1
|
Ku RH, Li LH, Liu YF, Hu EW, Lin YT, Lu HF, Yang TC. Implication of the σ E Regulon Members OmpO and σ N in the Δ ompA299-356-Mediated Decrease of Oxidative Stress Tolerance in Stenotrophomonas maltophilia. Microbiol Spectr 2023; 11:e0108023. [PMID: 37284772 PMCID: PMC10433810 DOI: 10.1128/spectrum.01080-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Outer membrane protein A (OmpA) is the most abundant porin in bacterial outer membranes. KJΔOmpA299-356, an ompA C-terminal in-frame deletion mutant of Stenotrophomonas maltophilia KJ, exhibits pleiotropic defects, including decreased tolerance to menadione (MD)-mediated oxidative stress. Here, we elucidated the underlying mechanism of the decreased MD tolerance mediated by ΔompA299-356. The transcriptomes of wild-type S. maltophilia and the KJΔOmpA299-356 mutant strain were compared, focusing on 27 genes known to be associated with oxidative stress alleviation; however, no significant differences were identified. OmpO was the most downregulated gene in KJΔOmpA299-356. KJΔOmpA299-356 complementation with the chromosomally integrated ompO gene restored MD tolerance to the wild-type level, indicating the role of OmpO in MD tolerance. To further clarify the possible regulatory circuit involved in ompA defects and ompO downregulation, σ factor expression levels were examined based on the transcriptome results. The expression levels of three σ factors were significantly different (downregulated levels of rpoN and upregulated levels of rpoP and rpoE) in KJΔOmpA299-356. Next, the involvement of the three σ factors in the ΔompA299-356-mediated decrease in MD tolerance was evaluated using mutant strains and complementation assays. rpoN downregulation and rpoE upregulation contributed to the ΔompA299-356-mediated decrease in MD tolerance. OmpA C-terminal domain loss induced an envelope stress response. Activated σE decreased rpoN and ompO expression levels, in turn decreasing swimming motility and oxidative stress tolerance. Finally, we revealed both the ΔompA299-356-rpoE-ompO regulatory circuit and rpoE-rpoN cross regulation. IMPORTANCE The cell envelope is a morphological hallmark of Gram-negative bacteria. It consists of an inner membrane, a peptidoglycan layer, and an outer membrane. OmpA, an outer membrane protein, is characterized by an N-terminal β-barrel domain that is embedded in the outer membrane and a C-terminal globular domain that is suspended in the periplasmic space and connected to the peptidoglycan layer. OmpA is crucial for the maintenance of envelope integrity. Stress resulting from the destruction of envelope integrity is sensed by extracytoplasmic function (ECF) σ factors, which induce responses to various stressors. In this study, we revealed that loss of the OmpA-peptidoglycan (PG) interaction causes peptidoglycan and envelope stress while simultaneously upregulating σP and σE expression levels. The outcomes of σP and σE activation are different and are linked to β-lactam and oxidative stress tolerance, respectively. These findings establish that outer membrane proteins (OMPs) play a critical role in envelope integrity and stress tolerance.
Collapse
Affiliation(s)
- Ren-Hsuan Ku
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fu Liu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - En-Wei Hu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Carrión O, Zhu XY, Williams BT, Wang J, Zhang XH, Todd JD. Molecular discoveries in microbial DMSP synthesis. Adv Microb Physiol 2023; 83:59-116. [PMID: 37507162 DOI: 10.1016/bs.ampbs.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Dimethylsulfoniopropionate (DMSP) is one of the Earth's most abundant organosulfur compounds because many marine algae, bacteria, corals and some plants produce it to high mM intracellular concentrations. In these organisms, DMSP acts an anti-stress molecule with purported roles to protect against salinity, temperature, oxidative stress and hydrostatic pressure, amongst many other reported functions. However, DMSP is best known for being a major precursor of the climate-active gases and signalling molecules dimethylsulfide (DMS), methanethiol (MeSH) and, potentially, methane, through microbial DMSP catabolism. DMSP catabolism has been extensively studied and the microbes, pathways and enzymes involved have largely been elucidated through the application of molecular research over the last 17 years. In contrast, the molecular biology of DMSP synthesis is a much newer field, with the first DMSP synthesis enzymes only being identified in the last 5 years. In this review, we discuss how the elucidation of key DMSP synthesis enzymes has greatly expanded our knowledge of the diversity of DMSP-producing organisms, the pathways used, and what environmental factors regulate production, as well as to inform on the physiological roles of DMSP. Importantly, the identification of key DMSP synthesis enzymes in the major groups of DMSP producers has allowed scientists to study the distribution and predict the importance of different DMSP-producing organisms to global DMSP production in diverse marine and sediment environments. Finally, we highlight key challenges for future molecular research into DMSP synthesis that need addressing to better understand the cycling of this important marine organosulfur compound, and its magnitude in the environment.
Collapse
Affiliation(s)
- Ornella Carrión
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| | - Xiao-Yu Zhu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Beth T Williams
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jinyan Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
3
|
Yan J, Guo X, Li J, Li Y, Sun H, Li A, Cao B. RpoN is required for the motility and contributes to the killing ability of Plesiomonas shigelloides. BMC Microbiol 2022; 22:299. [PMID: 36510135 PMCID: PMC9743648 DOI: 10.1186/s12866-022-02722-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND RpoN, also known as σ54, first reported in Escherichia coli, is a subunit of RNA polymerase that strictly controls the expression of different genes by identifying specific promoter elements. RpoN has an important regulatory function in carbon and nitrogen metabolism and participates in the regulation of flagellar synthesis, bacterial motility and virulence. However, little is known about the effect of RpoN in Plesiomonas shigelloides. RESULTS To identify pathways controlled by RpoN, RNA sequencing (RNA-Seq) of the WT and the rpoN deletion strain was carried out for comparison. The RNA-seq results showed that RpoN regulates ~ 13.2% of the P. shigelloides transcriptome, involves amino acid transport and metabolism, glycerophospholipid metabolism, pantothenate and CoA biosynthesis, ribosome biosynthesis, flagellar assembly and bacterial secretion system. Furthermore, we verified the results of RNA-seq using quantitative real-time reverse transcription PCR, which indicated that the absence of rpoN caused downregulation of more than half of the polar and lateral flagella genes in P. shigelloides, and the ΔrpoN mutant was also non-motile and lacked flagella. In the present study, the ability of the ΔrpoN mutant to kill E. coli MG1655 was reduced by 54.6% compared with that of the WT, which was consistent with results in RNA-seq, which showed that the type II secretion system (T2SS-2) genes and the type VI secretion system (T6SS) genes were repressed. By contrast, the expression of type III secretion system genes was largely unchanged in the ΔrpoN mutant transcriptome and the ability of the ΔrpoN mutant to infect Caco-2 cells was also not significantly different compared with the WT. CONCLUSIONS We showed that RpoN is required for the motility and contributes to the killing ability of P. shigelloides and positively regulates the T6SS and T2SS-2 genes.
Collapse
Affiliation(s)
- Junxiang Yan
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Xueqian Guo
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Jinghao Li
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Yuehua Li
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Hongmin Sun
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| | - Ang Li
- grid.216938.70000 0000 9878 7032State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353 China
| | - Boyang Cao
- grid.216938.70000 0000 9878 7032TEDA Institute of Biological Sciences and Biotechnology, Nankai University, No.23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China ,grid.216938.70000 0000 9878 7032Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, No. 23, Hongda StreetTianjin Economic and Technological Development Area, Tianjin, 300457 China
| |
Collapse
|
4
|
Al-Busaidi A, Glick BR, Yaish MW. The Effect of Date Palm Genotypes on Rhizobacterial Community Structures under Saline Environments. BIOLOGY 2022; 11:1666. [PMID: 36421380 PMCID: PMC9687558 DOI: 10.3390/biology11111666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 02/13/2025]
Abstract
Some genotypes of date palms (Phoenix dactylifera L.) are salt-tolerant; however, salinity significantly affects others. This study aimed to determine the root epiphytic bacterial contributions to the salt tolerance mechanism in the date palm and to verify if the salt-tolerant "Umsila" and the salt-susceptible "Zabad" cultivars have different bacterial communities. Therefore, the epiphytic bacterial community structures were investigated in both cultivars when grown under control and salinity conditions. The proximal soils of the roots were collected, the DNA was extracted, and a culture-independent approach using Illumina® MiSeq™ sequence analysis was carried out to identify the changes in the bacterial community structures in the soil samples due to the changes in salinity and the genotypes of the plants based on 16S rRNA gene sequencing. While salt tolerance response differences were evident between the two cultivars, the 16S rRNA gene sequencing results revealed 771 operational taxonomic units (OTUs), including 62 that were differentially accumulated in response to salinity. The ordination analysis showed significant (p = 0.001) changes among the communities in response to salinity in both cultivars. However, the results showed that the two cultivars had distinct bacterial communities when grown under controlled conditions, whereas they had a more similar bacterial community structure when grown under salinity conditions. The plant genotype does not affect the epiphyte bacterial community structure under salinity, probably because salinity affects the plant-microbe interaction similarly in both cultivars. Also, the identified rhizospheric bacteria are not directly associated with the root's physiological processes in response to salinity.
Collapse
Affiliation(s)
- Aya Al-Busaidi
- Department of Biology, College of Sciences, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mahmoud W. Yaish
- Department of Biology, College of Sciences, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman
| |
Collapse
|
5
|
Guo M, Tan S, Zhu J, Sun A, Du P, Liu X. Genes Involved in Biofilm Matrix Formation of the Food Spoiler Pseudomonas fluorescens PF07. Front Microbiol 2022; 13:881043. [PMID: 35733961 PMCID: PMC9207406 DOI: 10.3389/fmicb.2022.881043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix is essential for the biofilm formation of food spoilers. Pseudomonas fluorescens PF07 is a previous isolate from spoiled marine fish; however, the genes involved in the extracellular matrix formation of PF07 biofilms remain poorly defined. In this study, PF07 formed a wrinkled macrocolony biofilm through the high production of extracellular matrix. The genes involved in biofilm matrix formation and regulation were screened and identified by RNA-seq-dependent transcriptomic analysis and gene knock-out analysis. The macrocolony biofilms of PF07 grown for 5 days (PF07_5d) were compared with those grown for 1 day (PF07_1d). A total of 1,403 genes were significantly differentially expressed during biofilm formation. These mainly include the genes related to biofilm matrix proteins, polysaccharides, rhamnolipids, secretion system, biofilm regulation, and metabolism. Among them, functional amyloid genes fapABCDE were highly upregulated in the mature biofilm, and the operon fapA-E had a –24/–12 promoter dependent on the sigma factor RpoN. Moreover, the RNA-seq analyses of the rpoN mutant, compared with PF07, revealed 159 genes were differentially expressed in the macrocolony biofilms, and fapA-E genes were positively regulated by RpoN. In addition, the deletion mutants of fapC, rpoN, and brfA (a novel gene coding for an RpoN-dependent transcriptional regulator) were defective in forming mature macrocolony biofilms, solid surface-associated (SSA) biofilms, and pellicles, and they showed significantly reduced biofilm matrices. The fap genes were significantly downregulated in ΔbrfA, as in ΔrpoN. These findings suggest that the functional amyloid Fap is the main component of PF07 biofilm matrices, and RpoN may directly regulate the transcription of fap genes, in conjunction with BrfA. These genes may serve as potential molecular targets for screening new anti-biofilm agents or for biofilm detection in food environments.
Collapse
Affiliation(s)
- Miao Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Siqi Tan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Aihua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Peng Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaoxiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Xiaoxiang Liu,
| |
Collapse
|
6
|
Li QC, Wang B, Zeng YH, Cai ZH, Zhou J. The Microbial Mechanisms of a Novel Photosensitive Material (Treated Rape Pollen) in Anti-Biofilm Process under Marine Environment. Int J Mol Sci 2022; 23:ijms23073837. [PMID: 35409199 PMCID: PMC8998240 DOI: 10.3390/ijms23073837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biofouling is a worldwide problem in coastal areas and affects the maritime industry primarily by attachment of fouling organisms to solid immersed surfaces. Biofilm formation by microbes is the main cause of biofouling. Currently, application of antibacterial materials is an important strategy for preventing bacterial colonization and biofilm formation. A natural three-dimensional carbon skeleton material, TRP (treated rape pollen), attracted our attention owing to its visible-light-driven photocatalytic disinfection property. Based on this, we hypothesized that TRP, which is eco-friendly, would show antifouling performance and could be used for marine antifouling. We then assessed its physiochemical characteristics, oxidant potential, and antifouling ability. The results showed that TRP had excellent photosensitivity and oxidant ability, as well as strong anti-bacterial colonization capability under light-driven conditions. Confocal laser scanning microscopy showed that TRP could disperse pre-established biofilms on stainless steel surfaces in natural seawater. The biodiversity and taxonomic composition of biofilms were significantly altered by TRP (p < 0.05). Moreover, metagenomics analysis showed that functional classes involved in the antioxidant system, environmental stress, glucose−lipid metabolism, and membrane-associated functions were changed after TRP exposure. Co-occurrence model analysis further revealed that TRP markedly increased the complexity of the biofilm microbial network under light irradiation. Taken together, these results demonstrate that TRP with light irradiation can inhibit bacterial colonization and prevent initial biofilm formation. Thus, TRP is a potential nature-based green material for marine antifouling.
Collapse
Affiliation(s)
- Qing-Chao Li
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yan-Hua Zeng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Zhong-Hua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (Q.-C.L.); (Y.-H.Z.); (Z.-H.C.)
- Correspondence:
| |
Collapse
|
7
|
Wang C, Li J, Fang W, Chen W, Zou M, Li X, Qiu Z, Xu H. Lipid degrading microbe consortium driving micro-ecological evolvement of activated sludge for cooking wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150071. [PMID: 34509855 DOI: 10.1016/j.scitotenv.2021.150071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
In this study, a lipid degrading microbe consortium (LDMC) was assembled to improve the performance of activated sludge (AS) on cooking wastewater purification. LDMC can rapidly degrade high-level oil (efficiency beyond 93.0% at 5.0 g/L) as sole carbon source under various environmental conditions (10.0-45.0 °C, pH 2.0-12.0). With LDMC inoculation, AS' water treatment performance was significantly enhanced, which removed 36.10 and 48.93% more chemical oxygen demand (COD) and ammonia nitrogen from wastewater than control. A better settling property and smaller bulking risk were found with LDMC inoculation, indicated by a lower SV30 and SVI index but a higher MLSS. By GC/MS analysis, a gradual degradation on the end of the fatty acid chain was suggested. LDMC inoculation significantly changed AS's microbial community structure, improved its stability, decreased the microbial community diversity, facilitated the enrichment of lipid degraders and functional genes related to lipid bio-degradation. Lipid degraders including Nakamurella sp. and Stenotrophomona sp., etc. played a crucial role during oil degradation. Sludge structure maintainers such as Kineosphaera sp. contributed largely to the stability of AS under exogenous stress. This study provided an efficient approach for cooking wastewater treatment along with the underlying mechanism exploration, which should give insights into oil-containing environmental remediation.
Collapse
Affiliation(s)
- Can Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| | - Jianpeng Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Weizhen Fang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Wenjing Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Meihui Zou
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Xing Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China
| | - Zhongping Qiu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| |
Collapse
|
8
|
Yu C, Yang F, Xue D, Wang X, Chen H. The Regulatory Functions of σ 54 Factor in Phytopathogenic Bacteria. Int J Mol Sci 2021; 22:ijms222312692. [PMID: 34884502 PMCID: PMC8657755 DOI: 10.3390/ijms222312692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
σ54 factor (RpoN), a type of transcriptional regulatory factor, is widely found in pathogenic bacteria. It binds to core RNA polymerase (RNAP) and regulates the transcription of many functional genes in an enhancer-binding protein (EBP)-dependent manner. σ54 has two conserved functional domains: the activator-interacting domain located at the N-terminal and the DNA-binding domain located at the C-terminal. RpoN directly binds to the highly conserved sequence, GGN10GC, at the −24/−12 position relative to the transcription start site of target genes. In general, bacteria contain one or two RpoNs but multiple EBPs. A single RpoN can bind to different EBPs in order to regulate various biological functions. Thus, the overlapping and unique regulatory pathways of two RpoNs and multiple EBP-dependent regulatory pathways form a complex regulatory network in bacteria. However, the regulatory role of RpoN and EBPs is still poorly understood in phytopathogenic bacteria, which cause economically important crop diseases and pose a serious threat to world food security. In this review, we summarize the current knowledge on the regulatory function of RpoN, including swimming motility, flagella synthesis, bacterial growth, type IV pilus (T4Ps), twitching motility, type III secretion system (T3SS), and virulence-associated phenotypes in phytopathogenic bacteria. These findings and knowledge prove the key regulatory role of RpoN in bacterial growth and pathogenesis, as well as lay the groundwork for further elucidation of the complex regulatory network of RpoN in bacteria.
Collapse
Affiliation(s)
- Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Dingrong Xue
- National Engineering Laboratory of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China;
| | - Xiuna Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
- Correspondence:
| |
Collapse
|
9
|
Das J, Kumar R, Yadav SK, Jha G. The alternative sigma factors, rpoN1 and rpoN2 are required for mycophagous activity of Burkholderia gladioli strain NGJ1. Environ Microbiol 2021; 24:2781-2796. [PMID: 34766435 DOI: 10.1111/1462-2920.15836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
Bacteria utilize RpoN, an alternative sigma factor (σ54) to grow in diverse habitats, including nitrogen-limiting conditions. Here, we report that a rice-associated mycophagous bacterium Burkholderia gladioli strain NGJ1 encodes two paralogues of rpoN viz. rpoN1 and rpoN2. Both of them are upregulated during 24 h of mycophagous interaction with Rhizoctonia solani, a polyphagous fungal pathogen. Disruption of either one of rpoNs renders the mutant NGJ1 bacterium defective in mycophagy, whereas ectopic expression of respective rpoN genes restores mycophagy in the complementing strains. NGJ1 requires rpoN1 and rpoN2 for efficient biocontrol to prevent R. solani to establish disease in rice and tomato. Further, we have identified 17 genes having RpoN regulatory motif in NGJ1, majority of them encode potential type III secretion system (T3SS) effectors, nitrogen assimilation, and cellular transport-related functions. Several of these RpoN regulated genes as well as certain previously reported T3SS apparatus (hrcC and hrcN) and effector (Bg_9562 and endo-β-1,3-glucanase) encoding genes are upregulated in NGJ1 but not in ΔrpoN1 or ΔrpoN2 mutant bacterium, during mycophagous interaction with R. solani. This highlights that RpoN1 and RpoN2 modulate T3SS, nitrogen assimilation as well as cellular transport systems in NGJ1 and thereby promote bacterial mycophagy.
Collapse
Affiliation(s)
- Joyati Das
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Rahul Kumar
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sunil Kumar Yadav
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Gopaljee Jha
- Plant Microbe Interactions Laboratory, National Institute of Plant Genome Research, New Delhi, 110067, India
| |
Collapse
|
10
|
Liu X, Ye Y, Zhu Y, Wang L, Yuan L, Zhu J, Sun A. Involvement of RpoN in Regulating Motility, Biofilm, Resistance, and Spoilage Potential of Pseudomonas fluorescens. Front Microbiol 2021; 12:641844. [PMID: 34135871 PMCID: PMC8202526 DOI: 10.3389/fmicb.2021.641844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas fluorescens is a typical spoiler of proteinaceous foods, and it is characterized by high spoilage activity. The sigma factor RpoN is a well-known regulator controlling nitrogen assimilation and virulence in many pathogens. However, its exact role in regulating the spoilage caused by P. fluorescens is unknown. Here, an in-frame deletion mutation of rpoN was constructed to investigate its global regulatory function through phenotypic and RNA-seq analysis. The results of phenotypic assays showed that the rpoN mutant was deficient in swimming motility, biofilm formation, and resistance to heat and nine antibiotics, while the mutant increased the resistance to H2O2. Moreover, the rpoN mutant markedly reduced extracellular protease and total volatile basic nitrogen (TVB-N) production in sterilized fish juice at 4°C; meanwhile, the juice with the rpoN mutant showed significantly higher sensory scores than that with the wild-type strain. To identify RpoN-controlled genes, RNA-seq-dependent transcriptomics analysis of the wild-type strain and the rpoN mutant was performed. A total of 1224 genes were significantly downregulated, and 474 genes were significantly upregulated by at least two folds at the RNA level in the rpoN mutant compared with the wild-type strain, revealing the involvement of RpoN in several cellular processes, mainly flagellar mobility, adhesion, polysaccharide metabolism, resistance, and amino acid transport and metabolism; this may contribute to the swimming motility, biofilm formation, stress and antibiotic resistance, and spoilage activities of P. fluorescens. Our results provide insights into the regulatory role of RpoN of P. fluorescens in food spoilage, which can be valuable to ensure food quality and safety.
Collapse
Affiliation(s)
- Xiaoxiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yifan Ye
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yin Zhu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Lifang Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Leyang Yuan
- Zhejiang Museum of Natural History, Hangzhou, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Aihua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
11
|
Yu C, Nguyen DP, Yang F, Shi J, Wei Y, Tian F, Zhao X, Chen H. Transcriptome Analysis Revealed Overlapping and Special Regulatory Roles of RpoN1 and RpoN2 in Motility, Virulence, and Growth of Xanthomonas oryzae pv. oryzae. Front Microbiol 2021; 12:653354. [PMID: 33746934 PMCID: PMC7970052 DOI: 10.3389/fmicb.2021.653354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
σ54 factor (RpoN) plays a crucial role in bacterial motility, virulence, growth, and other biological functions. In our previous study, two homologous σ54 factors, RpoN1 and RpoN2, were identified in Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial leaf blight in rice. However, their functional roles, i.e., whether they exert combined or independent effects, remain unknown. In the current study, rpoN1 or rpoN2 deletion in Xoo significantly disrupted bacterial swimming motility, flagellar assembly, and virulence. Transcriptome analysis led to the identification of 127 overlapping differentially expressed genes (DEGs) regulated by both RpoN1 and RpoN2. Furthermore, GO and KEGG classification demonstrated that these DEGs were highly enriched in flagellar assembly, chemotaxis, and c-di-GMP pathways. Interestingly, ropN1 deletion decreased ropN2 transcription, while rpoN2 deletion did not affect ropN1 transcription. No interaction between the rpoN2 promoter and RpoN1 was detected, suggesting that RpoN1 indirectly regulates rpoN2 transcription. In addition, RpoN1-regulated DEGs were specially enriched in ribosome, carbon, and nitrogen metabolism pathways. Besides, bacterial growth was remarkably repressed in ΔrpoN1 but not in ΔrpoN2. Taken together, this study demonstrates the overlapping and unique regulatory roles of RpoN1 and RpoN2 in motility, virulence, growth and provides new insights into the regulatory mechanism of σ54 factors in Xoo.
Collapse
Affiliation(s)
- Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Doan-Phuong Nguyen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiming Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuxiang Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Feng L, Bi W, Chen S, Zhu J, Liu X. Regulatory function of sigma factors RpoS/RpoN in adaptation and spoilage potential of Shewanella baltica. Food Microbiol 2021; 97:103755. [PMID: 33653528 DOI: 10.1016/j.fm.2021.103755] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/10/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Shewanella baltica is a typical specific spoilage organism causing the deterioration of seafood, but the exact regulation of its adaptive and competitive dominance in diverse environments remains undefined. In this study, the regulatory function of two sigma factors, RpoS and RpoN, in environmental adaptation and spoilage potential were evaluated in S. baltica SB02. Two in-frame deletion mutants, ΔrpoS and ΔrpoN, were constructed to explore the roles in their motility, biofilm formation, stress response and spoilage potential, as well as antibiotics by comparing the phenotypes and transcription with those of wild type (WT) strain. Compared with WT strain, the ΔrpoN showed the slower growth and weaker motility due to loss of flagella, while swimming of the ΔrpoS was increased. Deletion of rpoN significantly decreased biofilm biomass, and production of exopolysaccharide and pellicle, resulting in a thinner biofilm structure, while ΔrpoS formed the looser aggregation in biofilm. Resistance of S. baltica to NaCl, heat, ethanol and three oxidizing disinfectants apparently declined in the two mutants compared to WT strain. The ΔrpoN mutant decreased sensory score, accumulation of trimethylamine, putrescine and TVB-N and protease activity, while a weaker effect was observed in ΔrpoS. The two mutants had significantly higher susceptibility to antibiotics than WT strain, especially ΔrpoN. Deficiency of rpoN and rpoS significantly repressed the activities of two diketopiperazines related to quorum sensing (QS). Furthermore, transcriptome analyses revealed that RpoN was involved in the regulation of the expression of 143 genes, mostly including flagellar assembly, nitrogen and amino acid metabolism, ABC transporters. Transcript changes of seven differentially expressed coding sequences were in agreement with the phenotypes observed in the two mutants. Our findings reveal that RpoN, as a central regulator, controls the fitness and bacterial spoilage in S. baltica, while RpoS is a key regulatory factor of stress response. Characterization of these two sigma regulons in Shewanella has expanded current understanding of a possible co-regulatory mechanism with QS for adaptation and spoilage potential.
Collapse
Affiliation(s)
- Lifang Feng
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, 310018, China
| | - Weiwei Bi
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, 310018, China
| | - Shuai Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, 310018, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, 310018, China.
| | - Xiaoxiang Liu
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang Province, 310053, China
| |
Collapse
|
13
|
Kim SH, Chelliah R, Ramakrishnan SR, Perumal AS, Bang WS, Rubab M, Daliri EBM, Barathikannan K, Elahi F, Park E, Jo HY, Hwang SB, Oh DH. Review on Stress Tolerance in Campylobacter jejuni. Front Cell Infect Microbiol 2021; 10:596570. [PMID: 33614524 PMCID: PMC7890702 DOI: 10.3389/fcimb.2020.596570] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
Campylobacter spp. are the leading global cause of bacterial colon infections in humans. Enteropathogens are subjected to several stress conditions in the host colon, food complexes, and the environment. Species of the genus Campylobacter, in collective interactions with certain enteropathogens, can manage and survive such stress conditions. The stress-adaptation mechanisms of Campylobacter spp. diverge from other enteropathogenic bacteria, such as Escherichia coli, Salmonella enterica serovar Typhi, S. enterica ser. Paratyphi, S. enterica ser. Typhimurium, and species of the genera Klebsiella and Shigella. This review summarizes the different mechanisms of various stress-adaptive factors on the basis of species diversity in Campylobacter, including their response to various stress conditions that enhance their ability to survive on different types of food and in adverse environmental conditions. Understanding how these stress adaptation mechanisms in Campylobacter, and other enteric bacteria, are used to overcome various challenging environments facilitates the fight against resistance mechanisms in Campylobacter spp., and aids the development of novel therapeutics to control Campylobacter in both veterinary and human populations.
Collapse
Affiliation(s)
- Se-Hun Kim
- Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Cheongju, South Korea.,College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Sudha Rani Ramakrishnan
- School of Food Science, Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, South Korea
| | | | - Woo-Suk Bang
- Department of Food and Nutrition, College of Human Ecology and Kinesiology, Yeungnam University, Gyeongsan, South Korea
| | - Momna Rubab
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Eric Banan-Mwine Daliri
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Kaliyan Barathikannan
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Fazle Elahi
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Eunji Park
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hyeon Yeong Jo
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Su-Bin Hwang
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Deog Hwan Oh
- College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
14
|
Zaynab M, Chen H, Chen Y, Ouyang L, Yang X, Hu Z, Li S. Signs of biofilm formation in the genome of Labrenzia sp . PO1. Saudi J Biol Sci 2020; 28:1900-1912. [PMID: 33732076 PMCID: PMC7938128 DOI: 10.1016/j.sjbs.2020.12.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Labrenzia sp. are important components of marine ecology which play a key role in biochemical cycling. In this study, we isolated the Labrenzia sp. PO1 strain capable of forming biofilm, from the A. sanguinea culture. Growth analysis revealed that strain reached a logarithmic growth period at 24 hours. The whole genome of 6.21813 Mb of Labrezia sp. PO1 was sequenced and assembled into 15 scaffolds and 16 contigs, each with minimum and maximum lengths of 644 and 1,744,114 Mb. A total of 3,566 genes were classified into five pathways and 31 pathway groups. Of them, 521 genes encoded biofilm formation proteins, quorum sensing (QS) proteins, and ABC transporters. Gene Ontology annotation identified 49,272 genes that were involved in biological processes (33,425 genes), cellular components (7,031genes), and molecular function (7,816 genes). We recognised genes involved in bacterial quorum sensing, attachment, motility, and chemotaxis to investigate bacteria's ability to interact with the diatom phycosphere. As revealed by KEGG pathway analysis, several genes encoding ABC transporters exhibited a significant role during the growth and development of Labrenzia sp. PO1, indicating that ABC transporters may be involved in signalling pathways that enhance growth and biofilm formation.
Collapse
Affiliation(s)
- Madiha Zaynab
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Huirong Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Yufei Chen
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Liao Ouyang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Xuewei Yang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518071, China
| |
Collapse
|
15
|
|
16
|
Li K, Wu G, Liao Y, Zeng Q, Wang H, Liu F. RpoN1 and RpoN2 play different regulatory roles in virulence traits, flagellar biosynthesis, and basal metabolism in Xanthomonas campestris. MOLECULAR PLANT PATHOLOGY 2020; 21:907-922. [PMID: 32281725 PMCID: PMC7280030 DOI: 10.1111/mpp.12938] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 05/08/2023]
Abstract
Homologous regulatory factors are widely present in bacteria, but whether homologous regulators synergistically or differentially regulate different biological functions remains mostly unknown. Here, we report that the homologous regulators RpoN1 and RpoN2 of the plant pathogen Xanthomonas campestris pv. campestris (Xcc) play different regulatory roles with respect to virulence traits, flagellar biosynthesis, and basal metabolism. RpoN2 directly regulated Xcc fliC and fliQ to modulate flagellar synthesis in X. campestris, thus affecting the swimming motility of X. campestris. Mutation of rpoN2 resulted in reduced production of biofilms and extracellular polysaccharides in Xcc. These defects may together cause reduced virulence of the rpoN2 mutant against the host plant. Moreover, we demonstrated that RpoN1 could regulate branched-chain fatty acid production and modulate the synthesis of diffusible signal factor family quorum sensing signals. Although RpoN1 and RpoN2 are homologues, the regulatory roles and biological functions of these proteins were not interchangeable. Overall, our report provides new insights into the two different molecular roles that form the basis for the transcriptional specialization of RpoN homologues.
Collapse
Affiliation(s)
- Kaihuai Li
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Guichun Wu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yuling Liao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural OrganismsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Quan Zeng
- Department of Plant Pathology and EcologyThe Connecticut Agricultural Experiment StationNew HavenCTUSA
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural OrganismsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Fengquan Liu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| |
Collapse
|