159. [PMID: 30105450 DOI: 10.1007/s12223-018-0639-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
The aim of this study was to evaluate the contribution of plasmid-mediated genes and efflux to fluoroquinolone resistance in collection of Achromobacter spp. gathered during a 3-year period. Susceptibility to ciprofloxacin and levofloxacin was tested by disk diffusion and microdilution tests for a collection of 98 Achromobacter spp. clinical isolates. Identification of fluoroquinolone-resistant isolates was performed by sequencing and phylogenetic analyses of the nrdA gene. Genetic relatedness among resistant isolates was determined by pulsed-field gel electrophoresis (PFGE) analysis. The influence of an H+ conductor cyanide m-chlorophenyl hydrazone (CCCP) and a resistance-nodulation-division-type efflux pump inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) on minimal inhibitory concentration (MIC) value was evaluated by broth microdilution. The presence of the plasmid-mediated qnrA, qnrB, qnrC, qnrS, and aac-(6')-Ib-cr genes was investigated by PCR and sequencing. Achromobacter spp. isolates that were resistant or intermediately resistant to fluoroquinolones in disk diffusion tests (44/98) were subjected to microdilution. As a result, 20/98 isolates were confirmed to be resistant to ciprofloxacin while 10/98 was resistant to levofloxacin. CCCP decreased twofold MIC value for ciprofloxacin in six isolates and more than 16 times in one isolate, while MIC value for levofloxacin was decreased in all isolates (twofold to more than eightfold). Fluoroquinolone-resistant isolates were identified as A. xylosoxidans with the nrdA gene sequencing. PFGE revealed that resistant isolates belonged to seven different genotypes. Ten isolates belonging to four genotypes were positive for the aac-(6')-Ib-cr gene. Although resistance to fluoroquinolones was not widespread among analyzed isolates, detected contribution of efflux pumps and the presence of the aac-(6')-Ib-cr gene present a platform for emergence of more resistant strains.
Collapse
|
46
|
Tavassoli S, Gunn D, Williams OM, Darcy K. The successful treatment of a multidrug-resistant Achromobacter xylosoxidans corneal ulcer with topical meropenem. BMJ Case Rep 2018; 2018:bcr-2018-225163. [PMID: 30021738 DOI: 10.1136/bcr-2018-225163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Microbial keratitis is a common corneal condition, with many known risk factors. We present a case of an 88-year-old female patient with a multidrug-resistant Achromobacter xylosoxidans corneal ulcer in a previously failed second penetrating keratoplasty, successfully managed with topical meropenem drops administered hourly around the clock, for five days preceding and then hourly day only, for five days following a repeat third penetrating keratoplasty. Topical meropenem 50 mg/mL was prepared by mixing a 500 mg vial of meropenem with 10 mL of sterile water with pharmacy advice that administration should be within an hour. To the best of our knowledge, this is the first report of the use of topical meropenem in the management of A.xylosoxidans keratitis. This case highlights the importance of the mean inhibitory concentrations for antibiotics when considering sensitivities. Topical meropenem may be a useful treatment option for multidrug-resistant bacterial corneal ulcers that are resistant to conventional therapy.
Collapse
Affiliation(s)
- Shokufeh Tavassoli
- Cornea, Anterior Segment and Refractive Surgery, Bristol Eye Hospital, Bristol, UK
| | - David Gunn
- Cornea, Anterior Segment and Refractive Surgery, Bristol Eye Hospital, Bristol, UK
| | - O Martin Williams
- Microbiology and Infectious Diseases, Bristol Royal Infirmary, Bristol, UK
| | - Kieren Darcy
- Cornea, Anterior Segment and Refractive Surgery, Bristol Eye Hospital, Bristol, UK
| |
Collapse
|
47
|
Proteomic identification of Axc, a novel beta-lactamase with carbapenemase activity in a meropenem-resistant clinical isolate of Achromobacter xylosoxidans. Sci Rep 2018; 8:8181. [PMID: 29802257 PMCID: PMC5970244 DOI: 10.1038/s41598-018-26079-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/04/2018] [Indexed: 01/24/2023] Open
Abstract
The development of antibiotic resistance during treatment is a threat to patients and their environment. Insight in the mechanisms of resistance development is important for appropriate therapy and infection control. Here, we describe how through the application of mass spectrometry-based proteomics, a novel beta-lactamase Axc was identified as an indicator of acquired carbapenem resistance in a clinical isolate of Achromobacter xylosoxidans. Comparative proteomic analysis of consecutively collected susceptible and resistant isolates from the same patient revealed that high Axc protein levels were only observed in the resistant isolate. Heterologous expression of Axc in Escherichia coli significantly increased the resistance towards carbapenems. Importantly, direct Axc mediated hydrolysis of imipenem was demonstrated using pH shift assays and 1H-NMR, confirming Axc as a legitimate carbapenemase. Whole genome sequencing revealed that the susceptible and resistant isolates were remarkably similar. Together these findings provide a molecular context for the fast development of meropenem resistance in A. xylosoxidans during treatment and demonstrate the use of mass spectrometric techniques in identifying novel resistance determinants.
Collapse
|
48
|
Haviari S, Cassier P, Dananché C, Hulin M, Dauwalder O, Rouvière O, Bertrand X, Perraud M, Bénet T, Vanhems P. Outbreak of Achromobacter xylosoxidans and Ochrobactrum anthropi Infections after Prostate Biopsies, France, 2014. Emerg Infect Dis 2018; 22:1412-9. [PMID: 27434277 PMCID: PMC4982167 DOI: 10.3201/eid2208.151423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report an outbreak of healthcare-associated prostatitis involving rare environmental pathogens in immunocompetent patients undergoing transrectal prostate biopsies at Hôpital Édouard Herriot (Lyon, France) during August 13-October 10, 2014. Despite a fluoroquinolone-based prophylaxis, 5 patients were infected with Achromobacter xylosoxidans and 3 with Ochrobactrum anthropi, which has not been reported as pathogenic in nonimmunocompromised persons. All patients recovered fully. Analysis of the outbreak included case investigation, case-control study, biopsy procedure review, microbiologic testing of environmental and clinical samples, and retrospective review of hospital records for 4 years before the outbreak. The cases resulted from asepsis errors during preparation of materials for the biopsies. A low-level outbreak involving environmental bacteria was likely present for years, masked by antimicrobial drug prophylaxis and a low number of cases. Healthcare personnel should promptly report unusual pathogens in immunocompetent patients to infection control units, and guidelines should explicitly mention asepsis during materials preparation.
Collapse
|
49
|
First report of a cross-kingdom pathogenic bacterium, Achromobacter xylosoxidans isolated from stipe-rot Coprinus comatus. Microbiol Res 2017; 207:249-255. [PMID: 29458861 DOI: 10.1016/j.micres.2017.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/04/2017] [Accepted: 12/16/2017] [Indexed: 11/21/2022]
Abstract
Coprinus comatus is an edible mushroom widely cultivated in China as a delicious food. Various diseases have occurred on C. comatus with the cultivated area increasing. In this study, the pathogenic bacterium JTG-B1, identified as Achromobacter xylosoxidans by 16S rDNA and nrdA gene sequencing, was isolated from edible mushroom Coprinus comatus with serious rot disease on its stipe. A. xylosoxidans has been confirmed as an important opportunistic human pathogenic bacterium and has been isolated from respiratory samples from cystic fibrosis. It is widely distributed in the environment. Here, we first report that fungi can also serve as a host for A. xylosoxidans. We confirmed that it can cross-kingdom infect between animals (mice) and fungi (C. comatus). The results of pathogenicity tests, physiological, biochemical and genotyping analysis of A. xylosoxidans from different hosts suggested that different strain of A. xylosoxidans may have pathogenicity differentiation. A. xylosoxidans not only is pathogenic to C. comatus but also may threaten human health.
Collapse
|
50
|
Vandeplassche E, Coenye T, Crabbé A. Developing selective media for quantification of multispecies biofilms following antibiotic treatment. PLoS One 2017; 12:e0187540. [PMID: 29121069 PMCID: PMC5679531 DOI: 10.1371/journal.pone.0187540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/20/2017] [Indexed: 11/23/2022] Open
Abstract
The lungs of cystic fibrosis (CF) patients are chronically colonized by a polymicrobial biofilm community, leading to difficult-to-treat infections. To combat these infections, CF patients are commonly treated with a variety of antibiotics. Understanding the dynamics of polymicrobial community composition in response to antibiotic therapy is essential in the search for novel therapies. Culture-dependent quantification of individual bacteria from defined multispecies biofilms is frequently carried out by plating on selective media. However, the influence of the selective agents in these media on quantitative recovery before or after antibiotic treatment is often unknown. In the present study we developed selective media for six bacterial species that are frequently co-isolated from the CF lung, i.e. Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus anginosus, Achromobacter xylosoxidans, Rothia mucilaginosa, and Gemella haemolysans. We show that certain supplementations to selective media strongly influence quantitative recovery of (un)treated biofilms. Hence, the developed media were optimized for selectivity and quantitative recovery before or after treatment with antibiotics of four major classes, i.e. ceftazidime, ciprofloxacin, colistin, or tobramycin. Finally, in a proof of concept experiment the novel selective media were applied to determine the community composition of multispecies biofilms before and after treatment with tobramycin.
Collapse
Affiliation(s)
- Eva Vandeplassche
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|