1
|
Crosby T, Stadler LB. Plasmid Backbone Impacts Conjugation Rate, Transconjugant Fitness, and Community Assembly of Genetically Bioaugmented Soil Microbes for PAH Bioremediation. ACS ENVIRONMENTAL AU 2025; 5:241-252. [PMID: 40125281 PMCID: PMC11926752 DOI: 10.1021/acsenvironau.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 03/25/2025]
Abstract
Many polycyclic aromatic hydrocarbons (PAHs) in the environment resulting from crude oil spills and the incomplete combustion of organic matter are highly toxic, mutagenic, or carcinogenic to microorganisms and humans. Bioremediation of PAHs using microorganisms that encode biodegradative genes is a promising approach for environmental PAH cleanup. However, the viability of exogenous microorganisms is often limited due to competition with the native microbial community. Instead of relying on the survival of one or a few species of bacteria, genetic bioaugmentation harnesses conjugative plasmids that spread functional genes to native microbes. In this study, two plasmid backbones that differ in copy number regulation, replication, and mobilization genes were engineered to contain a PAH dioxygenase gene (bphC) and conjugated to soil bacteria including Bacillus subtilis, Pseudomonas putida, and Acinetobacter sp., as well as a synthetic community assembled from these bacteria. Fitness effects of the plasmids in transconjugants significantly impacted the rates of conjugative transfer and biotransformation rates of a model PAH (2,3-dihydroxybiphenyl). A synergistic effect was observed in which synthetic communities bioaugmented with bphC had significantly higher PAH degradation rates than bacteria grown in monocultures. Finally, conjugation rates were significantly associated with the relative abundances of bacteria in synthetic communities, underscoring how fitness impacts of plasmids can shape the microbial community structure and function.
Collapse
Affiliation(s)
- Tessa
M. Crosby
- Department of Civil and Environmental
Engineering, Rice University, Houston, Texas 77006, United States
| | - Lauren B. Stadler
- Department of Civil and Environmental
Engineering, Rice University, Houston, Texas 77006, United States
| |
Collapse
|
2
|
Candra B, Cook D, Hare J. Repression of Acinetobacter baumannii DNA damage response requires DdrR-assisted binding of UmuDAb dimers to atypical SOS box. J Bacteriol 2024; 206:e0043223. [PMID: 38727225 PMCID: PMC11332147 DOI: 10.1128/jb.00432-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/14/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA damage response of the multi-drug-resistant nosocomial pathogen Acinetobacter baumannii possesses multiple features that distinguish it from the commonly used LexA repression system. These include the absence of LexA in this genus, the evolution of a UmuD polymerase manager into the UmuDAb repressor of error-prone polymerases, the use of a corepressor unique to Acinetobacter (DdrR), and an unusually large UmuDAb binding site. We defined cis- and trans-acting factors required for UmuDAb DNA binding and gene repression, and tested whether DdrR directly enhances its DNA binding. We used DNA binding assays to characterize UmuDAb's binding to its proposed operator present upstream of the six co-repressed umuDC or umuC genes. UmuDAb bound tightly and cooperatively to this site with ~10-fold less affinity than LexA. DdrR enhanced the binding of both native and dimerization-deficient UmuDAb forms, but only in greater than equimolar ratios relative to UmuDAb. UmuDAb mutants unable to dimerize or effect gene repression showed impaired DNA binding, and a strain expressing the G124D dimerization mutant could not repress transcription of the UmuDAb-DdrR regulon. Competition electrophoretic mobility shift assays conducted with mutated operator probes showed that, unlike typical SOS boxes, the UmuDAb operator possessed a five-base pair central core whose sequence was more crucial for binding than the flanking palindrome. The presence of only one of the two flanking arms of the palindrome was necessary for UmuDAb binding. Overall, the data supported a model of an operator with two UmuDAb binding sites. The distinct characteristics of UmuDAb and its regulated promoters differ from the typical LexA repression model, demonstrating a novel method of repression.IMPORTANCEAcinetobacter baumannii is a gram-negative bacterium responsible for hospital-acquired infections. Its unique DNA damage response can activate multiple error-prone polymerase genes, allowing it to gain mutations that can increase its virulence and antibiotic resistance. The emergence of infectious strains carrying multiple antibiotic resistance genes, including carbapenem resistance, lends urgency to discovering and developing ways to combat infections resistant to treatment with known antibiotics. Deciphering how the regulators UmuDAb and DdrR repress the error-prone polymerases could lead to developing complementary treatments to halt this mechanism of generating resistance.
Collapse
Affiliation(s)
- Belinda Candra
- Baylor College of Medicine, Houston, Texas, USA
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, USA
| | - Deborah Cook
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, USA
| | - Janelle Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, USA
| |
Collapse
|
3
|
The DdrR Coregulator of the Acinetobacter baumannii Mutagenic DNA Damage Response Potentiates UmuDAb Repression of Error-Prone Polymerases. J Bacteriol 2022; 204:e0016522. [PMID: 36194009 PMCID: PMC9664961 DOI: 10.1128/jb.00165-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii
is a nosocomial pathogen that acquires antibiotic resistance genes through conjugative transfer and carries out a robust mutagenic DNA damage response. After exposure to conditions typically encountered in health care settings, such as antibiotics, UV light, and desiccation, this species induces error-prone UmuD′
2
C polymerases.
Collapse
|
4
|
Locking down SOS Mutagenesis Repression in a Dynamic Pathogen. J Bacteriol 2022; 204:e0022022. [PMID: 36194008 PMCID: PMC9664947 DOI: 10.1128/jb.00220-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The article "The DdrR coregulator of the Acinetobacter baumannii mutagenic DNA damage response potentiates UmuDAb repression of error-prone polymerases" in this issue of the J Bacteriol, (D. Cook, M. D. Flannigan, B. V. Candra, K. D. Compton, and J. M. Hare., J Bacteriol 204:e00165-22, 2022, https://doi.org/10.1128/jb.00165-22) reveals a more detailed understanding of the regulatory mechanism of the SOS response in Acinetobacter baumannii. This information provides novel targets for development of antimicrobial therapies against this ESKAPE pathogen and new insight into the complex regulation of the SOS stress-response.
Collapse
|
5
|
The small DdrR protein directly interacts with the UmuDAb regulator of the mutagenic DNA damage response in Acinetobacter baumannii. J Bacteriol 2022; 204:e0060121. [PMID: 35191762 DOI: 10.1128/jb.00601-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii poses a great threat in healthcare settings worldwide with clinical isolates displaying an ever-evolving multidrug-resistance. In strains of A. baumannii, expression of multiple error-prone polymerase genes is co-repressed by UmuDAb, a member of the LexA superfamily, and a small protein, DdrR. It is currently unknown how DdrR establishes this repression. Here, we use surface plasmon resonance spectrometry to show that DdrR forms a stable complex with the UmuDAb regulator. Our results indicate that the carboxy-terminal dimerization domain of UmuDAb forms the interaction interface with DdrR. Our in vitro data also show that RecA-mediated inactivation of UmuDAb is inhibited when this transcription factor is bound to its target DNA. In addition, we show that DdrR interacts with a putative prophage repressor, homologous to LexA superfamily proteins. These data suggest that DdrR modulates DNA damage response and prophage induction in A. baumannii by binding to LexA-like regulators. Importance We previously identified a 50-residue bacteriophage protein, gp7, which interacts with and modulates the function of the LexA transcription factor from Bacillus thuringiensis. Here we present data that indicates that the small DdrR protein from A. baumannii likely coordinates the SOS response and prophage processes by also interacting with LexA superfamily members. We suggest that similar small proteins that interact with LexA-like proteins to coordinate DNA repair and bacteriophage functions may be common to many bacteria that mount the SOS response.
Collapse
|
6
|
Sánchez-Osuna M, Cortés P, Lee M, Smith AT, Barbé J, Erill I. Non-canonical LexA proteins regulate the SOS response in the Bacteroidetes. Nucleic Acids Res 2021; 49:11050-11066. [PMID: 34614190 PMCID: PMC8565304 DOI: 10.1093/nar/gkab773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lesions to DNA compromise chromosome integrity, posing a direct threat to cell survival. The bacterial SOS response is a widespread transcriptional regulatory mechanism to address DNA damage. This response is coordinated by the LexA transcriptional repressor, which controls genes involved in DNA repair, mutagenesis and cell-cycle control. To date, the SOS response has been characterized in most major bacterial groups, with the notable exception of the Bacteroidetes. No LexA homologs had been identified in this large, diverse and ecologically important phylum, suggesting that it lacked an inducible mechanism to address DNA damage. Here, we report the identification of a novel family of transcriptional repressors in the Bacteroidetes that orchestrate a canonical response to DNA damage in this phylum. These proteins belong to the S24 peptidase family, but are structurally different from LexA. Their N-terminal domain is most closely related to CI-type bacteriophage repressors, suggesting that they may have originated from phage lytic phase repressors. Given their role as SOS regulators, however, we propose to designate them as non-canonical LexA proteins. The identification of a new class of repressors orchestrating the SOS response illuminates long-standing questions regarding the origin and plasticity of this transcriptional network.
Collapse
Affiliation(s)
- Miquel Sánchez-Osuna
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain
| | - Ivan Erill
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08192 Bellaterra, Spain.,Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
7
|
Sheng DH, Wang Y, Wu SG, Duan RQ, Li YZ. The Regulation of LexA on UV-Induced SOS Response in Myxococcus xanthus Based on Transcriptome Analysis. J Microbiol Biotechnol 2021; 31:912-920. [PMID: 34024894 PMCID: PMC9705874 DOI: 10.4014/jmb.2103.03047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
SOS response is a conserved response to DNA damage in prokaryotes and is negatively regulated by LexA protein, which recognizes specifically an "SOS-box" motif present in the promoter region of SOS genes. Myxococcus xanthus DK1622 possesses a lexA gene, and while the deletion of lexA had no significant effect on either bacterial morphology, UV-C resistance, or sporulation, it did delay growth. UV-C radiation resulted in 651 upregulated genes in M. xanthus, including the typical SOS genes lexA, recA, uvrA, recN and so on, mostly enriched in the pathways of DNA replication and repair, secondary metabolism, and signal transduction. The UV-irradiated lexA mutant also showed the induced expression of SOS genes and these SOS genes enriched into a similar pathway profile to that of wild-type strain. Without irradiation treatment, the absence of LexA enhanced the expression of 122 genes that were not enriched in any pathway. Further analysis of the promoter sequence revealed that in the 122 genes, only the promoters of recA2, lexA and an operon composed of three genes (pafB, pafC and cyaA) had SOS box sequence to which the LexA protein is bound directly. These results update our current understanding of SOS response in M. xanthus and show that UV induces more genes involved in secondary metabolism and signal transduction in addition to DNA replication and repair; and while the canonical LexA-dependent regulation on SOS response has shrunk, only 5 SOS genes are directly repressed by LexA.
Collapse
Affiliation(s)
- Duo-hong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China,
D-h. Sheng Phone: +86-532-58631538 E-mail:
| | - Ye Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Shu-ge Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Rui-qin Duan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China,Corresponding authors Y.Z. Li Phone: +86-532-58631539 E-mail:
| |
Collapse
|
8
|
Identification of a Novel Ciprofloxacin Tolerance Gene, aciT, Which Contributes to Filamentation in Acinetobacter baumannii. Antimicrob Agents Chemother 2021; 65:AAC.01400-20. [PMID: 33820764 PMCID: PMC8316044 DOI: 10.1128/aac.01400-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/20/2021] [Indexed: 01/19/2023] Open
Abstract
Fluoroquinolones are one of the most prescribed broad-spectrum antibiotics. However, their effectiveness is being compromised by high rates of resistance in clinically important organisms, including Acinetobacter baumannii. We sought to investigate the transcriptomic and proteomic responses of the clinical A. baumannii strain AB5075-UW upon exposure to subinhibitory concentrations of ciprofloxacin. Our transcriptomics and proteomics analyses found that the most highly expressed genes and proteins were components of the intact prophage phiOXA. The next most highly expressed gene (and its protein product) under ciprofloxacin stress was a hypothetical gene, ABUW_0098, named here the Acinetobacterciprofloxacin tolerance (aciT) gene. Disruption of this gene resulted in higher susceptibility to ciprofloxacin, and complementation of the mutant with a cloned aciT gene restored ciprofloxacin tolerance to parental strain levels. Microscopy studies revealed that aciT is essential for filamentation during ciprofloxacin stress in A. baumannii. Sequence analysis of aciT indicates the encoded protein is likely to be localized to the cell membrane. Orthologs of aciT are found widely in the genomes of species from the Moraxellaceae family and are well conserved in Acinetobacter species, suggesting an important role. With these findings taken together, this study has identified a new gene conferring tolerance to ciprofloxacin, likely by enabling filamentation in response to the antibiotic.
Collapse
|
9
|
Cook D, Carrington J, Johnson K, Hare J. Homodimerization and heterodimerization requirements of Acinetobacter baumannii SOS response coregulators UmuDAb and DdrR revealed by two-hybrid analyses. Can J Microbiol 2020; 67:358-371. [PMID: 33180570 DOI: 10.1139/cjm-2020-0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The multidrug-resistant pathogen Acinetobacter baumannii displays unusual control of its SOS mutagenesis genes, as it does not encode a LexA repressor, but instead employs the UmuDAb repressor and a small protein, DdrR, that is uniquely found in Acinetobacter species. We used bacterial adenylate cyclase two-hybrid analyses to determine if UmuDAb and DdrR coregulation might involve physical interactions. Neither quantitative nor qualitative assays showed UmuDAb interaction with DdrR. DdrR hybrid proteins, however, demonstrated modest head-to-tail interactions in a qualitative assay. The similarity of UmuDAb to the homodimer-forming polymerase manager UmuD and LexA repressor proteins suggested that it may form dimers, which we observed. UmuDAb homodimerization required a free C terminus, and either small truncations or addition of a histidine tag at the C terminus abolished this homodimerization. The amino acid N100, crucial for UmuD dimer formation, was dispensable if both C termini were free to interact. However, mutation of the amino acid G124, necessary for LexA dimerization, yielded significantly less UmuDAb dimerization, even if both C termini were free. This suggests that UmuDAb forms dimers like LexA does, but may not coregulate gene expression involving a physical association with DdrR. The homodimerization of these coregulators provides insight into a LexA-independent, coregulatory process of controlling a conserved bacterial action such as the mutagenic DNA damage response.
Collapse
Affiliation(s)
- Deborah Cook
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - Jordan Carrington
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - Kevin Johnson
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA.,Craft Academy for Excellence in Science and Mathematics, Morehead State University, Morehead, KY 40351, USA
| | - Janelle Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| |
Collapse
|
10
|
Zhou H, Zhang L, Xu Q, Zhang L, Yu Y, Hua X. The mismatch repair system (mutS and mutL) in Acinetobacter baylyi ADP1. BMC Microbiol 2020; 20:40. [PMID: 32111158 PMCID: PMC7048072 DOI: 10.1186/s12866-020-01729-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Acinetobacter baylyi ADP1 is an ideal bacterial strain for high-throughput genetic analysis as the bacterium is naturally transformable. Thus, ADP1 can be used to investigate DNA mismatch repair, a mechanism for repairing mismatched bases. We used the mutS deletion mutant (XH439) and mutL deletion mutant (XH440), and constructed a mutS mutL double deletion mutant (XH441) to investigate the role of the mismatch repair system in A. baylyi. Results We determined the survival rates after UV irradiation and measured the mutation frequencies, rates and spectra of wild-type ADP1 and mutSL mutant via rifampin resistance assay (RifR assay) and experimental evolution. In addition, transformation efficiencies of genomic DNA in ADP1 and its three mutants were determined. Lastly, the relative growth rates of the wild type strain, three constructed deletion mutants, as well as the rifampin resistant mutants obtained from RifR assays, were measured. All three mutants had higher survival rates after UV irradiation than wild type, especially the double deletion mutant. Three mutants showed higher mutation frequencies than ADP1 and favored transition mutations in RifR assay. All three mutants showed increased mutation rates in the experimental evolution. However, only XH439 and XH441 had higher mutation rates than the wild type strain in RifR assay. XH441 showed higher transformation efficiency than XH438 when donor DNA harbored transition mutations. All three mutants showed higher growth rates than wild-type, and these four strains displayed higher growth rates than almost all their rpoB mutants. The growth rate results showed different amino acid mutations in rpoB resulted in different extents of reduction in the fitness of rifampin resistant mutants. However, the fitness cost brought by the same mutation did not vary with strain background. Conclusions We demonstrated that inactivation of both mutS and mutL increased the mutation rates and frequencies in A. baylyi, which would contribute to the evolution and acquirement of rifampicin resistance. The mutS deletion is also implicated in increased mutation rates and frequencies, suggesting that MutL may be activated even in the absence of mutS. The correlation between fitness cost and rifampin resistance mutations in A. baylyi is firstly established.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Respiratory Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linyue Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Qingye Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
11
|
Peterson MA, Grice AN, Hare JM. A corepressor participates in LexA-independent regulation of error-prone polymerases in Acinetobacter. MICROBIOLOGY (READING, ENGLAND) 2020; 166:212-226. [PMID: 31687925 PMCID: PMC7273328 DOI: 10.1099/mic.0.000866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/07/2019] [Indexed: 01/03/2023]
Abstract
The DNA damage response of the multidrug-resistant pathogen Acinetobacter baumannii, which induces mutagenic UmuD'2C error-prone polymerases, differs from that of many bacteria. Acinetobacter species lack a LexA repressor, but induce gene transcription after DNA damage. One regulator, UmuDAb, binds to and represses the promoters of the multiple A. baumannii ATCC 17978 umuDC alleles and the divergently transcribed umuDAb and ddrR genes. ddrR is unique to the genus Acinetobacter and of unknown function. 5' RACE (rapid amplification of cDNA ends) PCR mapping of the umuDAb and ddrR transcriptional start sites revealed that their -35 promoter elements overlapped the UmuDAb binding site, suggesting that UmuDAb simultaneously repressed expression of both genes by blocking polymerase access. This coordinated control of ddrR and umuDAb suggested that ddrR might also regulate DNA damage-inducible gene transcription. RNA-sequencing experiments in 17 978 ddrR- cells showed that ddrR regulated approximately 25 % (n=39) of the mitomycin C-induced regulon, with umuDAb coregulating 17 of these ddrR-regulated genes. Eight genes (the umuDC polymerases, umuDAb and ddrR) were de-repressed in the absence of DNA damage, and nine genes were uninduced in the presence of DNA damage, in both ddrR and umuDAb mutant strains. These data suggest ddrR has multiple roles, both as a co-repressor and as a positive regulator of DNA damage-inducible gene transcription. Additionally, 57 genes were induced by mitomycin C in the ddrR mutant but not in wild-type cells. This regulon contained multiple genes for DNA replication, recombination and repair, transcriptional regulators, RND efflux, and transport. This study uncovered another regulator of the atypical DNA damage response of this genus, to help describe how this pathogen acquires drug resistance through its expression of the error-prone polymerases under DdrR and UmuDAb control.
Collapse
Affiliation(s)
- Megan A. Peterson
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - Alison N. Grice
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
- Office of Information Technology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Janelle M. Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| |
Collapse
|
12
|
Lin L, Ringel PD, Vettiger A, Dürr L, Basler M. DNA Uptake upon T6SS-Dependent Prey Cell Lysis Induces SOS Response and Reduces Fitness of Acinetobacter baylyi. Cell Rep 2019; 29:1633-1644.e4. [DOI: 10.1016/j.celrep.2019.09.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/23/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022] Open
|
13
|
Couvé-Deacon E, Jové T, Afouda P, Barraud O, Tilloy V, Scaon E, Hervé B, Burucoa C, Kempf M, Marcos JY, Ploy MC, Garnier F. Class 1 integrons in Acinetobacter baumannii: a weak expression of gene cassettes to counterbalance the lack of LexA-driven integrase repression. Int J Antimicrob Agents 2019; 53:491-499. [DOI: 10.1016/j.ijantimicag.2018.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 11/17/2018] [Indexed: 11/29/2022]
|
14
|
Jiang B, Li G, Xing Y, Zhang D, Jia J, Cui Z, Luan X, Tang H. A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. CHEMOSPHERE 2017; 184:384-392. [PMID: 28609744 DOI: 10.1016/j.chemosphere.2017.05.159] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Whole-cell bioreporters have emerged as promising tools for genotoxicity evaluation, due to their rapidity, cost-effectiveness, sensitivity and selectivity. In this study, a method for detecting genotoxicity in environmental samples was developed using the bioluminescent whole-cell bioreporter Escherichia coli recA::luxCDABE. To further test its performance in a real world scenario, the E. coli bioreporter was applied in two cases: i) soil samples collected from chromium(VI) contaminated sites; ii) crude oil contaminated seawater collected after the Jiaozhou Bay oil spill which occurred in 2013. The chromium(VI) contaminated soils were pretreated by water extraction, and directly exposed to the bioreporter in two phases: aqueous soil extraction (water phase) and soil supernatant (solid phase). The results indicated that both extractable and soil particle fixed chromium(VI) were bioavailable to the bioreporter, and the solid-phase contact bioreporter assay provided a more precise evaluation of soil genotoxicity. For crude oil contaminated seawater, the response of the bioreporter clearly illustrated the spatial and time change in genotoxicity surrounding the spill site, suggesting that the crude oil degradation process decreased the genotoxic risk to ecosystem. In addition, the performance of the bioreporter was simulated by a modified cross-regulation gene expression model, which quantitatively described the DNA damage response of the E. coli bioreporter. Accordingly, the bioluminescent response of the bioreporter was calculated as the mitomycin C equivalent, enabling quantitative comparison of genotoxicities between different environmental samples. This bioreporter assay provides a rapid and sensitive screening tool for direct genotoxicity assessment of environmental samples.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China; School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Dayi Zhang
- Lancaster Environment Center, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, People's Republic of China
| | - Zhisong Cui
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, People's Republic of China
| | - Xiao Luan
- The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, People's Republic of China
| | - Hui Tang
- School of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, People's Republic of China
| |
Collapse
|
15
|
Reduced Mutation Rate and Increased Transformability of Transposon-Free Acinetobacter baylyi ADP1-ISx. Appl Environ Microbiol 2017; 83:AEM.01025-17. [PMID: 28667117 DOI: 10.1128/aem.01025-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 06/21/2017] [Indexed: 01/02/2023] Open
Abstract
The genomes of most bacteria contain mobile DNA elements that can contribute to undesirable genetic instability in engineered cells. In particular, transposable insertion sequence (IS) elements can rapidly inactivate genes that are important for a designed function. We deleted all six copies of IS1236 from the genome of the naturally transformable bacterium Acinetobacter baylyi ADP1. The natural competence of ADP1 made it possible to rapidly repair deleterious point mutations that arose during strain construction. In the resulting ADP1-ISx strain, the rates of mutations inactivating a reporter gene were reduced by 7- to 21-fold. This reduction was higher than expected from the incidence of new IS1236 insertions found during a 300-day mutation accumulation experiment with wild-type ADP1 that was used to estimate spontaneous mutation rates in the strain. The extra improvement appears to be due in part to eliminating large deletions caused by IS1236 activity, as the point mutation rate was unchanged in ADP1-ISx. Deletion of an error-prone polymerase (dinP) and a DNA damage response regulator (umuDAb [the umuD gene of A. baylyi]) from the ADP1-ISx genome did not further reduce mutation rates. Surprisingly, ADP1-ISx exhibited increased transformability. This improvement may be due to less autolysis and aggregation of the engineered cells than of the wild type. Thus, deleting IS elements from the ADP1 genome led to a greater than expected increase in evolutionary reliability and unexpectedly enhanced other key strain properties, as has been observed for other clean-genome bacterial strains. ADP1-ISx is an improved chassis for metabolic engineering and other applications.IMPORTANCEAcinetobacter baylyi ADP1 has been proposed as a next-generation bacterial host for synthetic biology and genome engineering due to its ability to efficiently take up DNA from its environment during normal growth. We deleted transposable elements that are capable of copying themselves, inserting into other genes, and thereby inactivating them from the ADP1 genome. The resulting "clean-genome" ADP1-ISx strain exhibited larger reductions in the rates of inactivating mutations than expected from spontaneous mutation rates measured via whole-genome sequencing of lineages evolved under relaxed selection. Surprisingly, we also found that IS element activity reduces transformability and is a major cause of cell aggregation and death in wild-type ADP1 grown under normal laboratory conditions. More generally, our results demonstrate that domesticating a bacterial genome by removing mobile DNA elements that have accumulated during evolution in the wild can have unanticipated benefits.
Collapse
|
16
|
Witkowski TA, Grice AN, Stinnett DB, Wells WK, Peterson MA, Hare JM. UmuDAb: An Error-Prone Polymerase Accessory Homolog Whose N-Terminal Domain Is Required for Repression of DNA Damage Inducible Gene Expression in Acinetobacter baylyi. PLoS One 2016; 11:e0152013. [PMID: 27010837 PMCID: PMC4807011 DOI: 10.1371/journal.pone.0152013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/08/2016] [Indexed: 12/01/2022] Open
Abstract
In many bacteria, the DNA damage response induces genes (SOS genes) that were repressed by LexA. LexA represses transcription by binding to SOS promoters via a helix-turn-helix motif in its N-terminal domain (NTD). Upon DNA damage, LexA cleaves itself and allows induction of transcription. In Acinetobacter baumannii and Acinetobacter baylyi, multiple genes are induced by DNA damage, and although the Acinetobacter genus lacks LexA, a homolog of the error-prone polymerase subunit UmuD, called UmuDAb, regulates some DNA damage-induced genes. The mechanism of UmuDAb regulation has not been determined. We constructed UmuDAb mutant strains of A. baylyi to test whether UmuDAb mediates gene regulation through LexA-like repressor actions consisting of relief of repression through self-cleavage after DNA damage. Real-time quantitative PCR experiments in both a null umuDAb mutant and an NTD mutant showed that the DNA damage-inducible, UmuDAb-regulated gene ddrR was highly expressed even in the absence of DNA damage. Protein modeling identified a potential LexA-like helix-turn-helix structure in the UmuDAb NTD, which when disrupted, also relieved ddrR and umuDAb repression under non-inducing conditions. Mutations in a putative SOS box in the shared umuDAb-ddrR promoter region similarly relieved these genes’ repression under non-inducing conditions. Conversely, cells possessing a cleavage-deficient UmuDAb were unable to induce gene expression after MMC-mediated DNA damage. This evidence of a UmuDAb repressor mechanism was contrasted with the failure of umuDAb to complement an Escherichia coli umuD mutant for UmuD error-prone DNA replication activity. Similarly, A. baumannii null umuDAb mutant cells did not have a reduced UmuDˊ2UmuC-mediated mutation rate after DNA damage, suggesting that although this UmuDAb protein may have evolved from a umuDC operon in this genus, it now performs a LexA-like repressor function for a sub-set of DNA damage-induced genes.
Collapse
Affiliation(s)
- Travis A. Witkowski
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America
| | - Alison N. Grice
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America
| | - DeAnna B. Stinnett
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America
| | - Whitney K. Wells
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America
| | - Megan A. Peterson
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America
| | - Janelle M. Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, KY, United States of America
- * E-mail:
| |
Collapse
|
17
|
Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants. Gene 2016; 576:115-8. [DOI: 10.1016/j.gene.2015.09.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 09/16/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022]
|
18
|
De Maayer P, Chan WY, Martin DAJ, Blom J, Venter SN, Duffy B, Cowan DA, Smits THM, Coutinho TA. Integrative conjugative elements of the ICEPan family play a potential role in Pantoea ananatis ecological diversification and antibiosis. Front Microbiol 2015; 6:576. [PMID: 26106378 PMCID: PMC4458695 DOI: 10.3389/fmicb.2015.00576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/25/2015] [Indexed: 12/31/2022] Open
Abstract
Pantoea ananatis is a highly versatile enterobacterium isolated from diverse environmental sources. The ecological diversity of this species may be attributed, in part, to the acquisition of mobile genetic elements. One such element is an Integrative and Conjugative Element (ICE). By means of in silico analyses the ICE elements belonging to a novel family, ICEPan, were identified in the genome sequences of five P. ananatis strains and characterized. PCR screening showed that ICEPan is prevalent among P. ananatis strains isolated from different environmental sources and geographic locations. Members of the ICEPan family share a common origin with ICEs of other enterobacteria, as well as conjugative plasmids of Erwinia spp. Aside from core modules for ICEPan integration, maintenance and dissemination, the ICEPan contain extensive non-conserved islands coding for proteins that may contribute toward various phenotypes such as stress response and antibiosis, and the highly diverse ICEPan thus plays a major role in the diversification of P. ananatis. An island is furthermore integrated within an ICEPan DNA repair-encoding locus umuDC and we postulate its role in stress-induced dissemination and/or expression of the genes on this island.
Collapse
Affiliation(s)
- Pieter De Maayer
- Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa ; Department of Microbiology, University of Pretoria Pretoria, South Africa
| | - Wai-Yin Chan
- Department of Microbiology, University of Pretoria Pretoria, South Africa ; Forestry and Agricultural Biotechnology Institute, University of Pretoria Pretoria, South Africa
| | - Douglas A J Martin
- Department of Microbiology, University of Pretoria Pretoria, South Africa ; Forestry and Agricultural Biotechnology Institute, University of Pretoria Pretoria, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen Giessen, Germany
| | - Stephanus N Venter
- Department of Microbiology, University of Pretoria Pretoria, South Africa ; Forestry and Agricultural Biotechnology Institute, University of Pretoria Pretoria, South Africa
| | - Brion Duffy
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zürich University of Applied Sciences Wädenswil, Switzerland
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa ; Department of Genetics, University of Pretoria Pretoria, South Africa
| | - Theo H M Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zürich University of Applied Sciences Wädenswil, Switzerland
| | - Teresa A Coutinho
- Department of Microbiology, University of Pretoria Pretoria, South Africa ; Forestry and Agricultural Biotechnology Institute, University of Pretoria Pretoria, South Africa
| |
Collapse
|
19
|
Díaz-Magaña A, Alva-Murillo N, Chávez-Moctezuma MP, López-Meza JE, Ramírez-Díaz MI, Cervantes C. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes. MICROBIOLOGY-SGM 2015; 161:1516-23. [PMID: 25918254 DOI: 10.1099/mic.0.000103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA- mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA- mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA- mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.
Collapse
Affiliation(s)
- Amada Díaz-Magaña
- 1Instituto de Investigaciones Químico-Biológicas, Morelia, Michoacán, Mexico
| | - Nayeli Alva-Murillo
- 2Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana, Morelia, Michoacán, Mexico
| | | | - Joel E López-Meza
- 2Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana, Morelia, Michoacán, Mexico
| | | | - Carlos Cervantes
- 1Instituto de Investigaciones Químico-Biológicas, Morelia, Michoacán, Mexico
| |
Collapse
|
20
|
Kurth D, Belfiore C, Gorriti MF, Cortez N, Farias ME, Albarracín VH. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3. Front Microbiol 2015; 6:328. [PMID: 25954258 PMCID: PMC4406064 DOI: 10.3389/fmicb.2015.00328] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022] Open
Abstract
Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth's surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an "UV-resistome" was defined, encompassing the genes that would support the outstanding UV-resistance of this strain.
Collapse
Affiliation(s)
- Daniel Kurth
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina
| | - Carolina Belfiore
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina
| | - Marta F Gorriti
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina
| | - Néstor Cortez
- Centro Científico Tecnológico, IBR - CONICET, Universidad Nacional de Rosario Rosario, Argentina
| | - María E Farias
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina
| | - Virginia H Albarracín
- Laboratorio de Investigaciones Microbiologicas Lagunas Andinas, Centro Científico Tecnológico, Planta Piloto de Procesos Industriales Microbiológicos - Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán Argentina ; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán Argentina
| |
Collapse
|
21
|
Jiang B, Song Y, Zhang D, Huang WE, Zhang X, Li G. The influence of carbon sources on the expression of the recA gene and genotoxicity detection by an Acinetobacter bioreporter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:835-843. [PMID: 25764502 DOI: 10.1039/c4em00692e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacterial whole-cell bioreporters are practical and reliable analytical tools to assess the toxicity and bioavailability of environmental contaminants, yet evidence has shown that their performance could be affected by different carbon sources. This paper evaluated the influence of carbon sources on the recA gene (ACIAD1385) in a DNA damage-inducible recA::luxCDABE Acinetobacter bioreporter and optimized the induction conditions for its practical application in environmental monitoring. Different carbon sources, including LB, potassium acetate (MMA), sodium citrate (MMC), sodium pyruvate (MMP), and sodium succinate (MMS), significantly influenced (p < 0.05) the bioluminescence intensity of the genotoxicity bioreporter. A reverse transcription quantitative PCR (RT-qPCR) showed the different expression levels of the DNA damage-inducible gene recA (p < 0.05), suggesting that carbon sources influenced the DNA damage response in the Acinetobacter bioreporter at the transcriptional level. Additionally, proteomic analysis identified 122 proteins that were differentially expressed after exposure to mitomycin C in defined media and LB, and 5 of them were related to the DNA damage response, indicating the effects of carbon sources on the DNA damage response in Acinetobacter at the translational level. The repression effect caused by the rich medium, LB, was possibly related to the mechanism of carbon catabolite repression. Our results suggest that the practical application of Acinetobacter bioreporters to the genotoxicity assessment of polycyclic aromatic hydrocarbon (PAH)-contaminated soils could be significantly improved by using a standard medium of defined composition, as this could increase their sensitivity.
Collapse
Affiliation(s)
- Bo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | | | | | | | | | | |
Collapse
|
22
|
Heo A, Jang HJ, Sung JS, Park W. Global transcriptome and physiological responses of Acinetobacter oleivorans DR1 exposed to distinct classes of antibiotics. PLoS One 2014; 9:e110215. [PMID: 25330344 PMCID: PMC4201530 DOI: 10.1371/journal.pone.0110215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022] Open
Abstract
The effects of antibiotics on environment-originated nonpathogenic Acinetobacter species have been poorly explored. To understand the antibiotic-resistance mechanisms that function in nonpathogenic Acinetobacter species, we used an RNA-sequencing (RNA-seq) technique to perform global gene-expression profiling of soil-borne Acinetobacter oleivorans DR1 after exposing the bacteria to 4 classes of antibiotics (ampicillin, Amp; kanamycin, Km; tetracycline, Tc; norfloxacin, Nor). Interestingly, the well-known two global regulators, the soxR and the rpoE genes are present among 41 commonly upregulated genes under all 4 antibiotic-treatment conditions. We speculate that these common genes are essential for antibiotic resistance in DR1. Treatment with the 4 antibiotics produced diverse physiological and phenotypic changes. Km treatment induced the most dramatic phenotypic changes. Examination of mutation frequency and DNA-repair capability demonstrated the induction of the SOS response in Acinetobacter especially under Nor treatment. Based on the RNA-seq analysis, the glyoxylate-bypass genes of the citrate cycle were specifically upregulated under Amp treatment. We also identified newly recognized non-coding small RNAs of the DR1 strain, which were also confirmed by Northern blot analysis. These results reveal that treatment with antibiotics of distinct classes differentially affected the gene expression and physiology of DR1 cells. This study expands our understanding of the molecular mechanisms of antibiotic-stress response of environment-originated bacteria and provides a basis for future investigations.
Collapse
Affiliation(s)
- Aram Heo
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Hyun-Jin Jang
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
23
|
Załuga J, Stragier P, Baeyen S, Haegeman A, Van Vaerenbergh J, Maes M, De Vos P. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle. BMC Genomics 2014; 15:392. [PMID: 24885539 PMCID: PMC4059874 DOI: 10.1186/1471-2164-15-392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/09/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The genus Clavibacter harbors economically important plant pathogens infecting agricultural crops such as potato and tomato. Although the vast majority of Clavibacter strains are pathogenic, there is an increasing number of non-pathogenic isolates reported. Non-pathogenic Clavibacter strains isolated from tomato seeds are particularly problematic because they affect the current detection and identification tests for Clavibacter michiganensis subsp. michiganensis (Cmm), which is regulated with a zero tolerance in tomato seed. Their misidentification as pathogenic Cmm hampers a clear judgment on the seed quality and health. RESULTS To get more insight in the genetic features linked to the lifestyle of these bacteria, a whole-genome sequence of the tomato seed-borne non-pathogenic Clavibacter LMG 26808 was determined. To gain a better understanding of the molecular determinants of pathogenicity, the genome sequence of LMG 26808 was compared with that of the pathogenic Cmm strain (NCPPB 382). The comparative analysis revealed that LMG 26808 does not contain plasmids pCM1 and pCM2 and also lacks the majority of important virulence factors described so far for pathogenic Cmm. This explains its apparent non-pathogenic nature in tomato plants. Moreover, the genome analysis of LMG 26808 detected sequences from a plasmid originating from a member of Enterobacteriaceae/Klebsiella relative. Genes received that way and coding for antibiotic resistance may provide a competitive advantage for survival of LMG 26808 in its ecological niche. Genetically, LMG 26808 was the most similar to the pathogenic Cmm NCPPB 382 but contained more mobile genetic elements. The genome of this non-pathogenic Clavibacter strain contained also a high number of transporters and regulatory genes. CONCLUSIONS The genome sequence of the non-pathogenic Clavibacter strain LMG 26808 and the comparative analyses with other pathogenic Clavibacter strains provided a better understanding of the genetic bases of virulence and adaptation mechanisms present in the genus Clavibacter.
Collapse
Affiliation(s)
- Joanna Załuga
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| | - Pieter Stragier
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| | - Steve Baeyen
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Annelies Haegeman
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Johan Van Vaerenbergh
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Martine Maes
- />Plant Sciences Unit - Crop Protection, Institute for Agricultural and Fisheries Research - ILVO, Burg. Van Gansberghelaan 96, Merelbeke, B-9820 Belgium
| | - Paul De Vos
- />Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
- />BCCM/LMG Bacteria collection - Laboratory of Microbiology Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, Gent, B-9000 Belgium
| |
Collapse
|
24
|
Hare JM, Ferrell JC, Witkowski TA, Grice AN. Prophage induction and differential RecA and UmuDAb transcriptome regulation in the DNA damage responses of Acinetobacter baumannii and Acinetobacter baylyi. PLoS One 2014; 9:e93861. [PMID: 24709747 PMCID: PMC3978071 DOI: 10.1371/journal.pone.0093861] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/08/2014] [Indexed: 11/21/2022] Open
Abstract
The SOS response to DNA damage that induces up to 10% of the prokaryotic genome requires RecA action to relieve LexA transcriptional repression. In Acinetobacter species, which lack LexA, the error-prone polymerase accessory UmuDAb is instead required for ddrR induction after DNA damage, suggesting it might be a LexA analog. RNA-Seq experiments defined the DNA damage transcriptome (mitomycin C-induced) of wild type, recA and umuDAb mutant strains of both A. baylyi ADP1 and A. baumannii ATCC 17978. Of the typical SOS response genes, few were differentially regulated in these species; many were repressed or absent. A striking 38.4% of all ADP1 genes, and 11.4% of all 17978 genes, were repressed under these conditions. In A. baylyi ADP1, 66 genes (2.0% of the genome), including a CRISPR/Cas system, were DNA damage-induced, and belonged to four regulons defined by differential use of recA and umuDAb. In A. baumannii ATCC 17978, however, induction of 99% of the 152 mitomycin C-induced genes depended on recA, and only 28 of these genes required umuDAb for their induction. 90% of the induced A. baumannii genes were clustered in three prophage regions, and bacteriophage particles were observed after mitomycin C treatment. These prophages encoded esvI, esvK1, and esvK2, ethanol-stimulated virulence genes previously identified in a Caenorhabditis elegans model, as well as error-prone polymerase alleles. The induction of all 17978 error-prone polymerase alleles, whether prophage-encoded or not, was recA dependent, but only these DNA polymerase V-related genes were de-repressed in the umuDAb mutant in the absence of DNA damage. These results suggest that both species possess a robust and complex DNA damage response involving both recA-dependent and recA-independent regulons, and further demonstrates that although umuDAb has a specialized role in repressing error-prone polymerases, additional regulators likely participate in these species' transcriptional response to DNA damage.
Collapse
Affiliation(s)
- Janelle M. Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, United States of America
- * E-mail:
| | - Joshua C. Ferrell
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, United States of America
| | - Travis A. Witkowski
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, United States of America
| | - Alison N. Grice
- Department of Biology and Chemistry, Morehead State University, Morehead, Kentucky, United States of America
| |
Collapse
|
25
|
Macguire AE, Ching MC, Diamond BH, Kazakov A, Novichkov P, Godoy VG. Activation of phenotypic subpopulations in response to ciprofloxacin treatment in Acinetobacter baumannii. Mol Microbiol 2014; 92:138-52. [PMID: 24612352 DOI: 10.1111/mmi.12541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2014] [Indexed: 12/13/2022]
Abstract
The multidrug-resistant, opportunistic pathogen, Acinetobacter baumannii, has spread swiftly through hospitals worldwide. Previously, we demonstrated that A. baumannii regulates the expression of various genes in response to DNA damage. Some of these regulated genes, especially those encoding the multiple error-prone DNA polymerases, can be implicated in induced mutagenesis, leading to antibiotic resistance. Here, we further explore the DNA damage-inducible system at the single cell level using chromosomal transcriptional reporters for selected DNA damage response genes. We found the genes examined respond in a bimodal fashion to ciprofloxacin treatment, forming two phenotypic subpopulations: induced and uninduced. This bimodal response to ciprofloxacin treatment in A. baumannii is unique and quite different than the Escherichia coli paradigm. The subpopulations are not genetically different, with each subpopulation returning to a starting state and differentiating with repeated treatment. We then identified a palindromic motif upstream of certain DNA damage response genes, and have shown alterations to this sequence to diminish the bimodal induction in response to DNA damaging treatment. Lastly, we are able to show a biological advantage for a bimodal response, finding that one subpopulation survives ciprofloxacin treatment better than the other.
Collapse
Affiliation(s)
- Ashley E Macguire
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
26
|
Identification of a DNA-damage-inducible regulon in Acinetobacter baumannii. J Bacteriol 2013; 195:5577-82. [PMID: 24123815 DOI: 10.1128/jb.00853-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transcriptional response of Acinetobacter baumannii, a major cause of nosocomial infections, to the DNA-damaging agent mitomycin C (MMC) was studied using DNA microarray technology. Most of the 39 genes induced by MMC were related to either prophages or encoded proteins involved in DNA repair. Electrophoretic mobility shift assays demonstrated that the product of the A. baumannii MMC-inducible umuD gene (umuDAb) specifically binds to the palindromic sequence TTGAAAATGTAACTTTTTCAA present in its promoter region. Mutations in this palindromic region abolished UmuDAb protein binding. A comparison of the promoter regions of all MMC-induced genes identified four additional transcriptional units with similar palindromic sequences recognized and specifically bound by UmuDAb. Therefore, the UmuDAb regulon consists of at least eight genes encoding seven predicted error-prone DNA polymerase V components and DddR, a protein of unknown function. Expression of these genes was not induced in the MMC-treated recA mutant. Furthermore, inactivation of the umuDAb gene resulted in the deregulation of all DNA-damage-induced genes containing the described palindromic DNA motif. Together, these findings suggest that UmuDAb is a direct regulator of the DNA damage response in A. baumannii.
Collapse
|
27
|
Antibiotic resistance acquired through a DNA damage-inducible response in Acinetobacter baumannii. J Bacteriol 2013; 195:1335-45. [PMID: 23316046 DOI: 10.1128/jb.02176-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial, opportunistic pathogen that survives desiccation and quickly acquires resistance to multiple antibiotics. Escherichia coli gains antibiotic resistances by expressing genes involved in a global response to DNA damage. Therefore, we asked whether A. baumannii does the same through a yet undetermined DNA damage response akin to the E. coli paradigm. We found that recA and all of the multiple error-prone DNA polymerase V (Pol V) genes, those organized as umuDC operons and unlinked, are induced upon DNA damage in a RecA-mediated fashion. Consequently, we found that the frequency of rifampin-resistant (Rif(r)) mutants is dramatically increased upon UV treatment, alkylation damage, and desiccation, also in a RecA-mediated manner. However, in the recA insertion knockout strain, in which we could measure the recA transcript, we found that recA was induced by DNA damage, while uvrA and one of the unlinked umuC genes were somewhat derepressed in the absence of DNA damage. Thus, the mechanism regulating the A. baumannii DNA damage response is likely different from that in E. coli. Notably, it appears that the number of DNA Pol V genes may directly contribute to desiccation-induced mutagenesis. Sequences of the rpoB gene from desiccation-induced Rif(r) mutants showed a signature that was consistent with E. coli DNA polymerase V-generated base-pair substitutions and that matched that of sequenced A. baumannii clinical Rif(r) isolates. These data strongly support an A. baumannii DNA damage-inducible response that directly contributes to antibiotic resistance acquisition, particularly in hospitals where A. baumannii desiccates and tenaciously survives on equipment and surfaces.
Collapse
|
28
|
Domingues S, Harms K, Fricke WF, Johnsen PJ, da Silva GJ, Nielsen KM. Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species. PLoS Pathog 2012; 8:e1002837. [PMID: 22876180 PMCID: PMC3410848 DOI: 10.1371/journal.ppat.1002837] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/19/2012] [Indexed: 12/24/2022] Open
Abstract
We have investigated to what extent natural transformation acting on free DNA substrates can facilitate transfer of mobile elements including transposons, integrons and/or gene cassettes between bacterial species. Naturally transformable cells of Acinetobacter baylyi were exposed to DNA from integron-carrying strains of the genera Acinetobacter, Citrobacter, Enterobacter, Escherichia, Pseudomonas, and Salmonella to determine the nature and frequency of transfer. Exposure to the various DNA sources resulted in acquisition of antibiotic resistance traits as well as entire integrons and transposons, over a 24 h exposure period. DNA incorporation was not solely dependent on integrase functions or the genetic relatedness between species. DNA sequence analyses revealed that several mechanisms facilitated stable integration in the recipient genome depending on the nature of the donor DNA; homologous or heterologous recombination and various types of transposition (Tn21-like and IS26-like). Both donor strains and transformed isolates were extensively characterized by antimicrobial susceptibility testing, integron- and cassette-specific PCRs, DNA sequencing, pulsed field gel electrophoreses (PFGE), Southern blot hybridizations, and by re-transformation assays. Two transformant strains were also genome-sequenced. Our data demonstrate that natural transformation facilitates interspecies transfer of genetic elements, suggesting that the transient presence of DNA in the cytoplasm may be sufficient for genomic integration to occur. Our study provides a plausible explanation for why sequence-conserved transposons, IS elements and integrons can be found disseminated among bacterial species. Moreover, natural transformation of integron harboring populations of competent bacteria revealed that interspecies exchange of gene cassettes can be highly efficient, and independent on genetic relatedness between donor and recipient. In conclusion, natural transformation provides a much broader capacity for horizontal acquisitions of genetic elements and hence, resistance traits from divergent species than previously assumed. Genetic elements, such as transposons and integrons, frequently carry antimicrobial resistance determinants and can be found widely disseminated among pathogenic bacteria. Their distribution pattern suggests dissemination through horizontal gene transfer. The role of natural transformation in horizontal transfer of genetic elements other than those that are self-replicative (plasmids) has remained largely unexplored. We have tested if natural transformation can facilitate transfer of transposons and class 1 integrons between bacterial species. We here provide experimental evidence showing that natural transformation can be a general mechanism for dissemination of genetic elements that by themselves do not encode interspecies transfer functions (e.g. transposons, insertion sequences). We demonstrate that antibiotic resistance determinants present in such genetic elements can spread by natural transformation between species of clinical interest. We show by quantitative data that interspecies exchange of resistance gene cassettes is highly efficient among integron-containing strains and species. Our study also provides a plausible explanation for how sequence-conserved integrons can become distributed among bacterial species.
Collapse
Affiliation(s)
- Sara Domingues
- Centre of Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Klaus Harms
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - W. Florian Fricke
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Pål J. Johnsen
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Gabriela J. da Silva
- Centre of Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Kaare Magne Nielsen
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Genøk-Centre for Biosafety, Tromsø, Norway
- * E-mail:
| |
Collapse
|
29
|
Hare JM, Adhikari S, Lambert KV, Hare AE, Grice AN. The Acinetobacter regulatory UmuDAb protein cleaves in response to DNA damage with chimeric LexA/UmuD characteristics. FEMS Microbiol Lett 2012; 334:57-65. [PMID: 22697494 DOI: 10.1111/j.1574-6968.2012.02618.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/21/2012] [Accepted: 06/11/2012] [Indexed: 11/29/2022] Open
Abstract
In the DNA damage response of most bacteria, UmuD forms part of the error-prone (UmuD'(2) )C polymerase V and is activated for this function by self-cleavage after DNA damage. However, the umuD homolog (umuDAb) present throughout the Acinetobacter genus encodes an extra N-terminal region, and in Acinetobacter baylyi, regulates transcription of DNA damage-induced genes. UmuDAb expressed in cells was correspondingly larger (24 kDa) than the Escherichia coli UmuD (15 kDa). DNA damage from mitomycin C or UV exposure caused UmuDAb cleavage in both E. coli wild-type and ΔumuD cells on a timescale resembling UmuD, but did not require UmuD. Like the self-cleaving serine proteases LexA and UmuD, UmuDAb required RecA for cleavage. This cleavage produced a UmuDAb' fragment of a size consistent with the predicted cleavage site of Ala83-Gly84. Site-directed mutations at Ala83 abolished cleavage, as did mutations at either the Ser119 or Lys156 predicted enzymatic residues. Co-expression of the cleavage site mutant and an enzymatic mutant did not allow cleavage, demonstrating a strictly intramolecular mechanism of cleavage that more closely resembles the LexA-type repressors than UmuD. These data show that UmuDAb undergoes a post-translational, LexA-like cleavage event after DNA damage, possibly to achieve its regulatory action.
Collapse
Affiliation(s)
- Janelle M Hare
- Department of Biology and Chemistry, Morehead State University, KY, USA.
| | | | | | | | | |
Collapse
|
30
|
Hare JM, Bradley JA, Lin CL, Elam TJ. Diverse responses to UV light exposure in Acinetobacter include the capacity for DNA damage-induced mutagenesis in the opportunistic pathogens Acinetobacter baumannii and Acinetobacter ursingii. MICROBIOLOGY-SGM 2011; 158:601-611. [PMID: 22117008 DOI: 10.1099/mic.0.054668-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Error-prone and error-free DNA damage repair responses that are induced in most bacteria after exposure to various chemicals, antibiotics or radiation sources were surveyed across the genus Acinetobacter. The error-prone SOS mutagenesis response occurs when DNA damage induces a cell's umuDC- or dinP-encoded error-prone polymerases. The model strain Acinetobacter baylyi ADP1 possesses an unusual, regulatory umuD allele (umuDAb) with an extended 5' region and only incomplete fragments of umuC. Diverse Acinetobacter species were investigated for the presence of umuDC and their ability to conduct UV-induced mutagenesis. Unlike ADP1, most Acinetobacter strains possessed multiple umuDC loci containing either umuDAb or a umuD allele resembling that of Escherichia coli. The nearly omnipresent umuDAb allele was the ancestral umuD in Acinetobacter, with horizontal gene transfer accounting for over half of the umuDC operons. Despite multiple umuD(Ab)C operons in many strains, only three species conducted UV-induced mutagenesis: Acinetobacter baumannii, Acinetobacter ursingii and Acinetobacter beijerinckii. The type of umuDC locus or mutagenesis phenotype a strain possessed was not correlated with its error-free response of survival after UV exposure, but similar diversity was apparent. The survival of 30 Acinetobacter strains after UV treatment ranged over five orders of magnitude, with the Acinetobacter calcoaceticus-A. baumannii (Acb) complex and haemolytic strains having lower survival than non-Acb or non-haemolytic strains. These observations demonstrate that a genus can possess a range of DNA damage response mechanisms, and suggest that DNA damage-induced mutation could be an important part of the evolution of the emerging pathogens A. baumannii and A. ursingii.
Collapse
Affiliation(s)
- Janelle M Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - James A Bradley
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - Ching-Li Lin
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - Tyler J Elam
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| |
Collapse
|
31
|
Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. J Bacteriol 2011; 193:3740-7. [PMID: 21642465 DOI: 10.1128/jb.00389-11] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RecA is the major enzyme involved in homologous recombination and plays a central role in SOS mutagenesis. In Acinetobacter spp., including Acinetobacter baumannii , a multidrug-resistant bacterium responsible for nosocomial infections worldwide, DNA repair responses differ in many ways from those of other bacterial species. In this work, the function of A. baumannii RecA was examined by constructing a recA mutant. Alteration of this single gene had a pleiotropic effect, showing the involvement of RecA in DNA damage repair and consequently in cellular protection against stresses induced by DNA damaging agents, several classes of antibiotics, and oxidative agents. In addition, the absence of RecA decreased survival in response to both heat shock and desiccation. Virulence assays in vitro (with macrophages) and in vivo (using a mouse model) similarly implicated RecA in the pathogenicity of A. baumannii . Thus, the data strongly suggest a protective role for RecA in the bacterium and indicate that inactivation of the protein can contribute to a combined therapeutic approach to controlling A. baumannii infections.
Collapse
|
32
|
Essential biological processes of an emerging pathogen: DNA replication, transcription, and cell division in Acinetobacter spp. Microbiol Mol Biol Rev 2010; 74:273-97. [PMID: 20508250 DOI: 10.1128/mmbr.00048-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the last 15 years, members of the bacterial genus Acinetobacter have risen from relative obscurity to be among the most important sources of hospital-acquired infections. The driving force for this has been the remarkable ability of these organisms to acquire antibiotic resistance determinants, with some strains now showing resistance to every antibiotic in clinical use. There is an urgent need for new antibacterial compounds to combat the threat imposed by Acinetobacter spp. and other intractable bacterial pathogens. The essential processes of chromosomal DNA replication, transcription, and cell division are attractive targets for the rational design of antimicrobial drugs. The goal of this review is to examine the wealth of genome sequence and gene knockout data now available for Acinetobacter spp., highlighting those aspects of essential systems that are most suitable as drug targets. Acinetobacter spp. show several key differences from other pathogenic gammaproteobacteria, particularly in global stress response pathways. The involvement of these pathways in short- and long-term antibiotic survival suggests that Acinetobacter spp. cope with antibiotic-induced stress differently from other microorganisms.
Collapse
|
33
|
Song Y, Li G, Thornton SF, Thompson IP, Banwart SA, Lerner DN, Huang WE. Optimization of bacterial whole cell bioreporters for toxicity assay of environmental samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:7931-7938. [PMID: 19921916 DOI: 10.1021/es901349r] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In a study to optimize bacterial whole cell biosensors (bioreporters) for the detection of environmental contaminants, we constructed a toxicity sensing strain Acinetobacter baylyi ADP1_recA_lux. The ADP1_recA_lux is a chromosomally based bioreporter which makes the sensing system stable and negates the need for antibiotics to maintain the trait. The AOP1_recA_lux is activated to express bioluminescence when it is exposed to DNA damaging toxicants. Since the ADP1_recA_lux constantly expresses a baseline level of bioluminescence, false negative results are avoided. The host strain, A. baylyi ADP1, is an ideal model strain typical of water and soil bacteria occurring in the natural environment, and it is more robust than E. coli in terms of viability, maintenance, and storage. The expression of reporter genes - luxCDABE cloned from Photorhabdus luminescens - is robust in a broad range of temperature (10-40 degrees C). The ADP1_recA_lux was used to detect a variety of toxic or potentially toxic compounds including mitomycin C (MMC), methyl methanesulfonate, ethidium bromide, H2O2, toluene, single-wall nanocarbon tubes (SWNCT), nano Au colloids (20 nm), pyrene, beno[a]pyrene, and UV light. These exposures revealed that the ADP1_recA_lux was able to detect both genotoxicity and cytoxicity, qualitatively and quantitatively. The optimal induction time of the ADP1_recA_lux bioreporter was 3 h, and the detection limits for MMC and benezo[a]pyrene were 1.5 nM and 0.4 nM, respectively. The ADP1_recA_lux was also used to detect toxicity of groundwater contaminated by a mixture of phenolic compounds, and the bioreporter toxicity detection was in a good agreement with chemical analysis. The optimized whole cell bioreporter ADP1_recA_lux could be valuable in providing a simple, rapid, stable, quantitative, robust, and costly efficient approach for the detection of toxicity in environmental samples.
Collapse
Affiliation(s)
- Yizhi Song
- Department of Environmental Science and Engineering, Tsinghua University, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
A mutant derived from Acinetobacter baylyi ADP1 was isolated from a screen for genes involved in the response to DNA damage. This derivative has an insertion in the mpl gene which encodes a peptidoglycan-recycling protein. We demonstrate that the insertion renders cells sensitive to mitomycin C and to UV.
Collapse
|
35
|
van der Veen S, Hain T, Wouters JA, Hossain H, de Vos WM, Abee T, Chakraborty T, Wells-Bennik MHJ. The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. Microbiology (Reading) 2007; 153:3593-3607. [PMID: 17906156 DOI: 10.1099/mic.0.2007/006361-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The food-borne pathogen Listeria monocytogenes has the ability to survive extreme environmental conditions due to an extensive interacting network of stress responses. It is able to grow and survive at relatively high temperatures in comparison with other non-sporulating food-borne pathogens. To investigate the heat-shock response of L. monocytogenes, whole-genome expression profiles of cells that were grown at 37 degrees C and exposed to 48 degrees C were examined using DNA microarrays. Transcription levels were measured over a 40 min period after exposure of the culture to 48 degrees C and compared with those of unexposed cultures at 37 degrees C. After 3 min, 25 % of all genes were differentially expressed, while after 40 min only 2 % of all genes showed differential expression, indicative of the transient nature of the heat-shock response. The global transcriptional response was validated by analysing the expression of a set of 13 genes by quantitative PCR. Genes previously identified as part of the class I and class III heat-shock response and the class II stress response showed induction at one or more of the time points investigated. This is believed to be the first study to report that several heat-shock-induced genes are part of the SOS response in L. monocytogenes. Furthermore, numerous differentially expressed genes that have roles in the cell division machinery or cell wall synthesis were down-regulated. This expression pattern is in line with the observation that heat shock results in cell elongation and prevention of cell division.
Collapse
Affiliation(s)
- Stijn van der Veen
- Laboratory of Food Microbiology, Wageningen University and Research Centre, Bomenweg 2, 6703 HD Wageningen, The Netherlands
- Wageningen Centre for Food Sciences (WCFS), Diedenweg 20, 6703 GW Wageningen, The Netherlands
- Division of Health and Safety, NIZO Food Research, Kernhemseweg 2, 6718 ZB Ede, The Netherlands
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig University, Frankfurter Strasse 107, 35392 Giessen, Germany
| | - Jeroen A Wouters
- Division of Health and Safety, NIZO Food Research, Kernhemseweg 2, 6718 ZB Ede, The Netherlands
| | - Hamid Hossain
- Institute of Medical Microbiology, Justus-Liebig University, Frankfurter Strasse 107, 35392 Giessen, Germany
| | - Willem M de Vos
- Wageningen Centre for Food Sciences (WCFS), Diedenweg 20, 6703 GW Wageningen, The Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University and Research Centre, Bomenweg 2, 6703 HD Wageningen, The Netherlands
- Wageningen Centre for Food Sciences (WCFS), Diedenweg 20, 6703 GW Wageningen, The Netherlands
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University, Frankfurter Strasse 107, 35392 Giessen, Germany
| | - Marjon H J Wells-Bennik
- Division of Health and Safety, NIZO Food Research, Kernhemseweg 2, 6718 ZB Ede, The Netherlands
- Wageningen Centre for Food Sciences (WCFS), Diedenweg 20, 6703 GW Wageningen, The Netherlands
| |
Collapse
|
36
|
Dowd SE. Escherichia coliO157:H7 gene expression in the presence of catecholamine norepinephrine. FEMS Microbiol Lett 2007; 273:214-23. [PMID: 17573936 DOI: 10.1111/j.1574-6968.2007.00800.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Various forms of host stresses (e.g. physiological, psychological) are thought to influence susceptibility to pathogenic microorganisms. Catecholamines such as norepinephrine are released into the GI environment during acute stress and may influence the infective process of bacterial pathogens associated with the GI tract. To examine the effects of norepinephrine on expression of virulence factors in Escherichia coli O157:H7, the clinical-type isolate EDL933 (ATCC 43895) was grown in serum-Standard American Petroleum Institute media in the presence or absence of norepinephrine. After 5 h of exposure to norepinephrine, treatment and control cultures (not exposed to norepinephrine) were harvested, their RNA isolated, and gene expression evaluated. There was a dramatic increase in the expression of virulence factor transcripts including stx1, stx2, and eae. Also induced were transcripts involved in iron metabolism. Conversely, there was comparative repression of iron acquisition and phage shock protein-related transcripts in the presence of norepinephrine. Novel observations from these data suggested that exposure to norepinephrine induced glutamate decarboxylase acid resistance as well as an SOS response in E. coli O157:H7. The results corroborate many of the previous findings detailed in the literature and provide new observations that could expand the scope of microbial endocrinology.
Collapse
Affiliation(s)
- Scot E Dowd
- United States Department of Agriculture, Agriculture Research Service, Livestock Issues Research Unit, Lubbock, TX 79403, USA.
| |
Collapse
|
37
|
Bacher JM, Metzgar D, de Crécy-Lagard V. Rapid evolution of diminished transformability in Acinetobacter baylyi. J Bacteriol 2006; 188:8534-42. [PMID: 17028281 PMCID: PMC1698229 DOI: 10.1128/jb.00846-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The reason for genetic exchange remains a crucial question in evolutionary biology. Acinetobacter baylyi strain ADP1 is a highly competent and recombinogenic bacterium. We compared the parallel evolution of wild-type and engineered noncompetent lineages of A. baylyi in the laboratory. If transformability were to result in an evolutionary benefit, it was expected that competent lineages would adapt more rapidly than noncompetent lineages. Instead, regardless of competency, lineages adapted to the same extent under several laboratory conditions. Furthermore, competent lineages repeatedly evolved a much lower level of transformability. The loss of competency may be due to a selective advantage or the irreversible transfer of loss-of-function alleles of genes required for transformation within the competent population.
Collapse
Affiliation(s)
- Jamie M Bacher
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., BCC-379, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|