1
|
Assessing Impacts of Transgenic Plants on Soil Using Functional Indicators: Twenty Years of Research and Perspectives. PLANTS 2022; 11:plants11182439. [PMID: 36145839 PMCID: PMC9503467 DOI: 10.3390/plants11182439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Assessment of the effects of transgenic plants on microbiota and soil fertility is an important part of the overall assessment of their biosafety. However, the environmental risk assessment of genetically modified plants has long been focused on the aboveground effects. In this review, we discuss the results of two decades of research on the impact of transgenic plants on the physicochemical properties of soil, its enzyme activities and microbial biomass. These indicators allow us to assess both the short-term effects and long-term effects of cultivating transgenic plants. Most studies have shown that the effect of transgenic plants on the soil is temporary and inconsistent. Moreover, many other factors, such as the site location, weather conditions, varietal differences and management system, have a greater impact on soil quality than the transgenic status of the plants. In addition to the effects of transgenic crop cultivation, the review also considers the effects of transgenic plant residues on soil processes, and discusses the future prospects for studying the impact of genetically modified plants on soil ecosystems.
Collapse
|
2
|
Dresch P, Falbesoner J, Ennemoser C, Hittorf M, Kuhnert R, Peintner U. Emerging from the ice-fungal communities are diverse and dynamic in earliest soil developmental stages of a receding glacier. Environ Microbiol 2019; 21:1864-1880. [PMID: 30888722 PMCID: PMC6849718 DOI: 10.1111/1462-2920.14598] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 11/30/2022]
Abstract
We used amplicon sequencing and isolation of fungi from in-growth mesh bags to identify active fungi in three earliest stages of soil development (SSD) at a glacier forefield (0-3, 9-14, 18-25 years after retreat of glacial ice). Soil organic matter and nutrient concentrations were extremely low, but the fungal diversity was high [220 operational taxonomic units (OTUs)/138 cultivated OTUs]. A clear successional trend was observed along SSDs, and species richness increased with time. Distinct changes in fungal community composition occurred with the advent of vascular plants. Fungal communities of recently deglaciated soil are most distinctive and rather similar to communities typical for cryoconite or ice. This indicates melting water as an important inoculum for native soil. Moreover, distinct seasonal differences were detected in fungal communities. Some fungal taxa, especially of the class Microbotryomycetes, showed a clear preference for winter and early SSD. Our results provide insight into new facets regarding the ecology of fungal taxa, for example, by showing that many fungal taxa might have an alternative, saprobial lifestyle in snow-covered, as supposed for a few biotrophic plant pathogens of class Pucciniomycetes. The isolated fungi include a high proportion of unknown species, which can be formally described and used for experimental approaches.
Collapse
Affiliation(s)
- Philipp Dresch
- Institute of MicrobiologyUniversity InnsbruckInnsbruckAustria
| | | | | | | | - Regina Kuhnert
- Institute of MicrobiologyUniversity InnsbruckInnsbruckAustria
| | - Ursula Peintner
- Institute of MicrobiologyUniversity InnsbruckInnsbruckAustria
| |
Collapse
|
3
|
Gonzalez E, Pitre FE, Pagé AP, Marleau J, Guidi Nissim W, St-Arnaud M, Labrecque M, Joly S, Yergeau E, Brereton NJB. Trees, fungi and bacteria: tripartite metatranscriptomics of a root microbiome responding to soil contamination. MICROBIOME 2018; 6:53. [PMID: 29562928 PMCID: PMC5863371 DOI: 10.1186/s40168-018-0432-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/02/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND One method for rejuvenating land polluted with anthropogenic contaminants is through phytoremediation, the reclamation of land through the cultivation of specific crops. The capacity for phytoremediation crops, such as Salix spp., to tolerate and even flourish in contaminated soils relies on a highly complex and predominantly cryptic interacting community of microbial life. METHODS Here, Illumina HiSeq 2500 sequencing and de novo transcriptome assembly were used to observe gene expression in washed Salix purpurea cv. 'Fish Creek' roots from trees pot grown in petroleum hydrocarbon-contaminated or non-contaminated soil. All 189,849 assembled contigs were annotated without a priori assumption as to sequence origin and differential expression was assessed. RESULTS The 839 contigs differentially expressed (DE) and annotated from S. purpurea revealed substantial increases in transcripts encoding abiotic stress response equipment, such as glutathione S-transferases, in roots of contaminated trees as well as the hallmarks of fungal interaction, such as SWEET2 (Sugars Will Eventually Be Exported Transporter). A total of 8252 DE transcripts were fungal in origin, with contamination conditions resulting in a community shift from Ascomycota to Basidiomycota genera. In response to contamination, 1745 Basidiomycota transcripts increased in abundance (the majority uniquely expressed in contaminated soil) including major monosaccharide transporter MST1, primary cell wall and lamella CAZy enzymes, and an ectomycorrhiza-upregulated exo-β-1,3-glucanase (GH5). Additionally, 639 DE polycistronic transcripts from an uncharacterised Enterobacteriaceae species were uniformly in higher abundance in contamination conditions and comprised a wide spectrum of genes cryptic under laboratory conditions but considered putatively involved in eukaryotic interaction, biofilm formation and dioxygenase hydrocarbon degradation. CONCLUSIONS Fungal gene expression, representing the majority of contigs assembled, suggests out-competition of white rot Ascomycota genera (dominated by Pyronema), a sometimes ectomycorrhizal (ECM) Ascomycota (Tuber) and ECM Basidiomycota (Hebeloma) by a poorly characterised putative ECM Basidiomycota due to contamination. Root and fungal expression involved transcripts encoding carbohydrate/amino acid (C/N) dialogue whereas bacterial gene expression included the apparatus necessary for biofilm interaction and direct reduction of contamination stress, a potential bacterial currency for a role in tripartite mutualism. Unmistakable within the metatranscriptome is the degree to which the landscape of rhizospheric biology, particularly the important but predominantly uncharacterised fungal genetics, is yet to be discovered.
Collapse
Affiliation(s)
- E Gonzalez
- Canadian Center for Computational Genomics, McGill University and Genome Quebec Innovation Center, Montréal, H3A 1A4, Canada
- Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada
| | - F E Pitre
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - A P Pagé
- Aquatic and Crop Resource Development (ACRD), National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - J Marleau
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
| | - W Guidi Nissim
- Department of Agri-food and Environmental Science, University of Florence, Viale delle Idee, Sesto Fiorentino, FI, Italy
| | - M St-Arnaud
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - M Labrecque
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - S Joly
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
- Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - E Yergeau
- Institut National de la Recherche Scientifique, Centre INRS-Institut Armand-Frappier, Laval, QC, Canada
| | - N J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada.
| |
Collapse
|
4
|
Nicolás C, Hermosa R, Rubio B, Mukherjee PK, Monte E. Trichoderma genes in plants for stress tolerance- status and prospects. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:71-8. [PMID: 25438787 DOI: 10.1016/j.plantsci.2014.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/31/2014] [Accepted: 03/01/2014] [Indexed: 05/04/2023]
Abstract
Many filamentous fungi from the genus Trichoderma are well known for their anti-microbial properties. Certain genes from Trichoderma spp. have been identified and transferred to plants for improving biotic and abiotic stress tolerance, as well for applications in bioremediation. Several Trichoderma genomes have been sequenced and many are in the pipeline, facilitating high throughput gene analysis and increasing the availability of candidate transgenes. This, coupled with improved plant transformation systems, is expected to usher in a new era in plant biotechnology where several genes from these antagonistic fungi can be transferred into plants to achieve enhanced stress tolerance, bioremediation activity, herbicide tolerance, and reduction of phytotoxins. In this review, we illustrate the major achievements made by transforming plants with Trichoderma genes as well as their possible mode of action. Moreover, examples of efficient application of genetically modified plants as biofactories to produce active Trichoderma enzymes are indicated.
Collapse
Affiliation(s)
- Carlos Nicolás
- Departamento de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, Campus de Villamayor, 37185 Salamanca, Spain
| | - Rosa Hermosa
- Departamento de Microbiología y Genética, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Farmacia, Universidad de Salamanca, C/Río Duero 12, Campus de Villamayor, 37185 Salamanca, Spain
| | - Belén Rubio
- Departamento de Microbiología y Genética, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Farmacia, Universidad de Salamanca, C/Río Duero 12, Campus de Villamayor, 37185 Salamanca, Spain
| | - Prasun K Mukherjee
- NuclearAgriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Enrique Monte
- Departamento de Microbiología y Genética, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Farmacia, Universidad de Salamanca, C/Río Duero 12, Campus de Villamayor, 37185 Salamanca, Spain
| |
Collapse
|
5
|
Adrangi S, Faramarzi MA. From bacteria to human: a journey into the world of chitinases. Biotechnol Adv 2013; 31:1786-95. [PMID: 24095741 DOI: 10.1016/j.biotechadv.2013.09.012] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 12/28/2022]
Abstract
Chitinases, the enzymes responsible for the biological degradation of chitin, are found in a wide range of organisms from bacteria to higher plants and animals. They participate in numerous physiological processes such as nutrition, parasitism, morphogenesis and immunity. Many organisms, in addition to chitinases, produce inactive chitinase-like lectins that despite lacking enzymatic activity are involved in several regulatory functions. Most known chitinases belong to families 18 and 19 of glycosyl hydrolases, however a few chitinases that belong to families 23 and 48 have also been identified in recent years. In this review, different aspects of chitinases and chi-lectins from bacteria, fungi, insects, plants and mammals are discussed.
Collapse
Affiliation(s)
- Sina Adrangi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
Chavan SB, Deshpande MV. Chitinolytic enzymes: An appraisal as a product of commercial potential. Biotechnol Prog 2013; 29:833-46. [DOI: 10.1002/btpr.1732] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/03/2013] [Indexed: 11/10/2022]
Affiliation(s)
- S. B. Chavan
- Jay Biotech; 111, Matrix, World Trade Centre, Kharadi, Pune 411014 India
| | - M. V. Deshpande
- Biochemical Sciences Division; National Chemical Laboratory; Pune 411008 India
| |
Collapse
|
7
|
Schäfer T, Hanke MV, Flachowsky H, König S, Peil A, Kaldorf M, Polle A, Buscot F. Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple. Genet Mol Biol 2012; 35:466-73. [PMID: 22888297 PMCID: PMC3389536 DOI: 10.1590/s1415-47572012000300014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 03/06/2012] [Indexed: 11/30/2022] Open
Abstract
This study investigated the impact of constitutively expressed Trichoderma atroviride genes encoding exochitinase nag70 or endochitinase ech42 in transgenic lines of the apple cultivar Pinova on the symbiosis with arbuscular mycorrhizal fungi (AMF). We compared the exo- and endochitinase activities of leaves and roots from non-transgenic Pinova and the transgenic lines T386 and T389. Local and systemic effects were examined using own-rooted trees and trees grafted onto rootstock M9. Scab susceptibility was also assessed in own-rooted and grafted trees. AMF root colonization was assessed microscopically in the roots of apple trees cultivated in pots with artificial substrate and inoculated with the AMF Glomus intraradices and Glomus mosseae. Own-rooted transgenic lines had significantly higher chitinase activities in their leaves and roots compared to non-transgenic Pinova. Both of the own-rooted transgenic lines showed significantly fewer symptoms of scab infection as well as significantly lower root colonization by AMF. Biomass production was significantly reduced in both own-rooted transgenic lines. Rootstock M9 influenced chitinase activities in the leaves of grafted scions. When grafted onto M9, the leaf chitinase activities of non-transgenic Pinova (M9/Pinova) and transgenic lines (M9/T386 and M9/T389) were not as different as when grown on their own roots. M9/T386 and M9/T389 were only temporarily less infected by scab than M9/Pinova. M9/T386 and M9/T389 did not differ significantly from M9/Pinova in their root chitinase activities, AMF root colonization and biomass.
Collapse
Affiliation(s)
- Tina Schäfer
- Department of Terrestrial Ecology, Faculty of Biological Science, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Magda-Viola Hanke
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Horticultural and Fruit Crops, Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Horticultural and Fruit Crops, Dresden, Germany
| | - Stephan König
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| | - Andreas Peil
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Horticultural and Fruit Crops, Dresden, Germany
| | - Michael Kaldorf
- Department of Terrestrial Ecology, Faculty of Biological Science, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Andrea Polle
- Department of Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August-Universität Göttingen, Göttingen, Germany
| | - François Buscot
- Department of Terrestrial Ecology, Faculty of Biological Science, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany
| |
Collapse
|
8
|
Germain H, Lachance D, Pelletier G, Fossdal CG, Solheim H, Séguin A. The expression pattern of the Picea glauca Defensin 1 promoter is maintained in Arabidopsis thaliana, indicating the conservation of signalling pathways between angiosperms and gymnosperms. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:785-95. [PMID: 22048038 PMCID: PMC3254680 DOI: 10.1093/jxb/err303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/26/2011] [Accepted: 08/30/2011] [Indexed: 05/04/2023]
Abstract
A 1149 bp genomic fragment corresponding to the 5' non-coding region of the PgD1 (Picea glauca Defensin 1) gene was cloned, characterized, and compared with all Arabidopsis thaliana defensin promoters. The cloned fragment was found to contain several motifs specific to defence or hormonal response, including a motif involved in the methyl jasmonate reponse, a fungal elicitor responsive element, and TC-rich repeat cis-acting element involved in defence and stress responsiveness. A functional analysis of the PgD1 promoter was performed using the uidA (GUS) reporter system in stably transformed Arabidopsis and white spruce plants. The PgD1 promoter was responsive to jasmonic acid (JA), to infection by fungus and to wounding. In transgenic spruce embryos, GUS staining was clearly restricted to the shoot apical meristem. In Arabidopsis, faint GUS coloration was observed in leaves and flowers and a strong blue colour was observed in guard cells and trichomes. Transgenic Arabidopsis plants expressing the PgD1::GUS construct were also infiltrated with the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000. It caused a suppression of defensin expression probably resulting from the antagonistic relationship between the pathogen-stimulated salicylic acid pathway and the jasmonic acid pathway. It is therefore concluded that the PgD1 promoter fragment cloned appears to contain most if not all the elements for proper PgD1 expression and that these elements are also recognized in Arabidopsis despite the phylogenetic and evolutionary differences that separates them.
Collapse
Affiliation(s)
- Hugo Germain
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Denis Lachance
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Gervais Pelletier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | | | - Halvor Solheim
- Norwegian Forest and Landscape Institute, P.O.Box 115, 1431 Ås, Norway
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., PO Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| |
Collapse
|
9
|
Lamarche J, Stefani FO, Séguin A, Hamelin RC. Impact of endochitinase-transformed white spruce on soil fungal communities under greenhouse conditions. FEMS Microbiol Ecol 2011; 76:199-208. [DOI: 10.1111/j.1574-6941.2011.01041.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|