1
|
Weiler J, Edel M, Gescher J. Biofilms for Production of Chemicals and Energy. Annu Rev Chem Biomol Eng 2024; 15:361-387. [PMID: 38382126 DOI: 10.1146/annurev-chembioeng-100522-110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The twenty-first century will be the century of biology. This is not only because of breakthrough advances in molecular biology tools but also because we need to reinvent our economy based on the biological principles of energy efficiency and sustainability. Consequently, new tools for production routines must be developed to help produce platform chemicals and energy sources based on sustainable resources. In this context, biofilm-based processes have the potential to impact future production processes, because they can be carried out continuously and with robust stationary biocatalysts embedded in an extracellular matrix with different properties. We review productive biofilm systems used for heterotrophic and lithoautotrophic production and attempt to identify fundamental reasons why they may be particularly suitable as future production systems.
Collapse
Affiliation(s)
- Janek Weiler
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| | - Miriam Edel
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| |
Collapse
|
2
|
Philipp LA, Bühler K, Ulber R, Gescher J. Beneficial applications of biofilms. Nat Rev Microbiol 2024; 22:276-290. [PMID: 37957398 DOI: 10.1038/s41579-023-00985-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/15/2023]
Abstract
Many microorganisms live in the form of a biofilm. Although they are feared in the medical sector, biofilms that are composed of non-pathogenic organisms can be highly beneficial in many applications, including the production of bulk and fine chemicals. Biofilm systems are natural retentostats in which the biocatalysts can adapt and optimize their metabolism to different conditions over time. The adherent nature of biofilms allows them to be used in continuous systems in which the hydraulic retention time is much shorter than the doubling time of the biocatalysts. Moreover, the resilience of organisms growing in biofilms, together with the potential of uncoupling growth from catalytic activity, offers a wide range of opportunities. The ability to work with continuous systems using a potentially self-advancing whole-cell biocatalyst is attracting interest from a range of disciplines, from applied microbiology to materials science and from bioengineering to process engineering. The field of beneficial biofilms is rapidly evolving, with an increasing number of applications being explored, and the surge in demand for sustainable and biobased solutions and processes is accelerating advances in the field. This Review provides an overview of the research topics, challenges, applications and future directions in beneficial and applied biofilm research.
Collapse
Affiliation(s)
- Laura-Alina Philipp
- Hamburg University of Technology, Institute of Technical Microbiology, Hamburg, Germany
| | - Katja Bühler
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Roland Ulber
- RPTU Kaiserslautern-Landau, Institute of Bioprocess Engineering, Kaiserslautern, Germany
| | - Johannes Gescher
- Hamburg University of Technology, Institute of Technical Microbiology, Hamburg, Germany.
| |
Collapse
|
3
|
Moral-Bofill L, López de la Llave A, Pérez-Llantada MC, Holgado-Tello FP. Development of Flow State Self-Regulation Skills and Coping With Musical Performance Anxiety: Design and Evaluation of an Electronically Implemented Psychological Program. Front Psychol 2022; 13:899621. [PMID: 35783805 PMCID: PMC9248863 DOI: 10.3389/fpsyg.2022.899621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022] Open
Abstract
Positive Psychology has turned its attention to the study of emotions in a scientific and rigorous way. Particularly, to how emotions influence people's health, performance, or their overall life satisfaction. Within this trend, Flow theory has established a theoretical framework that helps to promote the Flow experience. Flow state, or optimal experience, is a mental state of high concentration and enjoyment that, due to its characteristics, has been considered desirable for the development of the performing activity of performing musicians. Musicians are a population prone to health problems, both psychological and physical, owing to different stressors of their training and professional activity. One of the most common problems is Musical Performance Anxiety. In this investigation, an electronic intervention program was carried out for the development of psychological self-regulation skills whose main objective was to trigger the Flow response in performing musicians and the coping mechanism for Musical Performance Anxiety. A quasi-experimental design was used with a control group in which pre- and post-measures of Flow State, Musical Performance Anxiety and, also, Social Skills were taken. Sixty-two performing musicians from different music colleges in Spain participated in the program. Results indicated that the intervention significantly improved Flow State (t = -2.41, p = 0.02, d = 0.36), and Sense of Control (t = -2.48, p = 0.02, d = 0.47), and decreased Music Performance Anxiety (t = 2.64, p = 0.01, d = 0.24), and self-consciousness (t = -3.66, p = 0.00, d = 0.70) of the participants in the EG but not CG. The changes in the EG after the program showed the inverse relationship between Flow and Anxiety. Two important theoretical factors of both variables (especially in situations of performance and public exposure), such as worry and the feeling of lack of control, could be involved. The results are under discussion and future lines of research are proposed.
Collapse
Affiliation(s)
- Laura Moral-Bofill
- Department of Methodology of the Behavioral Sciences, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | | | | | | |
Collapse
|
4
|
Leonov PS, Flores-Alsina X, Gernaey KV, Sternberg C. Microbial biofilms in biorefinery - Towards a sustainable production of low-value bulk chemicals and fuels. Biotechnol Adv 2021; 50:107766. [PMID: 33965529 DOI: 10.1016/j.biotechadv.2021.107766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/11/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Harnessing the potential of biocatalytic conversion of renewable biomass into value-added products is still hampered by unfavorable process economics. This has promoted the use of biofilms as an alternative to overcome the limitations of traditional planktonic systems. In this paper, the benefits and challenges of biofilm fermentations are reviewed with a focus on the production of low-value bulk chemicals and fuels from waste biomass. Our study demonstrates that biofilm fermentations can potentially improve productivities and product yields by increasing biomass retention and allowing for continuous operation at high dilution rates. Furthermore, we show that biofilms can tolerate hazardous environments, which improve the conversion of crude biomass under substrate and product inhibitory conditions. Additionally, we present examples for the improved conversion of pure and crude substrates into bulk chemicals by mixed microbial biofilms, which can benefit from microenvironments in biofilms for synergistic multi-species reactions, and improved resistance to contaminants. Finally, we suggest the use of mathematical models as useful tools to supplement experimental insights related to the effects of physico-chemical and biological phenomena on the process. Major challenges for biofilm fermentations arise from inconsistent fermentation performance, slow reactor start-up, biofilm carrier costs and carrier clogging, insufficient biofilm monitoring and process control, challenges in reactor sterilization and scale-up, and issues in recovering dilute products. The key to a successful commercialization of the technology is likely going to be an interdisciplinary approach. Crucial research areas might include genetic engineering combined with the development of specialized biofilm reactors, biofilm carrier development, in-situ biofilm monitoring, model-based process control, mixed microbial biofilm technology, development of suitable biofilm reactor scale-up criteria, and in-situ product recovery.
Collapse
Affiliation(s)
- Pascal S Leonov
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark
| | - Xavier Flores-Alsina
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark
| | - Claus Sternberg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Bretschneider L, Heuschkel I, Ahmed A, Bühler K, Karande R, Bühler B. Characterization of different biocatalyst formats for BVMO-catalyzed cyclohexanone oxidation. Biotechnol Bioeng 2021; 118:2719-2733. [PMID: 33844297 DOI: 10.1002/bit.27791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 01/05/2023]
Abstract
Cyclohexanone monooxygenase (CHMO), a member of the Baeyer-Villiger monooxygenase family, is a versatile biocatalyst that efficiently catalyzes the conversion of cyclic ketones to lactones. In this study, an Acidovorax-derived CHMO gene was expressed in Pseudomonas taiwanensis VLB120. Upon purification, the enzyme was characterized in vitro and shown to feature a broad substrate spectrum and up to 100% conversion in 6 h. Furthermore, we determined and compared the cyclohexanone conversion kinetics for different CHMO-biocatalyst formats, that is, isolated enzyme, suspended whole cells, and biofilms, the latter two based on recombinant CHMO-containing P. taiwanensis VLB120. Biofilms showed less favorable values for KS (9.3-fold higher) and kcat (4.8-fold lower) compared with corresponding KM and kcat values of isolated CHMO, but a favorable KI for cyclohexanone (5.3-fold higher). The unfavorable KS and kcat values are related to mass transfer- and possibly heterogeneity issues and deserve further investigation and engineering, to exploit the high potential of biofilms regarding process stability. Suspended cells showed only 1.8-fold higher KS , but 1.3- and 4.2-fold higher kcat and KI values than isolated CHMO. This together with the efficient NADPH regeneration via glucose metabolism makes this format highly promising from a kinetics perspective.
Collapse
Affiliation(s)
- Lisa Bretschneider
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ingeborg Heuschkel
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Afaq Ahmed
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Katja Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Rohan Karande
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
6
|
Heuschkel I, Hanisch S, Volke DC, Löfgren E, Hoschek A, Nikel PI, Karande R, Bühler K. Pseudomonas taiwanensis biofilms for continuous conversion of cyclohexanone in drip flow and rotating bed reactors. Eng Life Sci 2021; 21:258-269. [PMID: 33716623 PMCID: PMC7923564 DOI: 10.1002/elsc.202000072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
In this study, the biocatalytic performance of a Baeyer-Villiger monooxygenase (BVMO) catalyzing the reaction of cyclohexanone to ε-caprolactone was investigated in Pseudomonas biofilms. Biofilm growth and development of two Pseudomonas taiwanensis VLB120 variants, Ps_BVMO and Ps_BVMO_DGC, were evaluated in drip flow reactors (DFRs) and rotating bed reactors (RBRs). Engineering a hyperactive diguanylate cyclase (DGC) from Caulobacter crescentus into Ps_BVMO resulted in faster biofilm growth compared to the control Ps_BVMO strain in the DFRs. The maximum product formation rates of 92 and 87 g m-2 d-1 were observed for mature Ps_BVMO and Ps_ BVMO_DGC biofilms, respectively. The application of the engineered variants in the RBR was challenged by low biofilm surface coverage (50-60%) of rotating bed cassettes, side-products formation, oxygen limitation, and a severe drop in production rates with time. By implementing an active oxygen supply mode and a twin capillary spray feed, the biofilm surface coverage was maximized to 70-80%. BVMO activity was severely inhibited by cyclohexanol formation, resulting in a decrease in product formation rates. By controlling the cyclohexanone feed concentration at 4 mM, a stable product formation rate of 14 g m-2 d-1 and a substrate conversion of 60% was achieved in the RBR.
Collapse
Affiliation(s)
- Ingeborg Heuschkel
- Department of Solar MaterialsHelmholtz‐Centre for Environmental ResearchLeipzigGermany
| | - Selina Hanisch
- Department of Solar MaterialsHelmholtz‐Centre for Environmental ResearchLeipzigGermany
- ZINT ‐ Zentrum für integrierte NaturstofftechnikTU DresdenDresdenGermany
| | - Daniel C. Volke
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | | | - Anna Hoschek
- Department of Solar MaterialsHelmholtz‐Centre for Environmental ResearchLeipzigGermany
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Rohan Karande
- Department of Solar MaterialsHelmholtz‐Centre for Environmental ResearchLeipzigGermany
| | - Katja Bühler
- Department of Solar MaterialsHelmholtz‐Centre for Environmental ResearchLeipzigGermany
- ZINT ‐ Zentrum für integrierte NaturstofftechnikTU DresdenDresdenGermany
| |
Collapse
|
7
|
David C, Heuschkel I, Bühler K, Karande R. Cultivation of Productive Biofilms in Flow Reactors and Their Characterization by CLSM. Methods Mol Biol 2020; 2100:437-452. [PMID: 31939142 DOI: 10.1007/978-1-0716-0215-7_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Biofilms, a natural form of immobilized whole cells, are currently being investigated as a robust biocatalyst for the production of chemicals. Fluidic conditions and reactor geometry severely influence biofilm growth, development, and reaction performance. However, there is a missing link between the in situ characterization of biofilms on microscale setups and macroscale reactors because of the difference in reactor geometry and fluidic conditions. In this protocol, we describe the assembly and operation of flow cell and flow reactor setups with identical system geometry and segmented flow conditions to link biofilm characterization to reactor performance. The flow cell setup enables the in situ characterization of biofilm growth, structural development, and cell viability by utilizing confocal laser scanning microscopy (CLSM). Whereas, the laboratory scale flow reactor allows the determination of overall biofilm dry mass, catalytic activity, and final product titer during biocatalysis. Finally, CLSM image acquisition and the following data analysis are briefly described.
Collapse
Affiliation(s)
- Christian David
- Department Solar Materials, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ingeborg Heuschkel
- Department Solar Materials, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Katja Bühler
- Department Solar Materials, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Rohan Karande
- Department Solar Materials, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
8
|
Zhai Q, Xiao Y, Narbad A, Chen W. Comparative metabolomic analysis reveals global cadmium stress response of Lactobacillus plantarum strains. Metallomics 2019; 10:1065-1077. [PMID: 29998247 DOI: 10.1039/c8mt00095f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Our previous work demonstrated the protective effects of Lactobacillus plantarum (L. plantarum) strains against cadmium (Cd) toxicity in vivo, and also indicated that the Cd tolerance of the strains played an important role in this protection. The goal of this study was to investigate the Cd resistance mechanism of L. plantarum by liquid chromatography-mass spectrometry (LC-MS) based metabolomic analysis, with a focus on the global Cd stress response. L. plantarum CCFM8610 (strongly resistant to Cd) and L. plantarum CCFM191 (sensitive to Cd) were selected as target strains, and their metabolomic profiles with and without Cd exposure were compared. The underlying mechanisms of the intra-species distinction between CCFM8610 and CCFM191 in terms of Cd tolerance can be attributed to the following aspects: (a) CCFM8610 possesses a higher intracellular content of osmolytes; (b) CCFM8610 can induce more effective biosynthesis of extracellular polymeric substance (EPS) to sequestrate Cd;
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | | | | | | |
Collapse
|
9
|
Biofilm systems as tools in biotechnological production. Appl Microbiol Biotechnol 2019; 103:5095-5103. [PMID: 31079168 DOI: 10.1007/s00253-019-09869-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
The literature provides more and more examples of research projects that develop novel production processes based on microorganisms organized in the form of biofilms. Biofilms are aggregates of microorganisms that are attached to interfaces. These viscoelastic aggregates of cells are held together and are embedded in a matrix consisting of multiple carbohydrate polymers as well as proteins. Biofilms are characterized by a very high cell density and by a natural retentostat behavior. Both factors can contribute to high productivities and a facilitated separation of the desired end-product from the catalytic biomass. Within the biofilm matrix, stable gradients of substrates and products form, which can lead to a differentiation and adaptation of the microorganisms' physiology to the specific process conditions. Moreover, growth in a biofilm state is often accompanied by a higher resistance and resilience towards toxic or growth inhibiting substances and factors. In this short review, we summarize how biofilms can be studied and what most promising niches for their application can be. Moreover, we highlight future research directions that will accelerate the advent of productive biofilms in biology-based production processes.
Collapse
|
10
|
Kadisch M, Willrodt C, Hillen M, Bühler B, Schmid A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Kadisch
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Christian Willrodt
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Michael Hillen
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Bruno Bühler
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| |
Collapse
|
11
|
Todhanakasem T. Developing microbial biofilm as a robust biocatalyst and its challenges. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1295230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tatsaporn Todhanakasem
- Department of Agro-Industry, Faculty of Biotechnology, Assumption University, Bangkok, Thailand
| |
Collapse
|
12
|
Tong X, Barberi TT, Botting CH, Sharma SV, Simmons MJH, Overton TW, Goss RJM. Rapid enzyme regeneration results in the striking catalytic longevity of an engineered, single species, biocatalytic biofilm. Microb Cell Fact 2016; 15:180. [PMID: 27769259 PMCID: PMC5073922 DOI: 10.1186/s12934-016-0579-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Engineering of single-species biofilms for enzymatic generation of fine chemicals is attractive. We have recently demonstrated the utility of an engineered Escherichia coli biofilm as a platform for synthesis of 5-halotryptophan. E. coli PHL644, expressing a recombinant tryptophan synthase, was employed to generate a biofilm. Its rapid deposition, and instigation of biofilm formation, was enforced by employing a spin-down method. The biofilm presents a large three-dimensional surface area, excellent for biocatalysis. The catalytic longevity of the engineered biofilm is striking, and we had postulated that this was likely to largely result from protection conferred to recombinant enzymes by biofilm's extracellular matrix. SILAC (stable isotopic labelled amino acids in cell cultures), and in particular dynamic SILAC, in which pulses of different isotopically labelled amino acids are administered to cells over a time course, has been used to follow the fate of proteins. To explore within our spin coated biofilm, whether the recombinant enzyme's longevity might be in part due to its regeneration, we introduced pulses of isotopically labelled lysine and phenylalanine into medium overlaying the biofilm and followed their incorporation over the course of biofilm development. RESULTS Through SILAC analysis, we reveal that constant and complete regeneration of recombinant enzymes occurs within spin coated biofilms. The striking catalytic longevity within the biofilm results from more than just simple protection of active enzyme by the biofilm and its associated extracellular matrix. The replenishment of recombinant enzyme is likely to contribute significantly to the catalytic longevity observed for the engineered biofilm system. CONCLUSIONS Here we provide the first evidence of a recombinant enzyme's regeneration in an engineered biofilm. The recombinant enzyme was constantly replenished over time as evidenced by dynamic SILAC, which suggests that the engineered E. coli biofilms are highly metabolically active, having a not inconsiderable energetic demand. The constant renewal of recombinant enzyme highlights the attractive possibility of utilising this biofilm system as a dynamic platform into which enzymes of interest can be introduced in a "plug-and-play" fashion and potentially be controlled through promoter switching for production of a series of desired fine chemicals.
Collapse
Affiliation(s)
- Xiaoxue Tong
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Tania Triscari Barberi
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Catherine H Botting
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Sunil V Sharma
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Mark J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Rebecca J M Goss
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK. .,Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK.
| |
Collapse
|
13
|
Halan B, Vassilev I, Lang K, Schmid A, Buehler K. Growth of Pseudomonas taiwanensis VLB120∆C biofilms in the presence of n-butanol. Microb Biotechnol 2016; 10:745-755. [PMID: 27696696 PMCID: PMC5481524 DOI: 10.1111/1751-7915.12413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/28/2022] Open
Abstract
Biocatalytic processes often encounter problems due to toxic reactants and products, which reduce biocatalyst viability. Thus, robust organisms capable of tolerating or adapting towards such compounds are of high importance. This study systematically investigated the physiological response of Pseudomonas taiwanensisVLB120∆C biofilms when exposed to n‐butanol, one of the potential next generation biofuels as well as a toxic substance using microscopic and biochemical methods. Initially P. taiwanensisVLB120∆C biofilms did not show any observable growth in the presence of 3% butanol. Prolonged cultivation of 10 days led to biofilm adaptation, glucose and oxygen uptake doubled and consequently it was possible to quantify biomass. Complementing the medium with yeast extract and presumably reducing the metabolic burden caused by butanol exposure further increased the biomass yield. In course of cultivation cells reduced their size in the presence of n‐butanol which results in an enlarged surface‐to‐volume ratio and thus increased nutrient uptake. Finally, biofilm enhanced its extracellular polymeric substances (EPS) production when exposed to n‐butanol. The predominant response of these biofilms under n‐butanol stress are higher energy demand, increased biomass yield upon medium complements, larger surface‐to‐volume ratio and enhanced EPS production. Although we observed a distinct increase in biomass in the presence of 3% butanol it was not possible to cultivate P. taiwanensisVLB120∆C biofilms at higher n‐butanol concentrations. Thereby this study shows that biofilms are not per se tolerant against solvents, and need to adapt to toxic n‐butanol concentrations.
Collapse
Affiliation(s)
- Babu Halan
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstraße 15, 04318, Leipzig, Germany
| | - Igor Vassilev
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Karsten Lang
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstraße 15, 04318, Leipzig, Germany
| | - Katja Buehler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
14
|
Khoei NS, Andreolli M, Lampis S, Vallini G, Turner RJ. A comparison of the response of twoBurkholderia fungorumstrains grown as planktonic cells versus biofilm to dibenzothiophene and select polycyclic aromatic hydrocarbons. Can J Microbiol 2016; 62:851-860. [DOI: 10.1139/cjm-2016-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In natural environments, bacteria often exist in close association with surfaces and interfaces by establishing biofilms. Here, we report on the ability of Burkholderia fungorum strains DBT1 and 95 to survive in high concentrations of hydrocarbons, and we compare their growth as a biofilm vs. planktonic cells. The 2 compounds tested were dibenzothiophene (DBT) and a mixture of naphthalene, phenanthrene, and pyrene (5:2:1) as representative compounds of thiophenes and polycyclic aromatic hydrocarbons (PAHs), respectively. The results showed that both strains were able to degrade DBT and to survive in the presence of up to a 2000 mg·L−1concentration of this compound both as a biofilm and as free-living cells. Moreover, B. fungorum DBT1 showed reduced tolerance towards the mixed PAHs (2000 mg·L−1naphthalene, 800 mg·L−1phenanthrene, and 400 mg·L−1pyrene) both as a biofilm and as free-living cells. Conversely, biofilms of B. fungorum 95 enhanced resistance against these toxic compounds compared with planktonic cells (P < 0.05). Visual observation through confocal laser scanning microscopy showed that exposure of biofilms to DBT and PAHs altered their structure: high concentrations of DBT triggered an aggregation of biofilm cells. These findings provide new perspectives on the effectiveness of using DBT-degrading bacterial strains in bioremediation of hydrocarbon-contaminated sites.
Collapse
Affiliation(s)
- Nazanin Seyed Khoei
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Marco Andreolli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Raymond J. Turner
- Biofilm Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
15
|
Willrodt C, Halan B, Karthaus L, Rehdorf J, Julsing MK, Buehler K, Schmid A. Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow. Biotechnol Bioeng 2016; 114:281-290. [DOI: 10.1002/bit.26071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Christian Willrodt
- Department of Solar Materials; Helmholtz Centre for Environmental Research (UFZ); Permoserstrasse 15 04318 Leipzig Germany
| | - Babu Halan
- Department of Solar Materials; Helmholtz Centre for Environmental Research (UFZ); Permoserstrasse 15 04318 Leipzig Germany
| | - Lisa Karthaus
- Department of Biochemical and Chemical Engineering; Laboratory of Chemical Biotechnology; TU Dortmund University; Dortmund Germany
| | | | - Mattijs K. Julsing
- Department of Biochemical and Chemical Engineering; Laboratory of Chemical Biotechnology; TU Dortmund University; Dortmund Germany
| | - Katja Buehler
- Department of Solar Materials; Helmholtz Centre for Environmental Research (UFZ); Permoserstrasse 15 04318 Leipzig Germany
| | - Andreas Schmid
- Department of Solar Materials; Helmholtz Centre for Environmental Research (UFZ); Permoserstrasse 15 04318 Leipzig Germany
| |
Collapse
|
16
|
Mallevre F, Fernandes TF, Aspray TJ. Pseudomonas putida biofilm dynamics following a single pulse of silver nanoparticles. CHEMOSPHERE 2016; 153:356-364. [PMID: 27031799 DOI: 10.1016/j.chemosphere.2016.03.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/22/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Pseudomonas putida mono-species biofilms were exposed to silver nanoparticles (Ag NPs) in artificial wastewater (AW) under hydrodynamic conditions. Specifically, 48 h old biofilms received a single pulse of Ag NPs at 0, 0.01, 0.1, 1, 10 and 100 mg L(-1) for 24 h in confocal laser scanning microscopy (CLSM) compatible flow-cells. The biofilm dynamics (in terms of morphology, viability and activity) were characterised at 48, 72 and 96 h. Consistent patterns were found across flow-cells and experiments at 48 h. Dose dependent impacts of NPs were then shown at 72 h on biofilm morphology (e.g. biomass, surface area and roughness) from 0.01 mg L(-1). The microbial viability was not altered below 10 mg L(-1) Ag NPs. The activity (based on the d-glucose utilisation) was impacted by concentrations of Ag NPs equal and superior to 10 mg L(-1). Partial recovery of morphology, viability and activity were finally observed at 96 h. Comparatively, exposure to Ag salt resulted in ca. one order of magnitude higher toxicity when compared to Ag NPs. Consequently, the use of a continuous culture system and incorporation of a recovery stage extends the value of biofilm assays beyond the standard acute toxicity assessment.
Collapse
Affiliation(s)
- Florian Mallevre
- School of Life Sciences, NanoSafety Research Group, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Teresa F Fernandes
- School of Life Sciences, NanoSafety Research Group, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK
| | - Thomas J Aspray
- School of Life Sciences, NanoSafety Research Group, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK.
| |
Collapse
|
17
|
Karande R, Schmid A, Buehler K. Applications of Multiphasic Microreactors for Biocatalytic Reactions. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.5b00352] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Rohan Karande
- Helmholtz-Centre for Environmental Research—UFZ GmbH, Department of
Solar Materials, Permoserstrasse
15, 04318 Leipzig, Germany
| | - Andreas Schmid
- Helmholtz-Centre for Environmental Research—UFZ GmbH, Department of
Solar Materials, Permoserstrasse
15, 04318 Leipzig, Germany
| | - Katja Buehler
- Helmholtz-Centre for Environmental Research—UFZ GmbH, Department of
Solar Materials, Permoserstrasse
15, 04318 Leipzig, Germany
| |
Collapse
|
18
|
Benedetti I, de Lorenzo V, Nikel PI. Genetic programming of catalytic Pseudomonas putida biofilms for boosting biodegradation of haloalkanes. Metab Eng 2016; 33:109-118. [DOI: 10.1016/j.ymben.2015.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/02/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022]
|
19
|
Zhuang W, Yang J, Wu J, Liu D, Zhou J, Chen Y, Ying H. Extracellular polymer substances and the heterogeneity of Clostridium acetobutylicum biofilm induced tolerance to acetic acid and butanol. RSC Adv 2016. [DOI: 10.1039/c5ra24923f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Extracellular polymer substances limited the transfer of harmful substances, and thus diluted their concentration in order to protect biofilm cells, enabling the maintenance of stability and increased tolerance to environmental stress.
Collapse
Affiliation(s)
- Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
- College of Biotechnology and Pharmaceutical Engineering
| | - Jing Yang
- College of Biotechnology and Pharmaceutical Engineering
- National Engineering Technique Research Center for Biotechnology
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Jinglan Wu
- College of Biotechnology and Pharmaceutical Engineering
- National Engineering Technique Research Center for Biotechnology
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Dong Liu
- College of Biotechnology and Pharmaceutical Engineering
- National Engineering Technique Research Center for Biotechnology
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Jingwei Zhou
- College of Biotechnology and Pharmaceutical Engineering
- National Engineering Technique Research Center for Biotechnology
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
- College of Biotechnology and Pharmaceutical Engineering
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
- College of Biotechnology and Pharmaceutical Engineering
| |
Collapse
|
20
|
Nhi-Cong LT, Mai CTN, Minh NN, Ha HP, Lien DT, Tuan DV, Quyen DV, Ike M, Uyen DTT. Degradation of sec-hexylbenzene and its metabolites by a biofilm-forming yeast Trichosporon asahii B1 isolated from oil-contaminated sediments in Quangninh coastal zone, Vietnam. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 51:267-275. [PMID: 26654204 DOI: 10.1080/10934529.2015.1094351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This article reports on the ability of yeast Trichosporon asahii B1 biofilm-associated cells, compared with that of planktonic cells, to transform sec-hexylbenzene and its metabolites. This B1 strain was isolated from a petroleum-polluted sediment collected in the QuangNinh coastal zones in Vietnam, and it can transform the branched aromatic hydrocarbons into a type of forming biofilm (pellicle) more efficiency than that the planktonic forms can. In the biofilm cultivation, seven metabolites, including acetophenone, benzoic acid, 2,3-dihydroxybenzoic acid, β-methylcinnamic acid, 2-phenylpropionic acid, 3-phenylbutyric acid, and 5-phenylhexanoic acid were extracted by ethyl acetate and analyzed by HPLC and GC-MS. In contrast, in the planktonic cultivation, only three of these intermediates were found. An individual metabolite was independently used as an initial substrate to prove its degradation by biofilm and planktonic types. The degradation of these products indicated that their inoculation with B1 biofilms was indeed higher than that observed in their inoculation with B1 planktonic cells. This is the first report on the degradation of sec-hexylbenzene and its metabolites by a biofilm-forming Trichosporon asahii strain. These results enhance our understanding of the degradation of branched-side-chain alkylbenzenes by T. asahii B1 biofilms and give a new insight into the potential role of biofilms formed by such species in the bioremediation of other recalcitrant aromatic compounds.
Collapse
Affiliation(s)
- Le Thi Nhi-Cong
- a Institute of Biotechnology, Vietnam Academy of Science and Technology , CauGiay , Hanoi , Vietnam
| | - Cung Thi Ngoc Mai
- a Institute of Biotechnology, Vietnam Academy of Science and Technology , CauGiay , Hanoi , Vietnam
| | - Nghiem Ngoc Minh
- b Institute of Genome Research, Vietnam Academy of Science and Technology , CauGiay , Hanoi , Vietnam
| | - Hoang Phuong Ha
- a Institute of Biotechnology, Vietnam Academy of Science and Technology , CauGiay , Hanoi , Vietnam
| | - Do Thi Lien
- a Institute of Biotechnology, Vietnam Academy of Science and Technology , CauGiay , Hanoi , Vietnam
| | - Do Van Tuan
- c Deparment of Agri-forestry , Son La College , Son La City , Vietnam
| | - Dong Van Quyen
- a Institute of Biotechnology, Vietnam Academy of Science and Technology , CauGiay , Hanoi , Vietnam
| | - Michihiko Ike
- d Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University , Suita , Osaka , Japan
| | - Do Thi To Uyen
- a Institute of Biotechnology, Vietnam Academy of Science and Technology , CauGiay , Hanoi , Vietnam
| |
Collapse
|
21
|
Lindmeyer M, Jahn M, Vorpahl C, Müller S, Schmid A, Bühler B. Variability in subpopulation formation propagates into biocatalytic variability of engineered Pseudomonas putida strains. Front Microbiol 2015; 6:1042. [PMID: 26483771 PMCID: PMC4589675 DOI: 10.3389/fmicb.2015.01042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Pivotal challenges in industrial biotechnology are the identification and overcoming of cell-to-cell heterogeneity in microbial processes. While the development of subpopulations of isogenic cells in bioprocesses is well described (intra-population variability), a possible variability between genetically identical cultures growing under macroscopically identical conditions (clonal variability) is not. A high such clonal variability has been found for the recombinant expression of the styrene monooxygenase genes styAB from Pseudomonas taiwanensis VLB120 in solvent-tolerant Pseudomonas putida DOT-T1E using the alk-regulatory system from P. putida GPo1. In this study, the oxygenase subunit StyA fused to eGFP was used as readout tool to characterize the population structure in P. putida DOT-T1E regarding recombinant protein content. Flow cytometric analyses revealed that in individual cultures, at least two subpopulations with highly differing recombinant StyA-eGFP protein contents appeared (intra-population variability). Interestingly, subpopulation sizes varied from culture-to-culture correlating with the specific styrene epoxidation activity of cells derived from respective cultures (clonal variability). In addition, flow cytometric cell sorting coupled to plasmid copy number (PCN) determination revealed that detected clonal variations cannot be correlated to the PCN, but depend on the combination of the regulatory system and the host strain employed. This is, to the best of our knowledge, the first work reporting that intra-population variability (with differing protein contents in the presented case study) causes clonal variability of genetically identical cultures. Respective impacts on bioprocess reliability and performance and strategies to overcome respective reliability issues are discussed.
Collapse
Affiliation(s)
- Martin Lindmeyer
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University Dortmund, Germany
| | - Michael Jahn
- Helmholtz Centre for Environmental Research - UFZ, Department for Environmental Microbiology Leipzig, Germany
| | - Carsten Vorpahl
- Helmholtz Centre for Environmental Research - UFZ, Department for Environmental Microbiology Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research - UFZ, Department for Environmental Microbiology Leipzig, Germany
| | - Andreas Schmid
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University Dortmund, Germany ; Helmholtz Centre for Environmental Research - UFZ, Department of Solar Materials Leipzig, Germany
| | - Bruno Bühler
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University Dortmund, Germany ; Helmholtz Centre for Environmental Research - UFZ, Department of Solar Materials Leipzig, Germany
| |
Collapse
|
22
|
Schmutzler K, Kracht ON, Schmid A, Buehler K. Trophic regulation of autoaggregation in Pseudomonas taiwanensis VLB120. Appl Microbiol Biotechnol 2015; 100:347-60. [PMID: 26428239 DOI: 10.1007/s00253-015-7006-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 01/01/2023]
Abstract
Five mutants of Pseudomonas taiwanensis VLB120ΔCeGFP showed significant autoaggregation when growing on defined carbohydrates or gluconate, while they grew as suspended cells on complex medium and on organic acids like citrate and succinate. Surprisingly, the respective mutations affected very different genes, although all five strains exhibited the same behaviour of aggregate formation. To elucidate the mechanism of the aggregative behaviour, the microbial adhesion to hydrocarbons (MATH) assay and contact angle measurements were performed that pointed to an increased cell surface hydrophobicity. Moreover, investigations of the outer layer of the cell membrane revealed a reduced amount of O-specific polysaccharides in the lipopolysaccharide of the mutant cells. To determine the regulation of the aggregation, reverse transcription quantitative real-time PCR was performed and, irrespective of the mutation, the transcription of a gene encoding a putative phosphodiesterase, which is degrading the global second messenger cyclic diguanylate, was decreased or even deactivated in all mutants. In summary, it appears that the trophic autoaggregation was regulated via cyclic diguanylate and a link between the cellular cyclic diguanylate concentration and the lipopolysaccharide composition of P. taiwanensis VLB120ΔCeGFP is suggested.
Collapse
Affiliation(s)
- Karolin Schmutzler
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Octavia Natascha Kracht
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Katja Buehler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.
| |
Collapse
|
23
|
Karande R, Debor L, Salamanca D, Bogdahn F, Engesser KH, Buehler K, Schmid A. Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms. Biotechnol Bioeng 2015; 113:52-61. [PMID: 26153144 DOI: 10.1002/bit.25696] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 11/06/2022]
Abstract
The applications of biocatalysts in chemical industries are characterized by activity, selectivity, and stability. One key strategy to achieve high biocatalytic activity is the identification of novel enzymes with kinetics optimized for organic synthesis by Nature. The isolation of novel cytochrome P450 monooxygenase genes from Acidovorax sp. CHX100 and their functional expression in recombinant Pseudomonas taiwanensis VLB120 enabled efficient oxidation of cyclohexane to cyclohexanol. Although initial resting cell activities of 20 U gCDW (-1) were achieved, the rapid decrease in catalytic activity due to the toxicity of cyclohexane prevented synthetic applications. Cyclohexane toxicity was reduced and cellular activities stabilized over the reaction time by delivering the toxic substrate through the vapor phase and by balancing the aqueous phase mass transfer with the cellular conversion rate. The potential of this novel CYP enzyme was exploited by transferring the shake flask reaction to an aqueous-air segmented flow biofilm membrane reactor for maximizing productivity. Cyclohexane was continuously delivered via the silicone membrane. This ensured lower reactant toxicity and continuous product formation at an average volumetric productivity of 0.4 g L tube (-1) h(-1) for several days. This highlights the potential of combining a powerful catalyst with a beneficial reactor design to overcome critical issues of cyclohexane oxidation to cyclohexanol. It opens new opportunities for biocatalytic transformations of compounds which are toxic, volatile, and have low solubility in water.
Collapse
Affiliation(s)
- Rohan Karande
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Linde Debor
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Diego Salamanca
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Fabian Bogdahn
- Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Karl-Heinrich Engesser
- Department of Biological Waste Air Purification, Institute of Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Stuttgart, Germany
| | - Katja Buehler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany. .,Department of Biochemical and Chemical Engineering, Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ GmbH, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
24
|
Lang K, Buehler K, Schmid A. Multistep Synthesis of (S)-3-Hydroxyisobutyric Acid from Glucose usingPseudomonas taiwanensisVLB120 B83 T7 Catalytic Biofilms. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
A three-step method for analysing bacterial biofilm formation under continuous medium flow. Appl Microbiol Biotechnol 2015; 99:6035-47. [PMID: 25936379 DOI: 10.1007/s00253-015-6628-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
Abstract
For the investigation and comparison of microbial biofilms, a variety of analytical methods have been established, all focusing on different growth stages and application areas of biofilms. In this study, a novel quantitative assay for analysing biofilm maturation under the influence of continuous flow conditions was developed using the interesting biocatalyst Pseudomonas taiwanensis VLB120. In contrast to other tubular-based assay systems, this novel assay format delivers three readouts using a single setup in a total assay time of 40 h. It combines morphotype analysis of biofilm colonies with the direct quantification of biofilm biomass and pellicle formation on an air/liquid interphase. Applying the Tube-Assay, the impact of the second messenger cyclic diguanylate on biofilm formation of P. taiwanensis VLB120 was investigated. To this end, 41 deletions of genes encoding for protein homologues to diguanylate cyclase and phosphodiesterase were generated in the genome of P. taiwanensis VLB120. Subsequently, the biofilm formation of the resulting mutants was analysed using the Tube-Assay. In more than 60 % of the mutants, a significantly altered biofilm formation as compared to the parent strain was detected. Furthermore, the potential of the proposed Tube-Assay was validated by investigating the biofilms of several other bacterial species.
Collapse
|
26
|
Nisha KN, Devi V, Varalakshmi P, Ashokkumar B. Biodegradation and utilization of dimethylformamide by biofilm forming Paracoccus sp. strains MKU1 and MKU2. BIORESOURCE TECHNOLOGY 2015; 188:9-13. [PMID: 25728343 DOI: 10.1016/j.biortech.2015.02.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 05/11/2023]
Abstract
Two bacterial strains capable of degrading N,N-dimethylformamide (DMF) were isolated from the effluent and sludge samples of textile and tyre industries. The 16S rRNA gene analysis revealed that bacterial strains belonged to the genera Paracoccus and named as Paracoccus sp. MKU1 and Paracoccus sp. MKU2. The DMF degradation experiments conducted at a DMF concentration of 1% v/v and HPLC analysis revealed that MKU1 and MKU2 degraded 55% and 46% of DMF after 120 h of growth. Biofilm quantification by microtiter plate assay revealed that both the bacterial isolates can form efficient biofilm on during DMF utilization. The presence of secondary carbon sources influenced the DMF degradation and biofilm formation where highest biofilm formation was observed in the presence of acetate and enhanced the DMF degradation to a maximum of 86.59% with MKU1 whereas glucose and acetate enhanced DMF degradation by MKU2 to a maximum of 82.7% and 80% respectively.
Collapse
Affiliation(s)
- Kamaldeen Nasrin Nisha
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Venkatesan Devi
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
27
|
Yick S, Mai-Prochnow A, Levchenko I, Fang J, Bull MK, Bradbury M, Murphy AB, (Ken) Ostrikov K. The effects of plasma treatment on bacterial biofilm formation on vertically-aligned carbon nanotube arrays. RSC Adv 2015. [DOI: 10.1039/c4ra08187k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vertically-aligned carbon nanotube arrays treated with inductively-coupled plasmas demonstrate selective support of biofilms of Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Samuel Yick
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- Complex Systems
| | - Anne Mai-Prochnow
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
| | - Igor Levchenko
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- Complex Systems
| | - Jinghua Fang
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- School of Physics
| | - Michelle K. Bull
- Food and Nutrition Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- North Ryde
- Australia
| | - Mark Bradbury
- Food and Nutrition Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- North Ryde
- Australia
| | - Anthony B. Murphy
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
| | - Kostya (Ken) Ostrikov
- Plasma Nanoscience Laboratories
- Manufacturing Flagship
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- Complex Systems
| |
Collapse
|
28
|
Seviour T, Weerachanchai P, Hinks J, Roizman D, Rice SA, Bai L, Lee JM, Kjelleberg S. Solvent optimization for bacterial extracellular matrices: a solution for the insoluble. RSC Adv 2015. [DOI: 10.1039/c4ra10930a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ionic liquids enable solvent optimization for different biofilms through solubility parameter concept.
Collapse
Affiliation(s)
- Thomas Seviour
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
| | - Piyarat Weerachanchai
- Nanyang Environment and Water Research Institute (NEWRI)
- Nanyang Technological University
- Singapore
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
| | - Jamie Hinks
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
| | - Dan Roizman
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
| | - Scott A. Rice
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
- School of Biological Sciences (SBS)
- Nanyang Technological University
| | - Linlu Bai
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Staffan Kjelleberg
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE)
- Nanyang Technological University
- Singapore
- Centre for Marine BioInnovation and School of Biotechnology and Biomolecular Sciences
- University of New South Wales
| |
Collapse
|
29
|
Mujahid M, Prasuna ML, Sasikala C, Ramana CV. Integrated Metabolomic and Proteomic Analysis Reveals Systemic Responses of Rubrivivax benzoatilyticus JA2 to Aniline Stress. J Proteome Res 2014; 14:711-27. [DOI: 10.1021/pr500725b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Md Mujahid
- Department
of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - M Lakshmi Prasuna
- Department
of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| | - Ch Sasikala
- Bacterial
Discovery Laboratory, Center for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad 500 085, India
| | - Ch Venkata Ramana
- Department
of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500 046, India
| |
Collapse
|
30
|
Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity. Appl Environ Microbiol 2014; 80:6539-48. [PMID: 25128338 DOI: 10.1128/aem.01940-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The application of whole cells as biocatalysts is often limited by the toxicity of organic solvents, which constitute interesting substrates/products or can be used as a second phase for in situ product removal and as tools to control multistep biocatalysis. Solvent-tolerant bacteria, especially Pseudomonas strains, are proposed as promising hosts to overcome such limitations due to their inherent solvent tolerance mechanisms. However, potential industrial applications suffer from tedious, unproductive adaptation processes, phenotypic variability, and instable solvent-tolerant phenotypes. In this study, genes described to be involved in solvent tolerance were identified in Pseudomonas taiwanensis VLB120, and adaptive solvent tolerance was proven by cultivation in the presence of 1% (vol/vol) toluene. Deletion of ttgV, coding for the specific transcriptional repressor of solvent efflux pump TtgGHI gene expression, led to constitutively solvent-tolerant mutants of P. taiwanensis VLB120 and VLB120ΔC. Interestingly, the increased amount of solvent efflux pumps enhanced not only growth in the presence of toluene and styrene but also the biocatalytic performance in terms of stereospecific styrene epoxidation, although proton-driven solvent efflux is expected to compete with the styrene monooxygenase for metabolic energy. Compared to that of the P. taiwanensis VLB120ΔC parent strain, the maximum specific epoxidation activity of P. taiwanensis VLB120ΔCΔttgV doubled to 67 U/g of cells (dry weight). This study shows that solvent tolerance mechanisms, e.g., the solvent efflux pump TtgGHI, not only allow for growth in the presence of organic compounds but can also be used as tools to improve redox biocatalysis involving organic solvents.
Collapse
|
31
|
Köhler KAK, Blank LM, Frick O, Schmid A. D-Xylose assimilation via the Weimberg pathway by solvent-tolerant Pseudomonas taiwanensis VLB120. Environ Microbiol 2014; 17:156-70. [PMID: 24934825 DOI: 10.1111/1462-2920.12537] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/09/2014] [Indexed: 11/28/2022]
Abstract
The natural ability of Pseudomonas taiwanensis VLB120 to use xylose as sole carbon and energy source offers a high potential for sustainable industrial biotechnology. In general, three xylose assimilation routes are reported for bacteria. To elaborate the metabolic capacity of P. taiwanensis VLB120 and to identify potential targets for metabolic engineering, an in silico/in vivo experiment was designed, allowing for discrimination between these pathways. Kinetics of glucose and xylose degradation in P. taiwanensis VLB120 was determined and the underlying stoichiometry was investigated by genome-based metabolic modelling and tracer studies using stable isotope labelling. Additionally, reverse transcription quantitative polymerase chain reaction experiments have been performed to link physiology to the genomic inventory. Based on in silico experiments, a labelling strategy was developed, ensuring a measurable and unique (13) C-labelling distribution in proteinogenic amino acids for every possible distribution between the different xylose metabolization routes. A comparison with in vivo results allows the conclusion that xylose is metabolized by P. taiwanensis VLB120 via the Weimberg pathway. Transcriptomic and physiological studies point to the biotransformation of xylose to xylonate by glucose dehydrogenase. The kinetics of this enzyme is also responsible for the preference of glucose as carbon source by cells growing in the presence of glucose and xylose.
Collapse
Affiliation(s)
- Kirsten A K Köhler
- Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Str. 66, Dortmund, D-44227, Germany
| | | | | | | |
Collapse
|
32
|
Karande R, Halan B, Schmid A, Buehler K. Segmented flow is controlling growth of catalytic biofilms in continuous multiphase microreactors. Biotechnol Bioeng 2014; 111:1831-40. [PMID: 24729096 DOI: 10.1002/bit.25256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 01/20/2023]
Abstract
Biofilm reactors are often mass transfer limited due to excessive biofilm growth, impeding reactor performance. Fluidic conditions play a key role for biofilm structural development and subsequently for overall reactor performance. Continuous interfacial forces generated by aqueous-air segmented flow are controlling biofilm structure and diminish mass transfer limitations in biofilm microreactors. A simple three step method allows the formation of robust biofilms under aqueous-air segmented flow conditions: a first-generation biofilm is developing during single phase flow, followed by the introduction of air segments discarding most of the established biofilm. Finally, a second-generation, mature biofilm is formed in the presence of aqueous-air segments. Confocal laser scanning microscopy experiments revealed that the segmented flow supports the development of a robust biofilm. This mature biofilm is characterized by a three to fourfold increase in growth rate, calculated from an increase in thickness, a faster spatial distribution (95% surface coverage in 24 h), and a significantly more compact structure (roughness coefficient <1), as compared to biofilms grown under single phase flow conditions. The applicability of the concept in a segmented flow biofilm microreactor was demonstrated using the epoxidation of styrene to (S)-styrene oxide (ee > 99.8%) catalyzed by Pseudomonas sp. strain VLB120ΔC cells in the mono-species biofilm. The limiting factor affecting reactor performance was oxygen transfer as the volumetric productivity rose from 11 to 46 g L tube (-1) day(-1) after increasing the air flow rate. In summary, different interfacial forces can be applied for separating cell attachment and adaptation resulting in the development of a robust catalytic biofilm in continuous microreactors.
Collapse
Affiliation(s)
- Rohan Karande
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 66, Dortmund, 44227, Germany
| | | | | | | |
Collapse
|
33
|
Complete genome sequence of Pseudomonas sp. strain VLB120 a solvent tolerant, styrene degrading bacterium, isolated from forest soil. J Biotechnol 2013; 168:729-30. [DOI: 10.1016/j.jbiotec.2013.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/04/2013] [Indexed: 11/16/2022]
|
34
|
Perni S, Hackett L, Goss RJM, Simmons MJ, Overton TW. Optimisation of engineered Escherichia coli biofilms for enzymatic biosynthesis of l-halotryptophans. AMB Express 2013; 3:66. [PMID: 24188712 PMCID: PMC3843566 DOI: 10.1186/2191-0855-3-66] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/10/2022] Open
Abstract
Engineered biofilms comprising a single recombinant species have demonstrated remarkable activity as novel biocatalysts for a range of applications. In this work, we focused on the biotransformation of 5-haloindole into 5-halotryptophan, a pharmaceutical intermediate, using Escherichia coli expressing a recombinant tryptophan synthase enzyme encoded by plasmid pSTB7. To optimise the reaction we compared two E. coli K-12 strains (MC4100 and MG1655) and their ompR234 mutants, which overproduce the adhesin curli (PHL644 and PHL628). The ompR234 mutation increased the quantity of biofilm in both MG1655 and MC4100 backgrounds. In all cases, no conversion of 5-haloindoles was observed using cells without the pSTB7 plasmid. Engineered biofilms of strains PHL628 pSTB7 and PHL644 pSTB7 generated more 5-halotryptophan than their corresponding planktonic cells. Flow cytometry revealed that the vast majority of cells were alive after 24 hour biotransformation reactions, both in planktonic and biofilm forms, suggesting that cell viability was not a major factor in the greater performance of biofilm reactions. Monitoring 5-haloindole depletion, 5-halotryptophan synthesis and the percentage conversion of the biotransformation reaction suggested that there were inherent differences between strains MG1655 and MC4100, and between planktonic and biofilm cells, in terms of tryptophan and indole metabolism and transport. The study has reinforced the need to thoroughly investigate bacterial physiology and make informed strain selections when developing biotransformation reactions.
Collapse
|
35
|
Ishikawa M, Shigemori K, Hori K. Application of the adhesive bacterionanofiber AtaA to a novel microbial immobilization method for the production of indigo as a model chemical. Biotechnol Bioeng 2013; 111:16-24. [PMID: 23893702 DOI: 10.1002/bit.25012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/06/2013] [Accepted: 07/15/2013] [Indexed: 11/09/2022]
Abstract
The toluene-degrading bacterium Acinetobacter sp. Tol 5 shows high adhesiveness mediated by the bacterionanofiber protein AtaA, which is a new member of the trimeric autotransporter adhesin (TAA) family. In contrast to other reported TAAs, AtaA mediates the adhesion of Tol 5 to various abiotic surfaces ranging from hydrophobic plastics to hydrophilic glass and stainless steel. The expression of ataA in industrially relevant bacteria improves their adhesiveness and enables immobilization directly onto support materials. This represents a new method that can be alternated with conventional immobilization via gel entrapment and chemical bonding. In this study, we demonstrate the feasibility of this immobilizing method by utilizing AtaA. As a model case for this method, the indigo producer Acinetobacter sp. ST-550 was transformed with ataA and immobilized on a polyurethane support. The immobilized ST-550 cells were transferred directly to a reaction solution containing indole as the substrate. The immobilized ST-550 cells showed a faster indigo production rate at high concentrations of indole compared with planktonic ST-550 not expressing the ataA gene, implying that immobilization enhanced the tolerance of ST-550 to the substrate indole. As a result, the immobilized ST-550 produced fivefold higher levels of indigo than planktonic ST-550. These results proved that AtaA is useful for bacterial immobilization.
Collapse
Affiliation(s)
- Masahito Ishikawa
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | |
Collapse
|
36
|
|
37
|
Gross R, Buehler K, Schmid A. Engineered catalytic biofilms for continuous large scale production of n-octanol and (S)-styrene oxide. Biotechnol Bioeng 2012; 110:424-36. [PMID: 22886684 DOI: 10.1002/bit.24629] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/11/2012] [Accepted: 07/26/2012] [Indexed: 11/08/2022]
Abstract
This study evaluates the technical feasibility of biofilm-based biotransformations at an industrial scale by theoretically designing a process employing membrane fiber modules as being used in the chemical industry and compares the respective process parameters to classical stirred-tank studies. To our knowledge, catalytic biofilm processes for fine chemicals production have so far not been reported on a technical scale. As model reactions, we applied the previously studied asymmetric styrene epoxidation employing Pseudomonas sp. strain VLB120ΔC biofilms and the here-described selective alkane hydroxylation. Using the non-heme iron containing alkane hydroxylase system (AlkBGT) from P. putida Gpo1 in the recombinant P. putida PpS81 pBT10 biofilm, we were able to continuously produce 1-octanol from octane with a maximal productivity of 1.3 g L ⁻¹(aq) day⁻¹ in a single tube micro reactor. For a possible industrial application, a cylindrical membrane fiber module packed with 84,000 polypropylene fibers is proposed. Based on the here presented calculations, 59 membrane fiber modules (of 0.9 m diameter and 2 m length) would be feasible to realize a production process of 1,000 tons/year for styrene oxide. Moreover, the product yield on carbon can at least be doubled and over 400-fold less biomass waste would be generated compared to classical stirred-tank reactor processes. For the octanol process, instead, further intensification in biological activity and/or surface membrane enlargement is required to reach production scale. By taking into consideration challenges such as biomass growth control and maintaining a constant biological activity, this study shows that a biofilm process at an industrial scale for the production of fine chemicals is a sustainable alternative in terms of product yield and biomass waste production.
Collapse
Affiliation(s)
- Rainer Gross
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Emil-Figge-Str. 66, Dortmund 44221, Germany
| | | | | |
Collapse
|
38
|
Production host selection for asymmetric styrene epoxidation: Escherichia coli vs. solvent-tolerant Pseudomonas. ACTA ACUST UNITED AC 2012; 39:1125-33. [DOI: 10.1007/s10295-012-1126-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
Abstract
Selection of the ideal microbe is crucial for whole-cell biotransformations, especially if the target reaction intensively interacts with host cell functions. Asymmetric styrene epoxidation is an example of a reaction which is strongly dependent on the host cell owing to its requirement for efficient cofactor regeneration and stable expression of the styrene monooxygenase genes styAB. On the other hand, styrene epoxidation affects the whole-cell biocatalyst, because it involves toxic substrate and products besides the burden of additional (recombinant) enzyme synthesis. With the aim to compare two fundamentally different strain engineering strategies, asymmetric styrene epoxidation by StyAB was investigated using the engineered wild-type strain Pseudomonas sp. strain VLB120ΔC, a styrene oxide isomerase (StyC) knockout strain able to accumulate (S)-styrene oxide, and recombinant E. coli JM101 carrying styAB on the plasmid pSPZ10. Their performance was analyzed during fed-batch cultivation in two-liquid phase biotransformations with respect to specific activity, volumetric productivity, product titer, tolerance of toxic substrate and products, by-product formation, and product yield on glucose. Thereby, Pseudomonas sp. strain VLB120ΔC proved its great potential by tolerating high styrene oxide concentrations and by the absence of by-product formation. The E. coli-based catalyst, however, showed higher specific activities and better yields on glucose. The results not only show the importance but also the complexity of host cell selection and engineering. Finding the optimal strain engineering strategy requires profound understanding of bioprocess and biocatalyst operation. In this respect, a possible negative influence of solvent tolerance on yield and activity is discussed.
Collapse
|
39
|
Halan B, Buehler K, Schmid A. Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 2012; 30:453-65. [PMID: 22704028 DOI: 10.1016/j.tibtech.2012.05.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 04/04/2012] [Accepted: 05/08/2012] [Indexed: 12/11/2022]
Abstract
Biofilms are resilient to a wide variety of environmental stresses. This inherited robustness has been exploited mainly for bioremediation. With a better understanding of their physiology, the application of these living catalysts has been extended to the production of bulk and fine chemicals as well as towards biofuels, biohydrogen, and electricity production in microbial fuel cells. Numerous challenges call for novel solutions and concepts of analytics, biofilm reactor design, product recovery, and scale-up strategies. In this review, we highlight recent advancements in spatiotemporal biofilm characterization and new biofilm reactor developments for the production of value-added fine chemicals as well as current challenges and future scenarios.
Collapse
Affiliation(s)
- Babu Halan
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, Dortmund 44227, Germany
| | | | | |
Collapse
|
40
|
Shimada K, Itoh Y, Washio K, Morikawa M. Efficacy of forming biofilms by naphthalene degrading Pseudomonas stutzeri T102 toward bioremediation technology and its molecular mechanisms. CHEMOSPHERE 2012; 87:226-233. [PMID: 22285037 DOI: 10.1016/j.chemosphere.2011.12.078] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 05/31/2023]
Abstract
In natural environments, bacteria often exist in close association with surfaces and interfaces. There they form "biofilms", multicellular aggregates held together by an extracellular matrix. The biofilms confer on the constituent cells high resistance to environmental stresses and diverse microenvironments that help generate cellular heterogeneity. Here we report on the ability of Pseudomonas stutzeri T102 biofilm-associated cells, as compared with that of planktonic cells, to degrade naphthalene and survive in petroleum-contaminated soils. In liquid culture system, T102 biofilm-associated cells did not degrade naphthalene during initial hours of incubation but then degraded it faster than planktonic cells, which degraded naphthalene at a nearly constant rate. This delayed but high degradation activity of the biofilms could be attributed to super-activated cells that were detached from the biofilms. When the fitness of T102 biofilm-associated cells was tested in natural petroleum-contaminated soils, they were capable of surviving for 10 wk; by then T102 planktonic cells were mostly extinct. Naphthalene degradation activity in the soils that had been inoculated with T102 biofilms was indeed higher than that observed in soils inoculated with T102 planktonic cells. These results suggest that inoculation of contaminated soils with P. stutzeri T102 biofilms should enable bioaugmentation to be a more durable and effective bioremediation technology than inoculation with planktonic cells.
Collapse
Affiliation(s)
- Kohei Shimada
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, N-10 W-5, Kita-ku, Sapporo, 060-0810 Hokkaido, Japan
| | | | | | | |
Collapse
|
41
|
Poblete-Castro I, Becker J, Dohnt K, dos Santos VM, Wittmann C. Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 2012; 93:2279-90. [DOI: 10.1007/s00253-012-3928-0] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 11/29/2022]
|