1
|
Elahi R, Dinis LR, Swift RP, Liu HB, Prigge ST. tRNA modifying enzymes MnmE and MnmG are essential for Plasmodium falciparum apicoplast maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.21.629855. [PMID: 39763917 PMCID: PMC11702754 DOI: 10.1101/2024.12.21.629855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The circular genome of the Plasmodium falciparum apicoplast contains a complete minimal set of tRNAs, positioning the apicoplast as an ideal model for studying the fundamental factors required for protein translation. Modifications at tRNA wobble base positions, such as xm5s2U, are critical for accurate protein translation. These modifications are ubiquitously found in tRNAs decoding two-family box codons ending in A or G in prokaryotes and in eukaryotic organelles. Here, we investigated the xm5s2U biosynthetic pathway in the apicoplast organelle of P. falciparum. Through comparative genomics, we identified orthologs of enzymes involved in this process: SufS, MnmA, MnmE, and MnmG. While SufS and MnmA were previously shown to catalyze s2U modifications, we now show that MnmE and MnmG are apicoplast-localized and contain features required for xm5s2U biosynthetic activity. Notably, we found that P. falciparum lacks orthologs of MnmC, MnmL, and MnmM, suggesting that the parasites contain a minimal xm5s2U biosynthetic pathway similar to that found in bacteria with reduced genomes. Deletion of either MnmE or MnmG resulted in apicoplast disruption and parasite death, mimicking the phenotype observed in ΔmnmA and ΔsufS parasites. Our data strongly support the presence and essentiality of xm5s2U modifications in apicoplast tRNAs. This study advances our understanding of the minimal requirements for protein translation in the apicoplast organelle.
Collapse
Affiliation(s)
- Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Luciana Ribeiro Dinis
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Kametani M, Akitomo T, Hamada M, Usuda M, Kaneki A, Ogawa M, Ikeda S, Ito Y, Hamaguchi S, Kusaka S, Asao Y, Iwamoto Y, Mitsuhata C, Suehiro Y, Okawa R, Nakano K, Nomura R. Inhibitory Effects of Surface Pre-Reacted Glass Ionomer Filler Eluate on Streptococcus mutans in the Presence of Sucrose. Int J Mol Sci 2024; 25:9541. [PMID: 39273489 PMCID: PMC11395275 DOI: 10.3390/ijms25179541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The surface pre-reacted glass ionomer (S-PRG) filler is a type of bioactive functional glass that releases six different ions. This study examined the effects of the S-PRG filler eluate on Streptococcus mutans in the presence of sucrose. In a solution containing S. mutans, the concentrations of BO33-, Al3+, Sr2+, and F- were significantly higher in the presence of the S-PRG filler eluate than in its absence (p < 0.001). The concentrations of these ions further increased in the presence of sucrose. Additionally, the S-PRG filler eluate significantly reduced glucan formation by S. mutans (p < 0.001) and significantly increased the pH of the bacterial suspension (p < 0.001). Bioinformatic analyses revealed that the S-PRG filler eluate downregulated genes involved in purine biosynthesis (purC, purF, purL, purM, and purN) and upregulated genes involved in osmotic pressure (opuAa and opuAb). At a low pH (5.0), the S-PRG filler eluate completely inhibited the growth of S. mutans in the presence of sucrose and significantly increased the osmotic pressure of the bacterial suspension compared with the control (p < 0.001). These findings suggest that ions released from the S-PRG filler induce gene expression changes and exert an inhibitory effect on S. mutans in the presence of sucrose.
Collapse
Affiliation(s)
- Mariko Kametani
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tatsuya Akitomo
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Momoko Usuda
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Ami Kaneki
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masashi Ogawa
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shunya Ikeda
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuya Ito
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Shuma Hamaguchi
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Satoru Kusaka
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuria Asao
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuko Iwamoto
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuto Suehiro
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Rena Okawa
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita 565-0871, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
3
|
Zhao D, Wang J, Wang H, Zhu X, Han C, Liu A. The Transcription Regulator GntR/HutC Regulates Biofilm Formation, Motility and Stress Tolerance in Lysobacter capsici X2-3. Curr Microbiol 2023; 80:281. [PMID: 37439829 DOI: 10.1007/s00284-023-03390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Lysobacter capsici X2-3, a plant growth-promoting rhizobacteria (PGPR), was isolated from wheat rhizosphere and has inhibitory effects against a wide range of pathogens. One important characteristic of L. capsici is its ability to produce diverse antibiotics and lytic enzymes. The GntR family of transcription factors is a common transcription factor superfamily in bacteria that has fundamental roles in bacterial metabolism regulation. However, the GntR family transcription factor in Lysobacter has not been identified. In this study, to obtain an understanding of the GntR/HutC gene function in L. capsici X2-3, a random Tn5-insertion mutant library of X2-3 was constructed to select genes showing pleiotropic effects on phenotype. We identified a Tn5 mutant with an insertion in LC4356 that showed reduced biofilm levels, and sequence analysis indicated that the inserted gene encodes a GntR/HutC family transcription regulator. Furthermore, the LC4356 mutant showed reduced extracellular polysaccharide (EPS) production, diminished twitching motility and decreased survival under UV radiation and high-temperature. The RT‒qPCR results indicated that the pentose phosphate pathway-related genes G6PDH, 6PGL and PGDH were upregulated in the LC4356 mutant. Thus, since L. capsici is an efficient biocontrol agent for crop protection, our findings provide fundamental insights into GntR/HutC and will be worthwhile to improve PGPR biocontrol efficacy.
Collapse
Affiliation(s)
- Dan Zhao
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Jing Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Hong Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaoping Zhu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Chao Han
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Aixin Liu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
4
|
Dobrut A, Wójcik-Grzybek D, Młodzińska A, Pietras-Ożga D, Michalak K, Tabacki A, Mroczkowska U, Brzychczy-Włoch M. Detection of immunoreactive proteins of Escherichia coli, Streptococcus uberis, and Streptococcus agalactiae isolated from cows with diagnosed mastitis. Front Cell Infect Microbiol 2023; 13:987842. [PMID: 36844415 PMCID: PMC9950269 DOI: 10.3389/fcimb.2023.987842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Mastitis is a widespread mammary gland disease of dairy cows that causes severe economic losses to dairy farms. Mastitis can be caused by bacteria, fungi, and algae. The most common species isolated from infected milk are, among others, Streptococcus spp., and Escherichia coli. The aim of our study was protein detection based on both in silico and in vitro methods, which allowed the identification of immunoreactive proteins representative of the following species: Streptococcus uberis, Streptococcus agalactiae, and Escherichia coli. Methods The study group included 22 milk samples and 13 serum samples obtained from cows with diagnosed mastitis, whereas the control group constituted 12 milk samples and 12 serum samples isolated from healthy animals. Detection of immunoreactive proteins was done by immunoblotting, while amino acid sequences from investigated proteins were determined by MALDI-TOF. Then, bioinformatic analyses were performed on detected species specific proteins in order to investigate their immunoreactivity. Results As a result, we identified 13 proteins: 3 (molybdenum cofactor biosynthesis protein B, aldehyde reductase YahK, outer membrane protein A) for E. coli, 4 (elongation factor Tu, tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG, GTPase Obg, glyceraldehyde-3-phosphate dehydrogenase) for S. uberis, and 6 (aspartate carbamoyltransferase, elongation factor Tu, 60 kDa chaperonin, elongation factor G, galactose-6-phosphate isomerase subunit LacA, adenosine deaminase) for S. agalactiae, which demonstrated immunoreactivity to antibodies present in serum from cows with diagnosed mastitis. Discussion Due to the confirmed immunoreactivity, specificity and localization in the bacterial cell, these proteins can be considered considered potential targets in innovative rapid immunodiagnostic assays for bovine mastitis, however due to the limited number of examined samples, further examination is needed.
Collapse
Affiliation(s)
- Anna Dobrut
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland,*Correspondence: Anna Dobrut,
| | - Dagmara Wójcik-Grzybek
- Department of Experimental Physiology, Chair of Physiology, Jagiellonian University Medical College, Krakow, Poland
| | | | - Dorota Pietras-Ożga
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Lublin, Poland
| | | | | | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Fleming BA, Blango MG, Rousek AA, Kincannon WM, Tran A, Lewis A, Russell C, Zhou Q, Baird LM, Barber A, Brannon JR, Beebout C, Bandarian V, Hadjifrangiskou M, Howard M, Mulvey M. A tRNA modifying enzyme as a tunable regulatory nexus for bacterial stress responses and virulence. Nucleic Acids Res 2022; 50:7570-7590. [PMID: 35212379 PMCID: PMC9303304 DOI: 10.1093/nar/gkac116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Post-transcriptional modifications can impact the stability and functionality of many different classes of RNA molecules and are an especially important aspect of tRNA regulation. It is hypothesized that cells can orchestrate rapid responses to changing environmental conditions by adjusting the specific types and levels of tRNA modifications. We uncovered strong evidence in support of this tRNA global regulation hypothesis by examining effects of the well-conserved tRNA modifying enzyme MiaA in extraintestinal pathogenic Escherichia coli (ExPEC), a major cause of urinary tract and bloodstream infections. MiaA mediates the prenylation of adenosine-37 within tRNAs that decode UNN codons, and we found it to be crucial to the fitness and virulence of ExPEC. MiaA levels shifted in response to stress via a post-transcriptional mechanism, resulting in marked changes in the amounts of fully modified MiaA substrates. Both ablation and forced overproduction of MiaA stimulated translational frameshifting and profoundly altered the ExPEC proteome, with variable effects attributable to UNN content, changes in the catalytic activity of MiaA, or availability of metabolic precursors. Cumulatively, these data indicate that balanced input from MiaA is critical for optimizing cellular responses, with MiaA acting much like a rheostat that can be used to realign global protein expression patterns.
Collapse
Affiliation(s)
- Brittany A Fleming
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Alexis A Rousek
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Alexander Tran
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam J Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Colin W Russell
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Qin Zhou
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lisa M Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Amelia E Barber
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John R Brannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael T Howard
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
6
|
Zhao D, Wang H, Li Z, Han S, Han C, Liu A. LC_Glucose-Inhibited Division Protein Is Required for Motility, Biofilm Formation, and Stress Response in Lysobacter capsici X2-3. Front Microbiol 2022; 13:840792. [PMID: 35369450 PMCID: PMC8969512 DOI: 10.3389/fmicb.2022.840792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Glucose-inhibited division protein (GidA) plays a critical role in the growth, stress response, and virulence of bacteria. However, how gidA may affect plant growth-promoting bacteria (PGPB) is still not clear. Our study aimed to describe the regulatory function of the gidA gene in Lysobacter capsici, which produces a variety of lytic enzymes and novel antibiotics. Here, we generated an LC_GidA mutant, MT16, and an LC_GidA complemented strain, Com-16, by plasmid integration. The deletion of LC_GidA resulted in an attenuation of the bacterial growth rate, motility, and biofilm formation of L. capsici. Root colonization assays demonstrated that the LC_GidA mutant showed reduced colonization of wheat roots. In addition, disruption of LC_GidA showed a clear diminution of survival in the presence of high temperature, high salt, and different pH conditions. The downregulated expression of genes related to DNA replication, cell division, motility, and biofilm formation was further validated by real-time quantitative PCR (RT–qPCR). Together, understanding the regulatory function of GidA is helpful for improving the biocontrol of crop diseases and has strong potential for biological applications.
Collapse
|
7
|
Kouvela A, Zaravinos A, Stamatopoulou V. Adaptor Molecules Epitranscriptome Reprograms Bacterial Pathogenicity. Int J Mol Sci 2021; 22:8409. [PMID: 34445114 PMCID: PMC8395126 DOI: 10.3390/ijms22168409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
The strong decoration of tRNAs with post-transcriptional modifications provides an unprecedented adaptability of this class of non-coding RNAs leading to the regulation of bacterial growth and pathogenicity. Accumulating data indicate that tRNA post-transcriptional modifications possess a central role in both the formation of bacterial cell wall and the modulation of transcription and translation fidelity, but also in the expression of virulence factors. Evolutionary conserved modifications in tRNA nucleosides ensure the proper folding and stability redounding to a totally functional molecule. However, environmental factors including stress conditions can cause various alterations in tRNA modifications, disturbing the pathogen homeostasis. Post-transcriptional modifications adjacent to the anticodon stem-loop, for instance, have been tightly linked to bacterial infectivity. Currently, advances in high throughput methodologies have facilitated the identification and functional investigation of such tRNA modifications offering a broader pool of putative alternative molecular targets and therapeutic avenues against bacterial infections. Herein, we focus on tRNA epitranscriptome shaping regarding modifications with a key role in bacterial infectivity including opportunistic pathogens of the human microbiome.
Collapse
Affiliation(s)
- Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | | |
Collapse
|
8
|
Antoine L, Bahena-Ceron R, Devi Bunwaree H, Gobry M, Loegler V, Romby P, Marzi S. RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. Genes (Basel) 2021; 12:1125. [PMID: 34440299 PMCID: PMC8394870 DOI: 10.3390/genes12081125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000 Strasbourg, France; (L.A.); (R.B.-C.); (H.D.B.); (M.G.); (V.L.); (P.R.)
| |
Collapse
|
9
|
Blaschke U, Skiebe E, Wilharm G. Novel Genes Required for Surface-Associated Motility in Acinetobacter baumannii. Curr Microbiol 2021; 78:1509-1528. [PMID: 33666749 PMCID: PMC7997844 DOI: 10.1007/s00284-021-02407-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/10/2021] [Indexed: 01/28/2023]
Abstract
Acinetobacter baumannii is an opportunistic and increasingly multi-drug resistant human pathogen rated as a critical priority one pathogen for the development of new antibiotics by the WHO in 2017. Despite the lack of flagella, A. baumannii can move along wet surfaces in two different ways: via twitching motility and surface-associated motility. While twitching motility is known to depend on type IV pili, the mechanism of surface-associated motility is poorly understood. In this study, we established a library of 30 A. baumannii ATCC® 17978™ mutants that displayed deficiency in surface-associated motility. By making use of natural competence, we also introduced these mutations into strain 29D2 to differentiate strain-specific versus species-specific effects of mutations. Mutated genes were associated with purine/pyrimidine/folate biosynthesis (e.g. purH, purF, purM, purE), alarmone/stress metabolism (e.g. Ap4A hydrolase), RNA modification/regulation (e.g. methionyl-tRNA synthetase), outer membrane proteins (e.g. ompA), and genes involved in natural competence (comEC). All tested mutants originally identified as motility-deficient in strain ATCC® 17978™ also displayed a motility-deficient phenotype in 29D2. By contrast, further comparative characterization of the mutant sets of both strains regarding pellicle biofilm formation, antibiotic resistance, and virulence in the Galleria mellonella infection model revealed numerous strain-specific mutant phenotypes. Our studies highlight the need for comparative analyses to characterize gene functions in A. baumannii and for further studies on the mechanisms underlying surface-associated motility.
Collapse
Affiliation(s)
- Ulrike Blaschke
- Robert Koch Institute, Project group P2, Burgstr. 37, 38855, Wernigerode, Germany.
| | - Evelyn Skiebe
- Robert Koch Institute, Project group P2, Burgstr. 37, 38855, Wernigerode, Germany
| | - Gottfried Wilharm
- Robert Koch Institute, Project group P2, Burgstr. 37, 38855, Wernigerode, Germany.
| |
Collapse
|
10
|
Charbonneau ARL, Taylor E, Mitchell CJ, Robinson C, Cain AK, Leigh JA, Maskell DJ, Waller AS. Identification of genes required for the fitness of Streptococcus equi subsp. equi in whole equine blood and hydrogen peroxide. Microb Genom 2020; 6:e000362. [PMID: 32228801 PMCID: PMC7276704 DOI: 10.1099/mgen.0.000362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/12/2020] [Indexed: 12/25/2022] Open
Abstract
The availability of next-generation sequencing techniques provides an unprecedented opportunity for the assignment of gene function. Streptococcus equi subspecies equi is the causative agent of strangles in horses, one of the most prevalent and important diseases of equids worldwide. However, the live attenuated vaccines that are utilized to control this disease cause adverse reactions in some animals. Here, we employ transposon-directed insertion-site sequencing (TraDIS) to identify genes that are required for the fitness of S. equi in whole equine blood or in the presence of H2O2 to model selective pressures exerted by the equine immune response during infection. We report the fitness values of 1503 and 1471 genes, representing 94.5 and 92.5 % of non-essential genes in S. equi, following incubation in whole blood and in the presence of H2O2, respectively. Of these genes, 36 and 15 were identified as being important to the fitness of S. equi in whole blood or H2O2, respectively, with 14 genes being important in both conditions. Allelic replacement mutants were generated to validate the fitness results. Our data identify genes that are important for S. equi to resist aspects of the immune response in vitro, which can be exploited for the development of safer live attenuated vaccines to prevent strangles.
Collapse
Affiliation(s)
- Amelia R. L. Charbonneau
- Animal Health Trust, Lanwades Park, Newmarket, Suffolk, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Emma Taylor
- Animal Health Trust, Lanwades Park, Newmarket, Suffolk, UK
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | | - Carl Robinson
- Animal Health Trust, Lanwades Park, Newmarket, Suffolk, UK
| | - Amy K. Cain
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - James A. Leigh
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Duncan J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- University of Melbourne, Victoria, Australia
| | | |
Collapse
|
11
|
Damé-Teixeira N, Deng D, Do T. Streptococcus mutans transcriptome in the presence of sodium fluoride and sucrose. Arch Oral Biol 2019; 102:186-192. [PMID: 31071638 DOI: 10.1016/j.archoralbio.2019.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Considering the diverse mechanisms by which fluoride could affect oral bacteria, this study evaluated the effect of sodium fluoride onStreptococcus mutans transcriptome in the presence of sucrose. METHODS S. mutans UA159 was cultured in 3 different types of media: medium control[TY], sucrose control[TY_S], and sodium fluoride sucrose test[TY_S_NaF]. Triplicates of each group were sampled at exponential phase 3 h after inoculation, total RNA was isolated, mRNA enriched and cDNA paired-end sequenced (Illumina Hi-Seq2500). RESULTS Genes related toS. mutans adhesion(gtfB and gtfC), acidogenicity and sugar transport were up-regulated in the presence of sucrose(TY_S) and sucrose/fluoride(TY_S_NaF), whereas gene dltA, D-alanine-activating enzyme, which is related to regulation of non-PTS sugar internalization was down-regulated. Up-regulation of the scrA gene and the PTS fructose-and mannose system, as well as functions such as those involved in stress and defence responses and peptidases; and down-regulation of lacACDG and pyruvate formate-lyase were observed in the TY_S_NaF group, as compared to TY_S group. CONCLUSIONS The presence of NaF has decreased the overall gene expression level inS. mutans. However, its major effect seems to be the inducing of expression of genes involved in some PEP:PTS systems and other metabolic transporters which imply specific cellular internalisation of sugars.
Collapse
Affiliation(s)
- Naile Damé-Teixeira
- Department of Dentistry, University of Brasilia, Brasilia, Distrito Federal, Brazil
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, West Yorkshire, United Kingdom.
| |
Collapse
|
12
|
Okshevsky M, Louw MG, Lamela EO, Nilsson M, Tolker‐Nielsen T, Meyer RL. A transposon mutant library of Bacillus cereus ATCC 10987 reveals novel genes required for biofilm formation and implicates motility as an important factor for pellicle-biofilm formation. Microbiologyopen 2018; 7:e00552. [PMID: 29164822 PMCID: PMC5911993 DOI: 10.1002/mbo3.552] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 11/16/2022] Open
Abstract
Bacillus cereus is one of the most common opportunistic pathogens causing foodborne illness, as well as a common source of contamination in the dairy industry. B. cereus can form robust biofilms on food processing surfaces, resulting in food contamination due to shedding of cells and spores. Despite the medical and industrial relevance of this species, the genetic basis of biofilm formation in B. cereus is not well studied. In order to identify genes required for biofilm formation in this bacterium, we created a library of 5000 + transposon mutants of the biofilm-forming strain B. cereusATCC 10987, using an unbiased mariner transposon approach. The mutant library was screened for the ability to form a pellicle biofilm at the air-media interface, as well as a submerged biofilm at the solid-media interface. A total of 91 genes were identified as essential for biofilm formation. These genes encode functions such as chemotaxis, amino acid metabolism and cellular repair mechanisms, and include numerous genes not previously known to be required for biofilm formation. Although the majority of disrupted genes are not directly responsible for motility, further investigations revealed that the vast majority of the biofilm-deficient mutants were also motility impaired. This observation implicates motility as a pivotal factor in the formation of a biofilm by B. cereus. These results expand our knowledge of the fundamental molecular mechanisms of biofilm formation by B. cereus.
Collapse
Affiliation(s)
- Mira Okshevsky
- Interdisciplinary Nanoscience CenterAarhus UniversityAarhusDenmark
| | | | | | - Martin Nilsson
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Tim Tolker‐Nielsen
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience CenterAarhus UniversityAarhusDenmark
- Department of BioscienceAarhus UniversityAarhusDenmark
| |
Collapse
|
13
|
Pizzinga M, Harvey RF, Willis AE. Till stress do us ataRT: a novel toxin-antitoxin system targeting translation initiation. Cell Death Differ 2017; 24:951-952. [PMID: 28498366 PMCID: PMC5442479 DOI: 10.1038/cdd.2017.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mariavittoria Pizzinga
- Department of Toxicology, Medical Research Council Toxicology Unit, Lancaster Road, Leicester LE1 9HN UK
| | - Robert F Harvey
- Department of Toxicology, Medical Research Council Toxicology Unit, Lancaster Road, Leicester LE1 9HN UK
| | - Anne E Willis
- Department of Toxicology, Medical Research Council Toxicology Unit, Lancaster Road, Leicester LE1 9HN UK
| |
Collapse
|
14
|
Men X, Shibata Y, Takeshita T, Yamashita Y. Identification of Anion Channels Responsible for Fluoride Resistance in Oral Streptococci. PLoS One 2016; 11:e0165900. [PMID: 27824896 PMCID: PMC5100911 DOI: 10.1371/journal.pone.0165900] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/19/2016] [Indexed: 11/18/2022] Open
Abstract
Recently, it has been reported that eriC and crcB are involved in bacterial fluoride resistance. However, the fluoride-resistance mechanism in oral streptococci remains unclear. BLAST studies showed that two types of eriCs (eriC1 and eriC2) and two types of crcBs (crcB1 and crcB2) are present across 18 oral streptococci, which were identified in ≥ 10% of 166 orally healthy subjects with ≥ 0.01% of the mean relative abundance. They were divided into three groups based on the distribution of these four genes: group I, only eriC1; group II, eriC1 and eriC2; and group III, eriC2, crcB1, and crcB2. Group I consisted of Streptococcus mutans, in which one of the two eriC1s predominantly affected fluoride resistance. Group II consisted of eight species, and eriC1 was responsible for fluoride resistance, but eriC2 was not, in Streptococcus anginosus as a representative species. Group III consisted of nine species, and both crcB1 and crcB2 were crucial for fluoride resistance, but eriC2 was not, in Streptococcus sanguinis as a representative species. Based on these results, either EriC1 or CrcBs play a role in fluoride resistance in oral streptococci. Complementation between S. mutans EriC1 and S. sanguinis CrcB1/CrcB2 was confirmed in both S. mutans and S. sanguinis. However, neither transfer of S. sanguinis CrcB1/CrcB2 into wild-type S. mutans nor S. mutans EriC1 into wild-type S. sanguinis increased the fluoride resistance of the wild-type strain. Co-existence of different F− channels (EriC and CrcB) did not cause the additive effect on fluoride resistance in oral Streptococcus species.
Collapse
Affiliation(s)
- Xiaochen Men
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukie Shibata
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yoshihisa Yamashita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- * E-mail:
| |
Collapse
|
15
|
Gao T, Tan M, Liu W, Zhang C, Zhang T, Zheng L, Zhu J, Li L, Zhou R. GidA, a tRNA Modification Enzyme, Contributes to the Growth, and Virulence of Streptococcus suis Serotype 2. Front Cell Infect Microbiol 2016; 6:44. [PMID: 27148493 PMCID: PMC4835480 DOI: 10.3389/fcimb.2016.00044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/27/2016] [Indexed: 11/16/2022] Open
Abstract
Glucose-inhibited division protein (GidA), is a tRNA modification enzyme functioning together with MnmE in the addition of a carboxymethylaminomethyl group to position 5 of the anticodon wobble uridine of tRNA. Here, we report a GidA homolog from a Chinese isolate SC-19 of the zoonotic Streptococcus suis serotype 2 (SS2). gidA disruption led to a defective growth, increased capsule thickness, and reduced hemolytic activity. Moreover, the gidA deletion mutant (ΔgidA) displayed reduced mortality and bacterial loads in mice, reduced ability of adhesion to and invasion in epithelial cells, and increased sensitivity to phagocytosis. The iTRAQ analysis identified 372 differentially expressed (182 up- and 190 down-regulated) proteins in ΔgidA and SC-19. Numerous DNA replication, cell division, and virulence associated proteins were downregulated, whereas many capsule synthesis enzymes were upregulated by gidA disruption. This is consistent with the phenotypes of the mutant. Thus, GidA is a translational regulator that plays an important role in the growth, cell division, capsule biosynthesis, and virulence of SS2. Our findings provide new insight into the regulatory function of GidA in bacterial pathogens.
Collapse
Affiliation(s)
- Ting Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural ScienceWuhan, China; Wuhan Chopper Biology Co., Ltd.Wuhan, China
| | - Meifang Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Wanquan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Chunyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Tengfei Zhang
- Veterinary Medicine Laboratory, Institute of Animal Husbandry and Veterinary Science, Hubei Academy of Agricultural Science Wuhan, China
| | - Linlin Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Jiawen Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Cooperative Innovation Center of Sustainable Pig ProductionWuhan, China
| |
Collapse
|
16
|
Zhang J, Liu J, Ling J, Tong Z, Fu Y, Liang M. Inactivation of glutamate racemase (MurI) eliminates virulence in Streptococcus mutans. Microbiol Res 2016; 186-187:1-8. [PMID: 27242137 DOI: 10.1016/j.micres.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Inhibition of enzymes required for bacterial cell wall synthesis is often lethal or leads to virulence defects. Glutamate racemase (MurI), an essential enzyme in peptidoglycan biosynthesis, has been an attractive target for therapeutic interventions. Streptococcus mutans, one of the many etiological factors of dental caries, possesses a series of virulence factors associated with cariogenicity. However, little is known regarding the mechanism by which MurI influences pathogenesis of S. mutans. In this work, a stable mutant of S. mutans deficient in glutamate racemase (S. mutans FW1718) was constructed to investigate the impact of murI inactivation on cariogenic virulence in S. mutans UA159. Microscopy revealed that the murI mutant exhibited an enlarged cell size, longer cell chains, diminished cell⬜cell aggregation, and altered cell surface ultrastructure compared with the wild-type. Characterization of this mutant revealed that murI deficiency weakened acidogenicity, aciduricity, and biofilm formation ability of S. mutans (P<0.05). Real-time quantitative polymerase chain reaction (qRT-PCR) analysis demonstrated that the deletion of murI reduced the expression of the acidogenesis-related gene ldh by 44-fold (P<0.0001). The expression levels of the gene coding for surface protein antigen P (spaP) and the acid-tolerance related gene (atpD) were down-regulated by 99% (P<0.0001). Expression of comE, comD, gtfB and gtfC, genes related to biofilm formation, were down-regulated 8-, 43-, 85- and 298-fold in the murI mutant compared with the wild-type (P<0.0001), respectively. Taken together, the current study provides the first evidence that MurI deficiency adversely affects S. mutans virulence properties, making MurI a potential target for controlling dental caries.
Collapse
Affiliation(s)
- Jianying Zhang
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, 74 Zhong Shan ER Road, Guangzhou 510080, China; Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Jia Liu
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, 74 Zhong Shan ER Road, Guangzhou 510080, China; Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Junqi Ling
- Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, 74 Zhong Shan ER Road, Guangzhou 510080, China; Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China.
| | - Zhongchun Tong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Yun Fu
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| | - Min Liang
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou 510055, China
| |
Collapse
|
17
|
Zewen C, Jing L, Kaide L, Chuanbin Q, Yueyin Q, Jing X, Yuqing L. [Effects of different pH conditions on ffh gene expression in Streptococcus mutans]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:23-26. [PMID: 27266193 PMCID: PMC7030768 DOI: 10.7518/hxkq.2016.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/02/2015] [Indexed: 06/06/2023]
Abstract
OBJECTIVE This research aimed to detect the expression levels of ffh gene in Streptococcus mutans (S. mutans) UA159 under different pH conditions, analyze the effect of pH on the expression of ffh gene in S. mutans, and identify the factors regulating the ffh gene expression. METHODS Samples of S. mutans were collected at different growth stages (4 h, 18 h) and pH values (pH 4.0-7.0). Fluorescence quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the relative mRNA expression and trend of the target gene ffh in S. mutans at different growth stages and pH values. RESULTS qRT-PCR results showed that the ffh gene expression decreased along with pH at 4 h, but the expression increased with decreasing pH at 18 h. Under the same pH conditions, the ffh gene expression was significantly different between 4 h and 18 h (P < 0.05). CONCLUSION Growth stage and pH value influenced the ffh gene expression in S. mutans.
Collapse
|
18
|
Nguyen CT, Park SS, Rhee DK. Stress responses in Streptococcus species and their effects on the host. J Microbiol 2015; 53:741-9. [PMID: 26502957 DOI: 10.1007/s12275-015-5432-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 12/15/2022]
Abstract
Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- School of Pharmacy, Sungkyunkwan University, Su-Won, 16419, Republic of Korea
| | - Sang-Sang Park
- School of Pharmacy, Sungkyunkwan University, Su-Won, 16419, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Su-Won, 16419, Republic of Korea.
| |
Collapse
|
19
|
Shippy DC, Fadl AA. RNA modification enzymes encoded by the gid operon: Implications in biology and virulence of bacteria. Microb Pathog 2015; 89:100-7. [PMID: 26427881 DOI: 10.1016/j.micpath.2015.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023]
Abstract
Ribonucleic acid (RNA) molecules consist of numerous chemically modified nucleosides that are highly conserved in eukarya, archeae, and bacteria, while others are unique to each domain of life. In bacteria, hundreds of RNA modification enzymes have been identified and implicated in biological pathways associated with many cell processes. The glucose-inhibited division (gid) operon encodes genes for two RNA modification enzymes named GidA and GidB. Studies have shown GidA is essential for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) of bacterial transfer RNA (tRNA) with GidB responsible for the methylation of the 16S ribosomal RNA (rRNA). Furthermore, deletion of gidA and gidB has shown to alter numerous bacterial properties like virulence, stress response, morphology, growth, antibiotic susceptibility, and others. In this review, we discuss the present knowledge of the RNA modification enzymes GidA and GidB, and their potential role in the biology and virulence of bacteria.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amin A Fadl
- Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
20
|
tRNA modification enzymes GidA and MnmE: potential role in virulence of bacterial pathogens. Int J Mol Sci 2014; 15:18267-80. [PMID: 25310651 PMCID: PMC4227215 DOI: 10.3390/ijms151018267] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/02/2014] [Accepted: 10/08/2014] [Indexed: 01/02/2023] Open
Abstract
Transfer RNA (tRNA) is an RNA molecule that carries amino acids to the ribosomes for protein synthesis. These tRNAs function at the peptidyl (P) and aminoacyl (A) binding sites of the ribosome during translation, with each codon being recognized by a specific tRNA. Due to this specificity, tRNA modification is essential for translational efficiency. Many enzymes have been implicated in the modification of bacterial tRNAs, and these enzymes may complex with one another or interact individually with the tRNA. Approximately, 100 tRNA modification enzymes have been identified with glucose-inhibited division (GidA) protein and MnmE being two of the enzymes studied. In Escherichia coli and Salmonella, GidA and MnmE bind together to form a functional complex responsible for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm5s2U34) of tRNAs. Studies have implicated this pathway in a major pathogenic regulatory mechanism as deletion of gidA and/or mnmE has attenuated several bacterial pathogens like Salmonella enterica serovar Typhimurium, Pseudomonas syringae, Aeromonas hydrophila, and many others. In this review, we summarize the potential role of the GidA/MnmE tRNA modification pathway in bacterial virulence, interactions with the host, and potential therapeutic strategies resulting from a greater understanding of this regulatory mechanism.
Collapse
|