1
|
Rodríguez-Pedrouzo A, Cisneros-Sureda J, Martínez-Matamoros D, Rey-Varela D, Balado M, Rodríguez J, Lemos ML, Folgueira M, Jiménez C. Detection of Aeromonas salmonicida subsp. salmonicida infection in zebrafish by labelling bacteria with GFP and a fluorescent probe based on the siderophore amonabactin. Microb Pathog 2023; 185:106394. [PMID: 37858632 DOI: 10.1016/j.micpath.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Zebrafish (Danio rerio) is an excellent model to study bacterial infections in fish and their treatment. We used zebrafish as a model of infection for Aeromonas salmonicida subsp. salmonicida (hereinafter A. salmonicida), the causative agent of fish furunculosis. The infection process of A. salmonicida was studied by immersion of zebrafish larvae in 2 different doses of the bacteria and the fish mortality was monitored for three days. The bacterium caused a high mortality (65 %) in zebrafish larvae only when they were exposed to a high bacterial concentration (107 bacterial cells/mL). To evaluate the use of fluorescence microscopy to follow A. salmonicida infection in vivo, two different fluorescent strains generated by labeling an A. salmonicida strain with either, the green fluorescent protein (GFP), or with a previously reported siderophore amonabactin-sulforhodamine B conjugate (AMB-SRB), were used. The distribution of both labeled bacterial strains in the larvae tissues was evaluated by conventional and confocal fluorescence microscopy. The fluorescent signal showed a greater intensity with the GFP-labeled bacteria, so it could be observed using conventional fluorescence microscopy. Since the AMB-SRB labeled bacteria showed a weaker signal, the larvae were imaged using a laser scanning confocal microscope after 48 h of exposure to the bacteria. Both fluorescent signals were mainly observed in the larvae digestive tract, suggesting that this is the main colonization route of zebrafish for waterborne A. salmonicida. This is the first report of the use of a siderophore-fluorophore conjugate to study a bacterial infection in fish. The use of a siderophore-fluorophore conjugate has the advantage that it is a specific marker and that does not require genetic manipulation of the bacteria.
Collapse
Affiliation(s)
- A Rodríguez-Pedrouzo
- CICA - Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - J Cisneros-Sureda
- CICA - Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - D Martínez-Matamoros
- CICA - Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - D Rey-Varela
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M Balado
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - J Rodríguez
- CICA - Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain.
| | - M L Lemos
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - M Folgueira
- CICA - Centro Interdisciplinar de Química e Bioloxía e Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain.
| | - C Jiménez
- CICA - Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain.
| |
Collapse
|
2
|
Rey-Varela D, Balado M, Lemos ML. The Sigma Factor AsbI Is Required for the Expression of Acinetobactin Siderophore Transport Genes in Aeromonas salmonicida. Int J Mol Sci 2023; 24:ijms24119672. [PMID: 37298622 DOI: 10.3390/ijms24119672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Aeromonas salmonicida subsp. salmonicida (A. salmonicida), a Gram-negative bacterium causing furunculosis in fish, produces the siderophores acinetobactin and amonabactins in order to extract iron from its hosts. While the synthesis and transport of both systems is well understood, the regulation pathways and conditions necessary for the production of each one of these siderophores are not clear. The acinetobactin gene cluster carries a gene (asbI) encoding a putative sigma factor belonging to group 4 σ factors, or, the ExtraCytoplasmic Function (ECF) group. By generating a null asbI mutant, we demonstrate that AsbI is a key regulator that controls acinetobactin acquisition in A. salmonicida, since it directly regulates the expression of the outer membrane transporter gene and other genes necessary for Fe-acinetobactin transport. Furthermore, AsbI regulatory functions are interconnected with other iron-dependent regulators, such as the Fur protein, as well as with other sigma factors in a complex regulatory network.
Collapse
Affiliation(s)
- Diego Rey-Varela
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Balado
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel L Lemos
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Pradhan SK, Devi R, Khan MIR, Kamilya D, Gon Choudhury T, Parhi J. Isolation of Aeromonas salmonicida subspecies salmonicida from aquaculture environment in India: Polyphasic identification, virulence characterization, and antibiotic susceptibility. Microb Pathog 2023; 179:106100. [PMID: 37028687 DOI: 10.1016/j.micpath.2023.106100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
This study reports the polyphasic identification, characterization of virulence potential, and antibiotic susceptibility of Aeromonas salmonicida subspecies salmonicida COFCAU_AS, isolated from an aquaculture system in India. The physiological, biochemical, 16s rRNA gene sequencing and PAAS PCR test identified the strain as Aeromonas salmonicida. The MIY PCR tests established the subspecies as 'salmonicida'. The in vitro tests showed the isolated bacterium as haemolytic with casein, lipid, starch, and gelatin hydrolysis activity, indicating its pathogenic attributes. It also showed the ability to produce slime and biofilm, and additionally, it possessed an A-layer surface protein. In vivo pathogenicity test was performed to determine the LD50 dose of the bacterium in Labeo rohita fingerlings (14.42 ± 1.01 g), which was found to be 106.9 cells fish-1. The bacteria-challenged fingerlings showed skin lesions, erythema at the base of the fins, dropsy, and ulcer. Almost identical clinical signs and mortalities were observed when the same LD50 dose was injected into other Indian major carp species, L. catla and Cirrhinus mrigala. Out of the twelve virulent genes screened, the presence of nine genes viz., aerA, act, ast, alt, hlyA, vapA, exsA, fstA, and lip were detected, whereas ascV, ascC, and ela genes were absent. The A. salmonicida subsp. salmonicida COFCAU_AS was resistant to antibiotics such as penicillin G, rifampicin, ampicillin, and vancomycin while highly sensitive to amoxiclav, nalidixic acid, chloramphenicol, ciprofloxacin, and tetracycline. In summary, we have isolated a virulent A. salmonicida subsp. salmonicida from a tropical aquaculture pond which can cause significant mortality and morbidity in Indian major carp species.
Collapse
Affiliation(s)
- Subham Kumar Pradhan
- Dept. of Aquatic Health & Environment, College of Fisheries, CAU, Lembucherra, Tripura, 799210, India
| | - Rajashree Devi
- Dept. of Aquatic Health & Environment, College of Fisheries, CAU, Lembucherra, Tripura, 799210, India
| | - Md Idrish Raja Khan
- Dept. of Aquatic Health & Environment, College of Fisheries, CAU, Lembucherra, Tripura, 799210, India; Late Shri Punaram Nishad College of Fisheries, DSVCKU, Kawardha, 491995, Chhattisgarh, India
| | - Dibyendu Kamilya
- Dept. of Aquatic Health & Environment, College of Fisheries, CAU, Lembucherra, Tripura, 799210, India; Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Tanmoy Gon Choudhury
- Dept. of Aquatic Health & Environment, College of Fisheries, CAU, Lembucherra, Tripura, 799210, India.
| | - Janmejay Parhi
- Dept. of Fish Genetics & Reproduction, College of Fisheries, CAU, Lembucherra, Tripura, 799210, India
| |
Collapse
|
5
|
Dubey S, Ager-Wick E, Peng B, Evensen Ø, Sørum H, Munang’andu HM. Characterization of virulence and antimicrobial resistance genes of Aeromonas media strain SD/21-15 from marine sediments in comparison with other Aeromonas spp. Front Microbiol 2022; 13:1022639. [PMID: 36532448 PMCID: PMC9752117 DOI: 10.3389/fmicb.2022.1022639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 10/03/2023] Open
Abstract
Aeromonas media is a Gram-negative bacterium ubiquitously found in aquatic environments. It is a foodborne pathogen associated with diarrhea in humans and skin ulceration in fish. In this study, we used whole genome sequencing to profile all antimicrobial resistance (AMR) and virulence genes found in A. media strain SD/21-15 isolated from marine sediments in Denmark. To gain a better understanding of virulence and AMR genes found in several A. media strains, we included 24 whole genomes retrieved from the public databanks whose isolates originate from different host species and environmental samples from Asia, Europe, and North America. We also compared the virulence genes of strain SD/21-15 with A. hydrophila, A. veronii, and A. salmonicida reference strains. We detected Msh pili, tap IV pili, and lateral flagella genes responsible for expression of motility and adherence proteins in all isolates. We also found hylA, hylIII, and TSH hemolysin genes in all isolates responsible for virulence in all isolates while the aerA gene was not detected in all A. media isolates but was present in A. hydrophila, A. veronii, and A. salmonicida reference strains. In addition, we detected LuxS and mshA-Q responsible for quorum sensing and biofilm formation as well as the ferric uptake regulator (Fur), heme and siderophore genes responsible for iron acquisition in all A. media isolates. As for the secretory systems, we found all genes that form the T2SS in all isolates while only the vgrG1, vrgG3, hcp, and ats genes that form parts of the T6SS were detected in some isolates. Presence of bla MOX-9 and bla OXA-427 β-lactamases as well as crp and mcr genes in all isolates is suggestive that these genes were intrinsically encoded in the genomes of all A. media isolates. Finally, the presence of various transposases, integrases, recombinases, virulence, and AMR genes in the plasmids examined in this study is suggestive that A. media has the potential to transfer virulence and AMR genes to other bacteria. Overall, we anticipate these data will pave way for further studies on virulence mechanisms and the role of A. media in the spread of AMR genes.
Collapse
Affiliation(s)
- Saurabh Dubey
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Eirill Ager-Wick
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Henning Sørum
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Hetron Mweemba Munang’andu
- Section for Experimental Biomedicine, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
6
|
Kroniger T, Mehanny M, Schlüter R, Trautwein-Schult A, Köllner B, Becher D. Effect of Iron Limitation, Elevated Temperature, and Florfenicol on the Proteome and Vesiculation of the Fish Pathogen Aeromonas salmonicida. Microorganisms 2022; 10:microorganisms10091735. [PMID: 36144337 PMCID: PMC9503180 DOI: 10.3390/microorganisms10091735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
We analyzed the proteomic response of the Gram-negative fish pathogen A. salmonicida to iron limitation, an elevated incubation temperature, and the antibiotic florfenicol. Proteins from different subcellular fractions (cytosol, inner membrane, outer membrane, extracellular and outer membrane vesicles) were enriched and analyzed. We identified several iron-regulated proteins that were not reported in the literature for A. salmonicida before. We could also show that hemolysin, an oxidative-stress-resistance chaperone, a putative hemin receptor, an M36 peptidase, and an uncharacterized protein were significantly higher in abundance not only under iron limitation but also with an elevated incubation temperature. This may indicate that these proteins involved in the infection process of A. salmonicida are induced by both factors. The analysis of the outer membrane vesicles (OMVs) with and without applied stresses revealed significant differences in the proteomes. OMVs were smaller and contained more cytoplasmic proteins after antibiotic treatment. After cultivation with low iron availability, several iron-regulated proteins were found in the OMVs, indicating that A. salmonicida OMVs potentially have a function in iron acquisition, as reported for other bacteria. The presence of iron-regulated transporters further indicates that OMVs obtained from ‘stressed’ bacteria might be suitable vaccine candidates that induce a protective anti-virulence immune response.
Collapse
Affiliation(s)
- Tobias Kroniger
- Institute of Microbiology, Department of Microbial Proteomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany
| | - Mina Mehanny
- Helmholtz Institute for Pharmaceutical Research Saarland, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, 17489 Greifswald, Germany
| | - Anke Trautwein-Schult
- Institute of Microbiology, Department of Microbial Proteomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany
| | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Dörte Becher
- Institute of Microbiology, Department of Microbial Proteomics, Center for Functional Genomics of Microbes, University of Greifswald, 17489 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-420-5903
| |
Collapse
|
7
|
Production and Potential Genetic Pathways of Three Different Siderophore Types in Streptomyces tricolor Strain HM10. FERMENTATION 2022. [DOI: 10.3390/fermentation8080346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Siderophores are iron-chelating low-molecular-weight compounds that bind iron (Fe3+) with a high affinity for transport into the cell. The newly isolated strain Streptomyces tricolor HM10 secretes a pattern of secondary metabolites. Siderophore molecules are the representatives of such secondary metabolites. S. tricolor HM10 produces catechol, hydroxamate, and carboxylate types of siderophores. Under 20 μM FeCl3 conditions, S. tricolor HM10 produced up to 6.00 µg/mL of catechol siderophore equivalent of 2,3-DHBA (2,3-dihydroxybenzoic acid) after 4 days from incubation. In silico analysis of the S. tricolor HM10 genome revealed three proposed pathways for siderophore biosynthesis. The first pathway, consisting of five genes, predicted the production of catechol-type siderophore similar to petrobactin from Bacillus anthracis str. Ames. The second proposed pathway, consisting of eight genes, is expected to produce a hydroxamate-type siderophore similar to desferrioxamine B/E from Streptomyces sp. ID38640, S. griseus NBRC 13350, and/or S. coelicolor A3(2). The third pathway exhibited a pattern identical to the carboxylate xanthoferrin siderophore from Xanthomonas oryzae. Thus, Streptomyces strain HM10 could produce three different types of siderophore, which could be an incentive to use it as a new source for siderophore production in plant growth-promoting, environmental bioremediation, and drug delivery strategy.
Collapse
|
8
|
Singh P, Chauhan PK, Upadhyay SK, Singh RK, Dwivedi P, Wang J, Jain D, Jiang M. Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Front Microbiol 2022; 13:898979. [PMID: 35898908 PMCID: PMC9309559 DOI: 10.3389/fmicb.2022.898979] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
Plant growth performance under a stressful environment, notably in the agriculture field, is directly correlated with the rapid growth of the human population, which triggers the pressure on crop productivity. Plants perceived many stresses owing to degraded land, which induces low plant productivity and, therefore, becomes a foremost concern for the future to face a situation of food scarcity. Land degradation is a very notable environmental issue at the local, regional, and global levels for agriculture. Land degradation generates global problems such as drought desertification, heavy metal contamination, and soil salinity, which pose challenges to achieving many UN Sustainable Development goals. The plant itself has a varied algorithm for the mitigation of stresses arising due to degraded land; the rhizospheric system of the plant has diverse modes and efficient mechanisms to cope with stress by numerous root-associated microbes. The suitable root-associated microbes and components of root exudate interplay against stress and build adaptation against stress-mediated mechanisms. The problem of iron-deficient soil is rising owing to increasing degraded land across the globe, which hampers plant growth productivity. Therefore, in the context to tackle these issues, the present review aims to identify plant-stress status owing to iron-deficient soil and its probable eco-friendly solution. Siderophores are well-recognized iron-chelating agents produced by numerous microbes and are associated with the rhizosphere. These siderophore-producing microbes are eco-friendly and sustainable agents, which may be managing plant stresses in the degraded land. The review also focuses on the molecular mechanisms of siderophores and their chemistry, cross-talk between plant root and siderophores-producing microbes to combat plant stress, and the utilization of siderophores in plant growth on degraded land.
Collapse
Affiliation(s)
- Pratiksha Singh
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Prabhat K. Chauhan
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
| | - Sudhir K. Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur, India
- Sudhir K. Upadhyay
| | - Rajesh Kumar Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Jing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
- *Correspondence: Mingguo Jiang
| |
Collapse
|
9
|
Katumba GL, Tran H, Henderson JP. The Yersinia High-Pathogenicity Island Encodes a Siderophore-Dependent Copper Response System in Uropathogenic Escherichia coli. mBio 2022; 13:e0239121. [PMID: 35089085 PMCID: PMC8725597 DOI: 10.1128/mbio.02391-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023] Open
Abstract
Siderophores are iron chelators used by microbes to bind and acquire iron, which, once in the cell, inhibits siderophore production through feedback repression mediated by the ferric uptake repressor (Fur). Yersiniabactin (Ybt), a siderophore associated with enhanced pathogenic potential among Enterobacteriaceae, also binds copper ions during human and experimental murine infections. In contrast to iron, we found that extracellular copper ions rapidly and selectively stimulate Ybt production in extraintestinal pathogenic Escherichia coli. The stimulatory pathway requires formation of an extracellular copper-Ybt (Cu(II)-Ybt) complex, internalization of Cu(II)-Ybt entry through the canonical TonB-dependent outer membrane transporter, and Fur-independent transcriptional regulation by the specialized transcription factor YbtA. Dual regulation by iron and copper is consistent with a multifunctional metallophore role for Ybt. Feed-forward regulation is typical of stress responses, implicating Ybt in prevention of, or response to, copper stress during infection pathogenesis. IMPORTANCE Interactions between bacteria and transition metal ions play an important role in encounters between humans and bacteria. Siderophore systems have long been prominent mediators of these interactions. These systems secrete small-molecule chelators that bind oxidized iron(III) and express proteins that specifically recognize and import these complexes as a nutritional iron source. While E. coli and other Enterobacteriaceae secrete enterobactin, clinical isolates often secrete an additional siderophore, yersiniabactin (Ybt), which has been found to also bind copper and other non-iron metal ions. The observation here that an extraintestinal E. coli isolate secretes Ybt in a copper-inducible manner suggests an important gain of function over the enterobactin system. Copper recognition involves using Ybt to bind Cu(II) ions, consistent with a distinctively extracellular mode of copper detection. The resulting Cu(II)-Ybt complex signals upregulation of Ybt biosynthesis genes as a rapid response against potentially toxic extracellular copper ions. The Ybt system is distinguishable from other copper response systems that sense cytosolic and periplasmic copper ions. The Ybt dependence of the copper response presents an implicit feed-forward regulatory scheme that is typical of bacterial stress responses. The distinctive extracellular copper recognition-response functionality of the Ybt system may enhance the pathogenic potential of infection-associated Enterobacteriaceae.
Collapse
Affiliation(s)
- George L. Katumba
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hung Tran
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey P. Henderson
- Center for Women’s Infectious Disease Research, Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Kamińska K, Mular A, Olshvang E, Nolte NM, Kozłowski H, Wojaczyńska E, Gumienna-Kontecka E. The diversity and utility of arylthiazoline and aryloxazoline siderophores: challenges of total synthesis. RSC Adv 2022; 12:25284-25322. [PMID: 36199325 PMCID: PMC9450019 DOI: 10.1039/d2ra03841b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Siderophores are unique ferric ion chelators produced and secreted by some organisms like bacteria, fungi and plants under iron deficiency conditions. These molecules possess immense affinity and specificity for Fe3+ and other metal ions, which attracts great interest due to the numerous possibilities of application, including antibiotics delivery to resistant bacteria strains. Total synthesis of siderophores is a must since the compounds are present in natural sources at extremely small concentrations. These molecules are extremely diverse in terms of molecular structure and physical and chemical properties. This review is focused on achievements and developments in the total synthesis strategies of naturally occurring siderophores bearing arylthiazoline and aryloxazoline units. A review presents advances in total synthesis of thiazoline and oxazoline-bearing siderophores, unique ferric ion chelators found in some bacteria, fungi and plants.![]()
Collapse
Affiliation(s)
- Karolina Kamińska
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Mular
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Evgenia Olshvang
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse, 44801 Bochum, Germany
| | - Nils Metzler Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitaetsstrasse, 44801 Bochum, Germany
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, Fryderyka Joliot-Curie 14, 50-383 Wrocław, Poland
- Department of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | |
Collapse
|
12
|
Rey-Varela D, Cisneros-Sureda J, Balado M, Rodríguez J, Lemos ML, Jiménez C. The Outer Membrane Protein FstC of Aeromonas salmonicida subsp. salmonicida Acts as Receptor for Amonabactin Siderophores and Displays a Wide Ligand Plasticity. Structure-Activity Relationships of Synthetic Amonabactin Analogues. ACS Infect Dis 2019; 5:1936-1951. [PMID: 31556990 DOI: 10.1021/acsinfecdis.9b00274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amonabactins are a group of four related catecholate siderophores produced by several species of the genus Aeromonas, including A. hydrophila and the fish pathogen A. salmonicida subsp. salmonicida. Although the gene cluster encoding amonabactin biosynthesis also contains a gene that could encode the ferri-siderophore receptor (fstC), to date there is no experimental evidence to explain its role. In this work, we report the identification of the amonabactins' outer membrane receptor and the determination of the minimal structural parts of these siderophores involved in the molecular recognition by their cognate receptor. The four natural amonabactin forms (P750, T789, P693, and T732) and some mono and biscatecholate amonabactin analogues were chemically synthesized, and their siderophore activity on A. salmonicida FstC(+) and FstC(-) strains was evaluated. The results showed that each amonabactin form has quite different growth promotion activity, with P750 and T789 the most active. The outer membrane receptor FstC recognizes more efficiently biscatecholate siderophores in which the length of the linker between the two iron-binding catecholamide units is 15 atoms (P750 and T789) instead of 12 atoms (P693 and T732). Analysis of the siderophore activity of synthetic analogues indicated that the presence of Phe or Trp residues is not required for siderophore recognition. The results together point toward evidence that the amonabactin receptor FstC admits a high degree of ligand plasticity. We also showed that FstC is present in most Aeromonas species, including relevant human and animal pathogens as A. hydrophila. From the results obtained, we concluded that the ferri-amonabactin uptake pathway involving the outer membrane transporter FstC possesses a considerable functional plasticity that could be exploited for delivery of antimicrobial compounds into the cell. This would allow the use of the siderophore-based iron uptake mechanisms to combat infections caused by species of the genus Aeromonas.
Collapse
Affiliation(s)
- Diego Rey-Varela
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Javier Cisneros-Sureda
- Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Miguel Balado
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jaime Rodríguez
- Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manuel L. Lemos
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Jiménez
- Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
13
|
Liu J, Tan K, He L, Qiu Y, Tan W, Guo Y, Wang Z, Sun W. Effect of limitation of iron and manganese on microalgae growth in fresh water. MICROBIOLOGY-SGM 2018; 164:1514-1521. [PMID: 30362937 DOI: 10.1099/mic.0.000735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eutrophication is caused by the rapid growth of microalgae. Iron and manganese are important micronutrients for microalgae growth. However, the effect of the limitation of iron and manganese on microalgae growth in fresh water has not been well understood. In this study, natural mixed algae, Anabaena flosaquae and Scenedesmus quadricanda, were cultivated under different quotas of iron and manganese to reveal the effect of the limitation of iron and manganese on the growth of microalgae in fresh water. The results showed that the growth rate of algae is influenced more by iron than by manganese. However, the effect of manganese cannot be overlooked: when the initial manganese quota was replete, i.e. 0.6-0.8 mg l-1, manganese was able to relieve the effect of iron limitation on microalgae growth in fresh water. We further found that the microalgae showed an uptake preference for iron over manganese. Iron had a competitive effect on manganese uptake, while manganese had less impact on iron uptake by microalgae. The information obtained in the current study is useful for the provision of water quality warnings and for the control of microalgae bloom in fresh water.
Collapse
Affiliation(s)
- Junxia Liu
- 1School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Kaiting Tan
- 1School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Linjuan He
- 1School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yongting Qiu
- 1School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wanling Tan
- 1School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yan Guo
- 1School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhihong Wang
- 1School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wen Sun
- 2School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| |
Collapse
|
14
|
Balado M, Segade Y, Rey D, Osorio CR, Rodríguez J, Lemos ML, Jiménez C. Identification of the Ferric-Acinetobactin Outer Membrane Receptor in Aeromonas salmonicida subsp. salmonicida and Structure-Activity Relationships of Synthetic Acinetobactin Analogues. ACS Chem Biol 2017; 12:479-493. [PMID: 27936588 DOI: 10.1021/acschembio.6b00805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis in several fish species, produces acinetobactin and amonabactin as siderophores. In a previous study, we chemically characterized these siderophores and proposed a biosynthetic pathway based on genetic analysis. However, the internalization mechanisms of ferric-acinetobactin and ferric-amonabactin remain largely unknown. In the present study, we demonstrate that the outer membrane protein FstB is the ferric-acinetobactin receptor in A. salmonicida since an fstB defective mutant is unable to grow under iron limitation and does not use acinetobactin as an iron source. In order to study the effect that structural changes in acinetobactin have on its siderophore activity, a collection of acinetobactin-based analogues was synthesized, including its enantiomer and four demethylated derivatives. The biological activity of these analogues on an fstB(+) strain compared to an fstB(-) strain allowed structure-activity relationships to be elucidated. We found a lack of enantiomer preference on the siderophore activity of acinetobactin over A. salmonicida or on the molecular recognition by FstB protein receptor. In addition, it was observed that A. salmonicida could not use acinetobactin analogues when imidazole or a similar heterocyclic ring was absent from the structure. Surprisingly, removal of the methyl group at the isoxazolidinone ring induced a higher biological activity, thus suggesting alternative route(s) of entry into the cell that must be further investigated. It is proposed that some of the synthetic acinetobactin analogues described here could be used as starting points in the development of novel drugs against A. salmonicida and probably against other acinetobactin producers like the human pathogen Acinetobacter baumannii.
Collapse
Affiliation(s)
- Miguel Balado
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Yuri Segade
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Diego Rey
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Carlos R. Osorio
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Jaime Rodríguez
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manuel L. Lemos
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Carlos Jiménez
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
15
|
Nonribosomal peptide synthetase with a unique iterative-alternative-optional mechanism catalyzes amonabactin synthesis in Aeromonas. Appl Microbiol Biotechnol 2016; 100:8453-63. [DOI: 10.1007/s00253-016-7773-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 11/27/2022]
|
16
|
Balado M, Souto A, Vences A, Careaga VP, Valderrama K, Segade Y, Rodríguez J, Osorio CR, Jiménez C, Lemos ML. Two Catechol Siderophores, Acinetobactin and Amonabactin, Are Simultaneously Produced by Aeromonas salmonicida subsp. salmonicida Sharing Part of the Biosynthetic Pathway. ACS Chem Biol 2015; 10:2850-60. [PMID: 26463084 DOI: 10.1021/acschembio.5b00624] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The iron uptake mechanisms based on siderophore synthesis used by the fish pathogen Aeromonas salmonicida subsp. salmonicida are still not completely understood, and the precise structure of the siderophore(s) is unknown. The analysis of genome sequences revealed that this bacterium possesses two gene clusters putatively involved in the synthesis of siderophores. One cluster is a candidate to encode the synthesis of acinetobactin, the siderophore of the human pathogen Acinetobacter baumannii, while the second cluster shows high similarity to the genes encoding amonabactin synthesis in Aeromonas hydrophila. Using a combination of genomic analysis, mutagenesis, biological assays, chemical purification, and structural determination procedures, here we demonstrate that most A. salmonicida subsp. salmonicida strains produce simultaneously the two siderophores, acinetobactin and amonabactin. Interestingly, the synthesis of both siderophores relies on a single copy of the genes encoding the synthesis of the catechol moiety (2,3-dihydroxybenzoic acid) and on one encoding a phosphopantetheinyl transferase. These genes are present only in the amonabactin cluster, and a single mutation in any of them abolishes production of both siderophores. We could also demonstrate that some strains, isolated from fish raised in seawater, produce only acinetobactin since they present a deletion in the amonabactin biosynthesis gene amoG. Our study represents the first evidence of simultaneous production of acinetobactin and amonabactin by a bacterial pathogen and reveals the plasticity of bacterial genomes and biosynthetic pathways. The fact that the same siderophore is produced by unrelated pathogens highlights the importance of these systems and their interchangeability between different bacteria.
Collapse
Affiliation(s)
- Miguel Balado
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Alba Souto
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Ana Vences
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Valeria P. Careaga
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Katherine Valderrama
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Yuri Segade
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Jaime Rodríguez
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Carlos R. Osorio
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | - Carlos Jiménez
- Centro
de Investigacións Científicas Avanzadas (CICA), Departamento
de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manuel L. Lemos
- Department
of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| |
Collapse
|
17
|
Maltz M, LeVarge BL, Graf J. Identification of iron and heme utilization genes in Aeromonas and their role in the colonization of the leech digestive tract. Front Microbiol 2015; 6:763. [PMID: 26284048 PMCID: PMC4516982 DOI: 10.3389/fmicb.2015.00763] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/13/2015] [Indexed: 01/02/2023] Open
Abstract
It is known that many pathogens produce high-affinity iron uptake systems like siderophores and/or proteins for utilizing iron bound to heme-containing molecules, which facilitate iron-acquisition inside a host. In mutualistic digestive-tract associations, iron uptake systems have not been as well studied. We investigated the importance of two iron utilization systems within the beneficial digestive-tract association Aeromonas veronii and the medicinal leech, Hirudo verbana. Siderophores were detected in A. veronii using chrome azurol S. Using a mini Tn5, a transposon insertion in viuB generated a mutant unable to utilize iron using siderophores. The A. veronii genome was then searched for genes potentially involved in iron utilization bound to heme-containing molecules. A putative outer membrane heme receptor (hgpB) was identified with a transcriptional activator, termed hgpR, downstream. The hgpB gene was interrupted with an antibiotic resistance cassette in both the parent strain and the viuB mutant, yielding an hgpB mutant and a mutant with both iron uptake systems inactivated. In vitro assays indicated that hgpB is involved in utilizing iron bound to heme and that both iron utilization systems are important for A. veronii to grow in blood. In vivo colonization assays revealed that the ability to acquire iron from heme-containing molecules is critical for A. veronii to colonize the leech gut. Since iron and specifically heme utilization is important in this mutualistic relationship and has a potential role in virulence factor of other organisms, genomes from different Aeromonas strains (both clinical and environmental) were queried with iron utilization genes of A. veronii. This analysis revealed that in contrast to the siderophore utilization genes heme utilization genes are widely distributed among aeromonads. The importance of heme utilization in the colonization of the leech further confirms that symbiotic and pathogenic relationships possess similar mechanisms for interacting with animal hosts.
Collapse
Affiliation(s)
- Michele Maltz
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Barbara L LeVarge
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
18
|
Grayfer L, Hodgkinson JW, Belosevic M. Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:223-42. [PMID: 23954721 DOI: 10.1016/j.dci.2013.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 05/22/2023]
Abstract
During infection, macrophage lineage cells eliminate infiltrating pathogens through a battery of antimicrobial responses, where the efficacy of these innate immune responses is pivotal to immunological outcomes. Not surprisingly, many intracellular pathogens have evolved mechanisms to overcome macrophage defenses, using these immune cells as residences and dissemination strategies. With pathogenic infections causing increasing detriments to both aquacultural and wild fish populations, it is imperative to garner greater understanding of fish phagocyte antimicrobial responses and the mechanisms by which aquatic pathogens are able to overcome these teleost macrophage barriers. Insights into the regulation of macrophage immunity of bony fish species will lend to the development of more effective aquacultural prophylaxis as well as broadening our understanding of the evolution of these immune processes. Accordingly, this review focuses on recent advances in the understanding of teleost macrophage antimicrobial responses and the strategies by which intracellular fish pathogens are able to avoid being killed by phagocytes, with a focus on Mycobacterium marinum.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | | | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Canada; School of Public Health, University of Alberta, Edmonton, Canada.
| |
Collapse
|
19
|
Amarasinghe JJ, Connell TD, Scannapieco FA, Haase EM. Novel iron-regulated and Fur-regulated small regulatory RNAs in Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2012; 27:327-49. [PMID: 22958383 DOI: 10.1111/j.2041-1014.2012.00645.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Iron can regulate biofilm formation via non-coding small RNA (sRNA). To determine if iron-regulated sRNAs are involved in biofilm formation by the periodontopathogen Aggregatibacter actinomycetemcomitans, total RNA was isolated from bacteria cultured with iron supplementation or chelation. Transcriptional analysis demonstrated that the expression of four sRNA molecules (JA01-JA04) identified by bioinformatics was significantly upregulated in iron-limited medium compared with iron-rich medium. A DNA fragment encoding each sRNA promoter was able to titrate Escherichia coli ferric uptake regulator (Fur) from a Fur-repressible reporter fusion in an iron uptake regulator titration assay. Cell lysates containing recombinant AaFur shifted the mobility of sRNA-specific DNAs in a gel shift assay. Potential targets of these sRNAs, determined in silico, included genes involved in biofilm formation. The A. actinomycetemcomitans overexpressing JA03 sRNA maintained a rough phenotype on agar, but no longer adhered to uncoated polystyrene or glass, although biofilm determinant gene expression was only modestly decreased. In summary, these sRNAs have the ability to modulate biofilm formation, but their functional target genes remain to be confirmed.
Collapse
Affiliation(s)
- J J Amarasinghe
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
20
|
Lemos ML, Balado M, Osorio CR. Anguibactin- versus vanchrobactin-mediated iron uptake in Vibrio anguillarum: evolution and ecology of a fish pathogen. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:19-26. [PMID: 23765994 DOI: 10.1111/j.1758-2229.2009.00103.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vibrio anguillarum is a marine bacterium that is present in many marine aquatic environments and that is the main cause of vibriosis in diverse wild and cultured fish species. Two siderophore-mediated iron uptake systems have been described in V. anguillarum. One, mediated by the siderophore anguibactin, is encoded by the pJM1-type plasmids and is restricted to serotype O1 strains. The second one is mediated by the vanchrobactin siderophore and is widespread in many strains belonging to different serotypes. Both siderophores belong to the catecholate group of siderophores, sharing a 2,3-dihydroxybenzoic acid moiety. Vanchrobactin biosynthesis and transport genes are present in all strains examined although the siderophore is not produced in serotype O1 strains harbouring a pJM1-type plasmid. In these strains the insertion of an IS element in the main vanchrobactin biosynthetic gene vabF leads to the fact that only anguibactin is produced. From our current knowledge we can presume that vanchrobactin is the ancestral siderophore in this species and that the anguibactin-mediated system was later acquired during evolution, likely by horizontal transfer. The role of these two different iron uptake mechanisms in the biology, evolution and ecology of V. anguillarum is discussed although they are still far from being completely understood.
Collapse
Affiliation(s)
- Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | | | | |
Collapse
|
21
|
The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 2008; 9:427. [PMID: 18801193 PMCID: PMC2556355 DOI: 10.1186/1471-2164-9-427] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 09/18/2008] [Indexed: 12/04/2022] Open
Abstract
Background Aeromonas salmonicida subsp. salmonicida is a Gram-negative bacterium that is the causative agent of furunculosis, a bacterial septicaemia of salmonid fish. While other species of Aeromonas are opportunistic pathogens or are found in commensal or symbiotic relationships with animal hosts, A. salmonicida subsp. salmonicida causes disease in healthy fish. The genome sequence of A. salmonicida was determined to provide a better understanding of the virulence factors used by this pathogen to infect fish. Results The nucleotide sequences of the A. salmonicida subsp. salmonicida A449 chromosome and two large plasmids are characterized. The chromosome is 4,702,402 bp and encodes 4388 genes, while the two large plasmids are 166,749 and 155,098 bp with 178 and 164 genes, respectively. Notable features are a large inversion in the chromosome and, in one of the large plasmids, the presence of a Tn21 composite transposon containing mercury resistance genes and an In2 integron encoding genes for resistance to streptomycin/spectinomycin, quaternary ammonia compounds, sulphonamides and chloramphenicol. A large number of genes encoding potential virulence factors were identified; however, many appear to be pseudogenes since they contain insertion sequences, frameshifts or in-frame stop codons. A total of 170 pseudogenes and 88 insertion sequences (of ten different types) are found in the A. salmonicida genome. Comparison with the A. hydrophila ATCC 7966T genome reveals multiple large inversions in the chromosome as well as an approximately 9% difference in gene content indicating instances of single gene or operon loss or gain. A limited number of the pseudogenes found in A. salmonicida A449 were investigated in other Aeromonas strains and species. While nearly all the pseudogenes tested are present in A. salmonicida subsp. salmonicida strains, only about 25% were found in other A. salmonicida subspecies and none were detected in other Aeromonas species. Conclusion Relative to the A. hydrophila ATCC 7966T genome, the A. salmonicida subsp. salmonicida genome has acquired multiple mobile genetic elements, undergone substantial rearrangement and developed a significant number of pseudogenes. These changes appear to be a consequence of adaptation to a specific host, salmonid fish, and provide insights into the mechanisms used by the bacterium for infection and avoidance of host defence systems.
Collapse
|
22
|
Najimi M, Lemos ML, Osorio CR. Identification of iron regulated genes in the fish pathogen Aeromonas salmonicida subsp. salmonicida: genetic diversity and evidence of conserved iron uptake systems. Vet Microbiol 2008; 133:377-82. [PMID: 18774242 DOI: 10.1016/j.vetmic.2008.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/02/2008] [Accepted: 07/16/2008] [Indexed: 11/30/2022]
Abstract
In this study we applied the Fur titration assay (FURTA) to isolate iron regulated genes in Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis in fish. We have identified genes for siderophore biosynthesis and for ferri-siderophore transport, some of which have been previously described in this species. A gene for a hitherto uncharacterized functional hemin receptor HutE was identified, but its inactivation did not affect significantly the use of hemin as sole iron source, suggesting that redundant genes encoding hemin receptors exist in the A. salmonicida genome. Additional FURTA positive clones contained genes encoding a Flavoprotein, a transcriptional regulator protein, a DNA binding protein Fis, as well as genes encoding putative DapD and Flp/Fap-pilin proteins. A screening of gene distribution demonstrated that all the analyzed strains shared genes for siderophore biosynthesis and transport and for heme utilization, indicating that these two systems of iron acquisition are a conserved trait in this subspecies, whereas other genes are not common to all the isolates. Thus, the Fur regulon of A. salmonicida subsp. salmonicida includes both conserved and differentially occurring genes, suggesting that the genetic diversity within this fish pathogen might be higher than expected.
Collapse
Affiliation(s)
- Mohsen Najimi
- Department of Microbiology and Parasitology, University of Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | | | | |
Collapse
|
23
|
Najimi M, Lemos ML, Osorio CR. Identification of heme uptake genes in the fish pathogen Aeromonas salmonicida subsp. salmonicida. Arch Microbiol 2008; 190:439-49. [PMID: 18535817 DOI: 10.1007/s00203-008-0391-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/30/2008] [Accepted: 05/13/2008] [Indexed: 10/22/2022]
Abstract
Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis in fish, can use heme as the sole iron source. We applied the Fur Titration Assay to isolate a cluster including six genes hutAZXBCD that showed similarity to heme uptake genes of other Gram-negative bacteria, and three genes orf123 of unknown function. The spatial organization of these nine genes, arranged in five transcriptional units, was similar to that of a homologous cluster in A. hydrophila. When a TonB system was provided, this cluster allowed Escherichia coli 101ESD (an ent mutant, unable to synthesize enterobactin) to utilize hemin and hemoglobin as iron sources. Mutation of hutB, a gene that encodes a predicted periplasmic hemin-binding protein, caused a drastic defect in the ability of A. salmonicida to grow with hemin as unique source of iron. Interestingly, a mutant for hutA gene (encoding the outer membrane hemin receptor) showed initially a reduced ability to grow with hemin as sole iron source, but after 24 h it achieved growth levels similar to parental strain. Thus mutation of hutA could not abolish the growth with hemin as iron source, suggesting that redundant outer membrane heme transport functions might be encoded in the A. salmonicida genome.
Collapse
Affiliation(s)
- Mohsen Najimi
- Department of Microbiology and Parasitology, Institute of Aquaculture and Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | | | | |
Collapse
|