1
|
Kuzmanović N, Wolf J, Will SE, Smalla K, diCenzo GC, Neumann-Schaal M. Diversity and Evolutionary History of Ti Plasmids of "tumorigenes" Clade of Rhizobium spp. and Their Differentiation from Other Ti and Ri Plasmids. Genome Biol Evol 2023; 15:evad133. [PMID: 37463407 PMCID: PMC10410297 DOI: 10.1093/gbe/evad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Agrobacteria are important plant pathogens responsible for crown/cane gall and hairy root diseases. Crown/cane gall disease is associated with strains carrying tumor-inducing (Ti) plasmids, while hairy root disease is caused by strains harboring root-inducing (Ri) plasmids. In this study, we analyzed the sequences of Ti plasmids of the novel "tumorigenes" clade of the family Rhizobiaceae ("tumorigenes" Ti plasmids), which includes two species, Rhizobium tumorigenes and Rhizobium rhododendri. The sequences of reference Ti/Ri plasmids were also included, which was followed by a comparative analysis of their backbone and accessory regions. The "tumorigenes" Ti plasmids have novel opine signatures compared with other Ti/Ri plasmids characterized so far. The first group exemplified by pTi1078 is associated with production of agrocinopine, nopaline, and ridéopine in plant tumors, while the second group comprising pTi6.2 is responsible for synthesis of leucinopine. Bioinformatic and chemical analyses, including opine utilization assays, indicated that leucinopine associated with pTi6.2 most likely has D,L stereochemistry, unlike the L,L-leucinopine produced in tumors induced by reference strains Chry5 and Bo542. Most of the "tumorigenes" Ti plasmids have conjugative transfer system genes that are unusual for Ti plasmids, composed of avhD4/avhB and traA/mobC/parA regions. Next, our results suggested that "tumorigenes" Ti plasmids have a common origin, but they diverged through large-scale recombination events, through recombination with single or multiple distinct Ti/Ri plasmids. Lastly, we showed that Ti/Ri plasmids could be differentiated based on pairwise Mash or average amino-acid identity distance clustering, and we supply a script to facilitate application of the former approach by other researchers.
Collapse
Affiliation(s)
- Nemanja Kuzmanović
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Urban Green, Braunschweig, Germany
| | - Jacqueline Wolf
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Eva Will
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - George C diCenzo
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
2
|
Du Y, Zou J, Yin Z, Chen T. Pan-Chromosome and Comparative Analysis of Agrobacterium fabrum Reveal Important Traits Concerning the Genetic Diversity, Evolutionary Dynamics, and Niche Adaptation of the Species. Microbiol Spectr 2023; 11:e0292422. [PMID: 36853054 PMCID: PMC10100860 DOI: 10.1128/spectrum.02924-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Agrobacterium fabrum has been critical for the development of plant genetic engineering and agricultural biotechnology due to its ability to transform eukaryotic cells. However, the gene composition, evolutionary dynamics, and niche adaptation of this species is still unknown. Therefore, we established a comparative genomic analysis based on a pan-chromosome data set to evaluate the genetic diversity of A. fabrum. Here, 25 A. fabrum genomes were selected for analysis by core genome phylogeny combined with the average nucleotide identity (ANI), amino acid identity (AAI), and in silico DNA-DNA hybridization (DDH) values. An open pan-genome of A. fabrum exhibits genetic diversity with variable accessorial genes as evidenced by a consensus pan-genome of 12 representative genomes. The genomic plasticity of A. fabrum is apparent in its putative sequences for mobile genetic elements (MGEs), limited horizontal gene transfer barriers, and potentially horizontally transferred genes. The evolutionary constraints and functional enrichment in the pan-chromosome were measured by the Clusters of Orthologous Groups (COG) categories using eggNOG-mapper software, and the nonsynonymous/synonymous rate ratio (dN/dS) was determined using HYPHY software. Comparative analysis revealed significant differences in the functional enrichment and the degree of purifying selection between the core genome and non-core genome. We demonstrate that the core gene families undergo stronger purifying selection but have a significant bias to contain one or more positively selected sites. Furthermore, although they shared similar genetic diversity, we observed significant differences between chromosome 1 (Chr I) and the chromid in their functional features and evolutionary constraints. We demonstrate that putative genetic elements responsible for plant infection, ecological adaptation, and speciation represent the core genome, highlighting their importance in the adaptation of A. fabrum to plant-related niches. Our pan-chromosome analysis of A. fabrum provides comprehensive insights into the genetic properties, evolutionary patterns, and niche adaptation of the species. IMPORTANCE Agrobacterium spp. live in diverse plant-associated niches such as soil, the rhizosphere, and vegetation, which are challenged by multiple stressors such as diverse energy sources, plant defenses, and microbial competition. They have evolved the ability to utilize diverse resources, escape plant defenses, and defeat competitors. However, the underlying genetic diversity and evolutionary dynamics of Agrobacterium spp. remain unexplored. We examined the phylogeny and pan-genome of A. fabrum to define intraspecies evolutionary relationships. Our results indicate an open pan-genome and numerous MGEs and horizontally transferred genes among A. fabrum genomes, reflecting the flexibility of the chromosomes and the potential for genetic exchange. Furthermore, we observed significant differences in the functional features and evolutionary constraints between the core and accessory genomes and between Chr I and the chromid, respectively.
Collapse
Affiliation(s)
- Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jinrong Zou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Zhiqiu Yin
- Clinical Laboratory Department, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Rajkumari J, Katiyar P, Dheeman S, Pandey P, Maheshwari DK. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol 2022; 38:206. [PMID: 36008736 DOI: 10.1007/s11274-022-03370-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Rhizobia are a diazotrophic group of bacteria that are usually isolated form the nodules in roots, stem of leguminous plants and are able to form nodules in the host plant owing to the presence of symbiotic genes. The rhizobial community is highly diverse, and therefore, the taxonomy and genera-wise classification of rhizobia has been constantly changing since the last three decades. This is mainly due to technical advancements, and shifts in definitions, resulting in a changing paradigm of rhizobia taxonomy. Initially, the taxonomic definitions at the species and sub species level were based on phylogenetic analysis of 16S rRNA sequence, followed by polyphasic approach to have phenotypic, biochemical, and genetic analysis including multilocus sequence analysis. Rhizobia mainly belonging to α- and β-proteobacteria, and recently new additions from γ-proteobacteria had been classified. Nowadays rhizobial taxonomy has been replaced by genome-based taxonomy that allows gaining more insights of genomic characteristics. These omics-technologies provide genome specific information that considers nodulation and symbiotic genes, along with molecular markers as taxonomic traits. Taxonomy based on complete genome sequence (genotaxonomy), average nucleotide identity, is now being considered as primary approach, resulting in an ongoing paradigm shift in rhizobial taxonomy. Also, pairwise whole-genome comparisons, phylogenomic analyses offer correlations between DNA and DNA re-association values that have delineated biologically important species. This review elaborates the present classification and taxonomy of rhizobia, vis-a-vis development of technical advancements, parameters and controversies associated with it, and describe the updated information on evolutionary lineages of rhizobia.
Collapse
Affiliation(s)
- Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India
| | - Prashant Katiyar
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India
| | - Shrivardhan Dheeman
- Department of Microbiology, Sardar Bhagwan Singh University, Dehra Dun, Uttarakhand, 248161, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, 788011, India.
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar, 249-404, India.
| |
Collapse
|
4
|
Characterization of the Agrobacterium octopine-cucumopine catabolic plasmid pAtAg67. Plasmid 2022; 121:102629. [DOI: 10.1016/j.plasmid.2022.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/06/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022]
|
5
|
Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. PLANTS (BASEL, SWITZERLAND) 2021; 11:51. [PMID: 35009056 PMCID: PMC8747350 DOI: 10.3390/plants11010051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/27/2023]
Abstract
CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function. In this review, we outline the current state of the art reached by the combination of these approaches over seven years. Additionally, we discuss the origins of different Agrobacterium rhizogenes strains that are widely used for hairy root transformation; the components of CRISPR/Cas vectors, such as the promoters that drive Cas or gRNA expression, the types of Cas nuclease, and selectable and screenable markers; and the application of CRISPR/Cas genome editing in hairy roots. The modification of the already known vector pKSE401 with the addition of the rice translational enhancer OsMac3 and the gene encoding the fluorescent protein DsRed1 is also described.
Collapse
Affiliation(s)
- Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| |
Collapse
|
6
|
Insight in the quorum sensing-driven lifestyle of the non-pathogenic Agrobacterium tumefaciens 6N2 and the interactions with the yeast Meyerozyma guilliermondii. Genomics 2021; 113:4352-4360. [PMID: 34793950 DOI: 10.1016/j.ygeno.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022]
Abstract
Agrobacterium tumefaciens is considered a prominent phytopathogen, though most isolates are nonpathogenic. Agrobacteria can inhabit plant tissues interacting with other microorganisms. Yeasts are likewise part of these communities. We analyzed the quorum sensing (QS) systems of A. tumefaciens strain 6N2, and its relevance for the interaction with the yeast Meyerozyma guilliermondii, both sugarcane endophytes. We show that strain 6N2 is nonpathogenic, produces OHC8-HSL, OHC10-HSL, OC12-HSL and OHC12-HSL as QS signals, and possesses a complex QS architecture, with one truncated, two complete systems, and three additional QS-signal receptors. A proteomic approach showed differences in QS-regulated proteins between pure (64 proteins) and dual (33 proteins) cultures. Seven proteins were consistently regulated by quorum sensing in pure and dual cultures. M. guilliermondii proteins influenced by QS activity were also evaluated. Several up- and down- regulated proteins differed depending on the bacterial QS. These results show the QS regulation in the bacteria-yeast interactions.
Collapse
|
7
|
Wu CF, Weisberg AJ, Davis EW, Chou L, Khan S, Lai EM, Kuo CH, Chang JH. Diversification of the Type VI Secretion System in Agrobacteria. mBio 2021; 12:e0192721. [PMID: 34517758 PMCID: PMC8546570 DOI: 10.1128/mbio.01927-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
The type VI secretion system (T6SS) is used by many Gram-negative bacteria to deploy toxic effectors for interbacterial competition. This system provides a competitive advantage in planta to agrobacteria, a diverse group with phytopathogenic members capable of genetically transforming plants. To inform on the ecology and evolution of agrobacteria, we revealed processes that diversify their effector gene collections. From genome sequences of diverse strains, we identified T6SS loci, functionally validated associated effector genes for toxicity, and predicted genes homologous to those that encode proteins known to interact with effectors. The gene loci were analyzed in a phylogenetic framework, and results show that strains of some species-level groups have different patterns of T6SS expression and are enriched in specific sets of T6SS loci. Findings also demonstrate that the modularity of T6SS loci and their associated genes engenders dynamicity, promoting reshuffling of entire loci, fragments therein, and domains to swap toxic effector genes across species. However, diversification is constrained by the need to maintain specific combinations of gene subtypes, congruent with observations that certain genes function together to regulate T6SS loading and activation. Data are consistent with a scenario where species can acquire unique T6SS loci that are then reshuffled across the genus in a restricted manner to generate new combinations of effector genes. IMPORTANCE The T6SS is used by several taxa of Gram-negative bacteria to secrete toxic effector proteins to attack others. Diversification of effector collections shapes bacterial interactions and impacts the health of hosts and ecosystems in which bacteria reside. We uncovered the diversity of T6SS loci across a genus of plant-associated bacteria and show that diversification is driven by the acquisition of new loci and reshuffling among species. However, linkages between specific subtypes of genes need to be maintained to ensure that proteins whose interactions are necessary to activate the T6SS remain together. Results reveal how organization of gene loci and domain structure of genes provides flexibility to diversify under the constraints imposed by the system. Findings inform on the evolution of a mechanism that influences bacterial communities.
Collapse
Affiliation(s)
- Chih-Feng Wu
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Edward W. Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
| | - Lin Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Surtaz Khan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
8
|
Wu CF, Santos MNM, Cho ST, Chang HH, Tsai YM, Smith DA, Kuo CH, Chang JH, Lai EM. Plant-Pathogenic Agrobacterium tumefaciens Strains Have Diverse Type VI Effector-Immunity Pairs and Vary in In-Planta Competitiveness. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:961-971. [PMID: 30830835 DOI: 10.1094/mpmi-01-19-0021-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The type VI secretion system (T6SS) is used by gram-negative bacteria to translocate effectors that can antagonize other bacterial cells. Models predict the variation in collections of effector and cognate immunity genes determine competitiveness and can affect the dynamics of populations and communities of bacteria. However, the outcomes of competition cannot be entirely explained by compatibility of effector-immunity (EI) pairs. Here, we characterized the diversity of T6SS loci of plant-pathogenic Agrobacterium tumefaciens and showed that factors other than EI pairs can impact interbacterial competition. All examined strains encode T6SS active in secretion and antagonism against Escherichia coli. The spectra of EI pairs as well as compositions of gene neighborhoods are diverse. Almost 30 in-planta competitions were tested between different genotypes of A. tumefaciens. Fifteen competitions between members of different species-level groups resulted in T6SS-dependent suppression in in-planta growth of prey genotypes. In contrast, ten competitions between members within species-level groups resulted in no significant effect on the growth of prey genotypes. One strain was an exceptional case and, despite encoding a functional T6SS and toxic effector protein, could not compromise the growth of the four tested prey genotypes. The data suggest T6SS-associated EI pairs can influence the competitiveness of strains of A. tumefaciens, but genetic features have a significant role on the efficacy of interbacterial antagonism.
Collapse
Affiliation(s)
- Chih-Feng Wu
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Mary Nia M Santos
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Ting Cho
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsing-Hua Chang
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Ming Tsai
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Delaney A Smith
- 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
| | - Chih-Horng Kuo
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jeff H Chang
- 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, U.S.A
- 3Center for Genome Research and Biocomputing, Oregon State University
| | - Erh-Min Lai
- 1Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
9
|
Haryono M, Cho ST, Fang MJ, Chen AP, Chou SJ, Lai EM, Kuo CH. Differentiations in Gene Content and Expression Response to Virulence Induction Between Two Agrobacterium Strains. Front Microbiol 2019; 10:1554. [PMID: 31354658 PMCID: PMC6629968 DOI: 10.3389/fmicb.2019.01554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/21/2019] [Indexed: 01/15/2023] Open
Abstract
Agrobacterium tumefaciens is important in biotechnology due to its ability to transform eukaryotic cells. Although the molecular mechanisms have been studied extensively, previous studies were focused on the model strain C58. Consequently, nearly all of the commonly used strains for biotechnology application were derived from C58 and share similar host ranges. To overcome this limitation, better understanding of the natural genetic variation could provide valuable insights. In this study, we conducted comparative analysis between C58 and 1D1609. These two strains belong to different genomospecies within the species complex and have distinct infectivity profiles. Genome comparisons revealed that each strain has >1,000 unique genes in addition to the 4,115 shared genes. Furthermore, the divergence in gene content and sequences vary among replicons. The circular chromosome is much more conserved compared to the linear chromosome. To identify the genes that may contribute to their differentiation in virulence, we compared the transcriptomes to screen for genes differentially expressed in response to the inducer acetosyringone. Based on the RNA-Seq results with three biological replicates, ∼100 differentially expressed genes were identified in each strain. Intriguingly, homologous genes with the same expression pattern account for <50% of these differentially expressed genes. This finding indicated that phenotypic variation may be partially explained by divergence in expression regulation. In summary, this study characterized the genomic and transcriptomic differences between two representative Agrobacterium strains. Moreover, the short list of differentially expressed genes are promising candidates for future characterization, which could improve our understanding of the genetic mechanisms for phenotypic divergence.
Collapse
Affiliation(s)
- Mindia Haryono
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Jane Fang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ai-Ping Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Jen Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
The Ecology of Agrobacterium vitis and Management of Crown Gall Disease in Vineyards. Curr Top Microbiol Immunol 2019; 418:15-53. [PMID: 29556824 DOI: 10.1007/82_2018_85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Agrobacterium vitis is the primary causal agent of grapevine crown gall worldwide. Symptoms of grapevine crown gall disease include tumor formation on the aerial plant parts, whereas both tumorigenic and nontumorigenic strains of A. vitis cause root necrosis. Genetic and genomic analyses indicated that A. vitis is distinguishable from the members of the Agrobacterium genus and its transfer to the genus Allorhizobium was suggested. A. vitis is genetically diverse, with respect to both chromosomal and plasmid DNA. Its pathogenicity is mainly determined by a large conjugal tumor-inducing (Ti) plasmid characterized by a mosaic structure with conserved and variable regions. Traditionally, A. vitis Ti plasmids and host strains were differentiated into octopine/cucumopine, nopaline, and vitopine groups, based on opine markers. However, tumorigenic and nontumorigenic strains of A. vitis may carry other ecologically important plasmids, such as tartrate- and opine-catabolic plasmids. A. vitis colonizes vines endophytically. It is also able to survive epiphytically on grapevine plants and is detected in soil exclusively in association with grapevine plants. Because A. vitis persists systemically in symptomless grapevine plants, it can be efficiently disseminated to distant geographical areas via international trade of propagation material. The use of healthy planting material in areas with no history of the crown gall represents the crucial measure of disease management. Moreover, biological control and production of resistant grape varieties are encouraging as future control measures.
Collapse
|
11
|
Haryono M, Tsai YM, Lin CT, Huang FC, Ye YC, Deng WL, Hwang HH, Kuo CH. Presence of an Agrobacterium-Type Tumor-Inducing Plasmid in Neorhizobium sp. NCHU2750 and the Link to Phytopathogenicity. Genome Biol Evol 2018; 10:3188-3195. [PMID: 30398651 PMCID: PMC6286910 DOI: 10.1093/gbe/evy249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 12/02/2022] Open
Abstract
The genus Agrobacterium contains a group of plant-pathogenic bacteria that have been developed into an important tool for genetic transformation of eukaryotes. To further improve this biotechnology application, a better understanding of the natural genetic variation is critical. During the process of isolation and characterization of wild-type strains, we found a novel strain (i.e., NCHU2750) that resembles Agrobacterium phenotypically but exhibits high sequence divergence in several marker genes. For more comprehensive characterization of this strain, we determined its complete genome sequence for comparative analysis and performed pathogenicity assays on plants. The results demonstrated that this strain is closely related to Neorhizobium in chromosomal organization, gene content, and molecular phylogeny. However, unlike the characterized species within Neorhizobium, which all form root nodules with legume hosts and are potentially nitrogen-fixing mutualists, NCHU2750 is a gall-forming pathogen capable of infecting plant hosts across multiple families. Intriguingly, this pathogenicity phenotype could be attributed to the presence of an Agrobacterium-type tumor-inducing plasmid in the genome of NCHU2750. These findings suggest that these different lineages within the family Rhizobiaceae are capable of transitioning between ecological niches by having novel combinations of replicons. In summary, this work expanded the genomic resources available within Rhizobiaceae and provided a strong foundation for future studies of this novel lineage. With an infectivity profile that is different from several representative Agrobacterium strains, this strain may be useful for comparative analysis to better investigate the genetic determinants of host range among these bacteria.
Collapse
Affiliation(s)
- Mindia Haryono
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ming Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chien-Ting Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Fan-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Yan-Chen Ye
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Ling Deng
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Lassalle F, Planel R, Penel S, Chapulliot D, Barbe V, Dubost A, Calteau A, Vallenet D, Mornico D, Bigot T, Guéguen L, Vial L, Muller D, Daubin V, Nesme X. Ancestral Genome Estimation Reveals the History of Ecological Diversification in Agrobacterium. Genome Biol Evol 2018; 9:3413-3431. [PMID: 29220487 PMCID: PMC5739047 DOI: 10.1093/gbe/evx255] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2017] [Indexed: 12/12/2022] Open
Abstract
Horizontal gene transfer (HGT) is considered as a major source of innovation in bacteria, and as such is expected to drive adaptation to new ecological niches. However, among the many genes acquired through HGT along the diversification history of genomes, only a fraction may have actively contributed to sustained ecological adaptation. We used a phylogenetic approach accounting for the transfer of genes (or groups of genes) to estimate the history of genomes in Agrobacterium biovar 1, a diverse group of soil and plant-dwelling bacterial species. We identified clade-specific blocks of cotransferred genes encoding coherent biochemical pathways that may have contributed to the evolutionary success of key Agrobacterium clades. This pattern of gene coevolution rejects a neutral model of transfer, in which neighboring genes would be transferred independently of their function and rather suggests purifying selection on collectively coded acquired pathways. The acquisition of these synapomorphic blocks of cofunctioning genes probably drove the ecological diversification of Agrobacterium and defined features of ancestral ecological niches, which consistently hint at a strong selective role of host plant rhizospheres.
Collapse
Affiliation(s)
- Florent Lassalle
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France.,Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Rémi Planel
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - Simon Penel
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - David Chapulliot
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| | - Valérie Barbe
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction de la Recherche Fondamentale, Institut de Biologie Francois-Jacob (IBFJ), Genoscope, Evry, France
| | - Audrey Dubost
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| | - Alexandra Calteau
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction de la Recherche Fondamentale, Institut de Biologie Francois-Jacob (IBFJ), Genoscope, Evry, France.,Laboratoire d'Analyse Bioinformatiques pour la Génomique et le Métabolisme, CNRS, UMR 8030, Evry, France.,UEVE, Université d'Evry Val d'Essonne, France
| | - David Vallenet
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction de la Recherche Fondamentale, Institut de Biologie Francois-Jacob (IBFJ), Genoscope, Evry, France.,Laboratoire d'Analyse Bioinformatiques pour la Génomique et le Métabolisme, CNRS, UMR 8030, Evry, France.,UEVE, Université d'Evry Val d'Essonne, France
| | - Damien Mornico
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Direction de la Recherche Fondamentale, Institut de Biologie Francois-Jacob (IBFJ), Genoscope, Evry, France.,Laboratoire d'Analyse Bioinformatiques pour la Génomique et le Métabolisme, CNRS, UMR 8030, Evry, France.,UEVE, Université d'Evry Val d'Essonne, France
| | - Thomas Bigot
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - Laurent Guéguen
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - Ludovic Vial
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| | - Daniel Muller
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| | - Vincent Daubin
- Biométrie et Biologie Evolutive, CNRS, UCBL, Université de Lyon, Villeurbanne, France
| | - Xavier Nesme
- Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, Villeurbanne, France
| |
Collapse
|
13
|
Abstract
Agrobacterium tumefaciens 1D1609 is a highly virulent strain isolated from a crown gall tumor of alfalfa (Medicago sativa L.). Compared to other well-characterized A. tumefaciens strains, such as C58 and Ach5, 1D1609 has a distinctive host range. Here, we report its complete genome sequence to facilitate future studies.
Collapse
|
14
|
Barton IS, Fuqua C, Platt TG. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ Microbiol 2018; 20:16-29. [PMID: 29105274 PMCID: PMC5764771 DOI: 10.1111/1462-2920.13976] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 01/09/2023]
Abstract
Many important pathogens maintain significant populations in highly disparate disease and non-disease environments. The consequences of this environmental heterogeneity in shaping the ecological and evolutionary dynamics of these facultative pathogens are incompletely understood. Agrobacterium tumefaciens, the causative agent for crown gall disease of plants has proven a productive model for many aspects of interactions between pathogens and their hosts and with other microbes. In this review, we highlight how this past work provides valuable context for the use of this system to examine how heterogeneity and transitions between disease and non-disease environments influence the ecology and evolution of facultative pathogens. We focus on several features common among facultative pathogens, such as the physiological remodelling required to colonize hosts from environmental reservoirs and the consequences of competition with host and non-host associated microbiota. In addition, we discuss how the life history of facultative pathogens likely often results in ecological tradeoffs associated with performance in disease and non-disease environments. These pathogens may therefore have different competitive dynamics in disease and non-disease environments and are subject to shifting selective pressures that can result in pathoadaptation or the within-host spread of avirulent phenotypes.
Collapse
Affiliation(s)
- Ian S. Barton
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Thomas G. Platt
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
15
|
Abstract
This chapter presents a historical overview of the development and changes in scientific approaches to classifying members of the Agrobacterium genus. We also describe the changes in the inference of evolutionary relationships among Agrobacterium biovars and Agrobacterium strains from using the 16S rRNA marker to recA genes and to the use of multilocus sequence analysis (MLSA). Further, the impacts of the genomic era enabling low cost and rapid whole genome sequencing on Agrobacterium phylogeny are reviewed with a focus on the use of new and sophisticated bioinformatics approaches to refine phylogenetic inferences. An updated genome-based phylogeny of ninety-seven Agrobacterium tumefaciens complex isolates representing ten known genomic species is presented, providing additional support to the monophyly of the Agrobacterium clade. Additional taxon sampling within Agrobacterium genomovar G3 indicates potential exceptions to interpretation of the concept of bacterial genomics species as ecological species because the genomovar G3 genomic cluster, which initially includes clinical strains, now also includes plant-associated and cave isolates.
Collapse
Affiliation(s)
- Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|
16
|
Bacterial PerO Permeases Transport Sulfate and Related Oxyanions. J Bacteriol 2017; 199:JB.00183-17. [PMID: 28461447 DOI: 10.1128/jb.00183-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/22/2017] [Indexed: 01/13/2023] Open
Abstract
Rhodobacter capsulatus synthesizes the high-affinity ABC transporters CysTWA and ModABC to specifically import the chemically related oxyanions sulfate and molybdate, respectively. In addition, R. capsulatus has the low-affinity permease PerO acting as a general oxyanion transporter, whose elimination increases tolerance to molybdate and tungstate. Although PerO-like permeases are widespread in bacteria, their function has not been examined in any other species to date. Here, we present evidence that PerO permeases from the alphaproteobacteria Agrobacterium tumefaciens, Dinoroseobacter shibae, Rhodobacter sphaeroides, and Sinorhizobium meliloti and the gammaproteobacterium Pseudomonas stutzeri functionally substitute for R. capsulatus PerO in sulfate uptake and sulfate-dependent growth, as shown by assimilation of radioactively labeled sulfate and heterologous complementation. Disruption of perO genes in A. tumefaciens, R. sphaeroides, and S. meliloti increased tolerance to tungstate and, in the case of R. sphaeroides, to molybdate, suggesting that heterometal oxyanions are common substrates of PerO permeases. This study supports the view that bacterial PerO permeases typically transport sulfate and related oxyanions and, hence, form a functionally conserved permease family.IMPORTANCE Despite the widespread distribution of PerO-like permeases in bacteria, our knowledge about PerO function until now was limited to one species, Rhodobacter capsulatus In this study, we showed that PerO proteins from diverse bacteria are functionally similar to the R. capsulatus prototype, suggesting that PerO permeases form a conserved family whose members transport sulfate and related oxyanions.
Collapse
|
17
|
Guo H, Glaeser SP, Alabid I, Imani J, Haghighi H, Kämpfer P, Kogel KH. The Abundance of Endofungal Bacterium Rhizobium radiobacter (syn. Agrobacterium tumefaciens) Increases in Its Fungal Host Piriformospora indica during the Tripartite Sebacinalean Symbiosis with Higher Plants. Front Microbiol 2017; 8:629. [PMID: 28450855 PMCID: PMC5390018 DOI: 10.3389/fmicb.2017.00629] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/28/2017] [Indexed: 11/13/2022] Open
Abstract
Rhizobium radiobacter (syn. Agrobacterium tumefaciens, syn. "Agrobacterium fabrum") is an endofungal bacterium of the fungal mutualist Piriformospora (syn. Serendipita) indica (Basidiomycota), which together form a tripartite Sebacinalean symbiosis with a broad range of plants. R. radiobacter strain F4 (RrF4), isolated from P. indica DSM 11827, induces growth promotion and systemic resistance in cereal crops, including barley and wheat, suggesting that R. radiobacter contributes to a successful symbiosis. Here, we studied the impact of endobacteria on the morphology and the beneficial activity of P. indica during interactions with plants. Low numbers of endobacteria were detected in the axenically grown P. indica (long term lab-cultured, lcPiri) whereas mycelia colonizing the plant root contained increased numbers of bacteria. Higher numbers of endobacteria were also found in axenic cultures of P. indica that was freshly re-isolated (riPiri) from plant roots, though numbers dropped during repeated axenic re-cultivation. Prolonged treatments of P. indica cultures with various antibiotics could not completely eliminate the bacterium, though the number of detectable endobacteria decreased significantly, resulting in partial-cured P. indica (pcPiri). pcPiri showed reduced growth in axenic cultures and poor sporulation. Consistent with this, pcPiri also showed reduced plant growth promotion and reduced systemic resistance against powdery mildew infection as compared with riPiri and lcPiri. These results are consistent with the assumption that the endobacterium R. radiobacter improves P. indica's fitness and thus contributes to the success of the tripartite Sebacinalean symbiosis.
Collapse
Affiliation(s)
- Huijuan Guo
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Ibrahim Alabid
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Hossein Haghighi
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University GiessenGiessen, Germany
| |
Collapse
|
18
|
Glaeser SP, Imani J, Alabid I, Guo H, Kumar N, Kämpfer P, Hardt M, Blom J, Goesmann A, Rothballer M, Hartmann A, Kogel KH. Non-pathogenic Rhizobium radiobacter F4 deploys plant beneficial activity independent of its host Piriformospora indica. THE ISME JOURNAL 2016; 10:871-84. [PMID: 26495996 PMCID: PMC4796927 DOI: 10.1038/ismej.2015.163] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 12/23/2022]
Abstract
The Alphaproteobacterium Rhizobium radiobacter F4 (RrF4) was originally characterized as an endofungal bacterium in the beneficial endophytic Sebacinalean fungus Piriformospora indica. Although attempts to cure P. indica from RrF4 repeatedly failed, the bacterium can easily be grown in pure culture. Here, we report on RrF4's genome and the beneficial impact the free-living bacterium has on plants. In contrast to other endofungal bacteria, the genome size of RrF4 is not reduced. Instead, it shows a high degree of similarity to the plant pathogenic R. radiobacter (formerly: Agrobacterium tumefaciens) C58, except vibrant differences in both the tumor-inducing (pTi) and the accessor (pAt) plasmids, which can explain the loss of RrF4's pathogenicity. Similar to its fungal host, RrF4 colonizes plant roots without host preference and forms aggregates of attached cells and dense biofilms at the root surface of maturation zones. RrF4-colonized plants show increased biomass and enhanced resistance against bacterial leaf pathogens. Mutational analysis showed that, similar to P. indica, resistance mediated by RrF4 was dependent on the plant's jasmonate-based induced systemic resistance (ISR) pathway. Consistent with this, RrF4- and P. indica-induced pattern of defense gene expression were similar. In clear contrast to P. indica, but similar to plant growth-promoting rhizobacteria, RrF4 colonized not only the root outer cortex but also spread beyond the endodermis into the stele. On the basis of our findings, RrF4 is an efficient plant growth-promoting bacterium.
Collapse
Affiliation(s)
- Stefanie P Glaeser
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig- University Giessen, Giessen, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ibrahim Alabid
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Giessen, Germany
| | - Huijuan Guo
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Giessen, Germany
| | - Neelendra Kumar
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Giessen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig- University Giessen, Giessen, Germany
| | - Martin Hardt
- Biomedical Research Centre Seltersberg-Imaging Unit, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Michael Rothballer
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
19
|
Kado CI. Historical account on gaining insights on the mechanism of crown gall tumorigenesis induced by Agrobacterium tumefaciens. Front Microbiol 2014; 5:340. [PMID: 25147542 PMCID: PMC4124706 DOI: 10.3389/fmicb.2014.00340] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 06/19/2014] [Indexed: 11/13/2022] Open
Abstract
The plant tumor disease known as crown gall was not called by that name until more recent times. Galls on plants were described by Malpighi (1679) who believed that these extraordinary growth are spontaneously produced. Agrobacterium was first isolated from tumors in 1897 by Fridiano Cavara in Napoli, Italy. After this bacterium was recognized to be the cause of crown gall disease, questions were raised on the mechanism by which it caused tumors on a variety of plants. Numerous very detailed studies led to the identification of Agrobacterium tumefaciens as the causal bacterium that cleverly transferred a genetic principle to plant host cells and integrated it into their chromosomes. Such studies have led to a variety of sophisticated mechanisms used by this organism to aid in its survival against competing microorganisms. Knowledge gained from these fundamental discoveries has opened many avenues for researchers to examine their primary organisms of study for similar mechanisms of pathogenesis in both plants and animals. These discoveries also advanced the genetic engineering of domesticated plants for improved food and fiber.
Collapse
Affiliation(s)
- Clarence I Kado
- Davis Crown Gall Group, Department of Plant Pathology, University of California, Davis Davis, CA, USA
| |
Collapse
|
20
|
Genome Sequence of the Octopine-Type Agrobacterium tumefaciens Strain Ach5. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00225-14. [PMID: 24675863 PMCID: PMC3968341 DOI: 10.1128/genomea.00225-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have sequenced the complete genome of the plant pathogen Agrobacterium tumefaciens strain LBA4213, a derivative of the wild-type strain A. tumefaciens Ach5 and the ancestor of A. tumefaciens strain LBA4404 used in genetic engineering. The genome consists of a circular chromosome and a linear chromosome, as well as a megaplasmid and a tumor-inducing plasmid.
Collapse
|
21
|
Ramírez-Bahena MH, Vial L, Lassalle F, Diel B, Chapulliot D, Daubin V, Nesme X, Muller D. Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Mol Phylogenet Evol 2014; 73:202-7. [PMID: 24440816 DOI: 10.1016/j.ympev.2014.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/21/2022]
Abstract
Linear chromosomes are atypical in bacteria and likely a secondary trait derived from ancestral circular molecules. Within the Rhizobiaceae family, whose genome contains at least two chromosomes, a particularity of Agrobacterium fabrum (formerly A. tumefaciens) secondary chromosome (chromid) is to be linear and hairpin-ended thanks to the TelA protelomerase. Linear topology and telA distributions within this bacterial family was screened by pulse field gel electrophoresis and PCR. In A. rubi, A. larrymoorei, Rhizobium skierniewicense, A. viscosum, Agrobacterium sp. NCPPB 1650, and every genomospecies of the biovar 1/A. tumefaciens species complex (including R. pusense, A. radiobacter, A. fabrum, R. nepotum plus seven other unnamed genomospecies), linear chromid topologies were retrieved concomitantly with telA presence, whereas the remote species A. vitis, Allorhizobium undicola, Rhizobium rhizogenes and Ensifer meliloti harbored a circular chromid as well as no telA gene. Moreover, the telA phylogeny is congruent with that of recA used as a marker gene of the Agrobacterium phylogeny. Collectively, these findings strongly suggest that single acquisition of telA by an ancestor was the founding event of a large and diverse clade characterized by the presence of a linear chromid. This clade, characterized by unusual genome architecture, appears to be a relevant candidate to serve as a basis for a possible redefinition of the controversial Agrobacterium genus. In this respect, investigating telA in sequenced genomes allows to both ascertain the place of concerned strains into Agrobacterium spp. and their actual assignation to species/genomospecies in this genus.
Collapse
Affiliation(s)
- Martha H Ramírez-Bahena
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France; INRA, USC 1364, Ecologie Microbienne, 69622 Villeurbanne, France
| | - Ludovic Vial
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France
| | - Florent Lassalle
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France; INRA, USC 1364, Ecologie Microbienne, 69622 Villeurbanne, France; CNRS, UMR5558, Biométrie et Biologie Evolutive, 69622 Villeurbanne, France; Ecole Normale Supérieure de Lyon, 69342 Lyon, France
| | - Benjamin Diel
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France
| | - David Chapulliot
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France; INRA, USC 1364, Ecologie Microbienne, 69622 Villeurbanne, France
| | - Vincent Daubin
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5558, Biométrie et Biologie Evolutive, 69622 Villeurbanne, France
| | - Xavier Nesme
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France; INRA, USC 1364, Ecologie Microbienne, 69622 Villeurbanne, France.
| | - Daniel Muller
- Université de Lyon, 69361 Lyon, France; Université Lyon 1, 69622 Villeurbanne, France; CNRS, UMR5557, Ecologie Microbienne, 69622 Villeurbanne, France
| |
Collapse
|
22
|
Morton ER, Merritt PM, Bever JD, Fuqua C. Large deletions in the pAtC58 megaplasmid of Agrobacterium tumefaciens can confer reduced carriage cost and increased expression of virulence genes. Genome Biol Evol 2013; 5:1353-64. [PMID: 23783172 PMCID: PMC3730347 DOI: 10.1093/gbe/evt095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The accessory plasmid pAtC58 of the common laboratory strain of Agrobacterium tumefaciens confers numerous catabolic functions and has been proposed to play a role in virulence. Genomic sequencing of evolved laboratory strains of A. tumefaciens revealed the presence of multiple deletion events in the At plasmid, with reductions in plasmid size ranging from 25% to 30% (115–194 kb). Flanking both ends of the sites of these deletions is a short-nucleotide repeat sequence that is in a single copy in the deleted plasmids, characteristic of a phage- or transposon-mediated deletion event. This repeat sequence is widespread throughout the C58 genome, but concentrated on the At plasmid, suggesting its frequency to be nonrandom. In this study, we assess the prevalence of the larger of these deletions in multiple C58 derivatives and characterize its functional significance. We find that in addition to elevating virulence gene expression, this deletion is associated with a significantly reduced carriage cost to the cell. These observations are a clear demonstration of the dynamic nature of the bacterial genome and suggest a mechanism for genetic plasticity of these costly but otherwise stable plasmids. Additionally, this phenomenon could be the basis for some of the dramatic recombination events so ubiquitous within and among megaplasmids.
Collapse
|
23
|
Draft Genome Sequence of Agrobacterium sp. Strain UHFBA-218, Isolated from Rhizosphere Soil of Crown Gall-Infected Cherry Rootstock Colt. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00302-13. [PMID: 23723402 PMCID: PMC3668010 DOI: 10.1128/genomea.00302-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the draft genome sequence of the alphaproteobacterium Agrobacterium sp. strain UHFBA-218, which was isolated from rhizosphere soil of crown gall-infected cherry rootstock Colt. The draft genome of strain UHFBA-218 consists of 112 contigs (5,425,303 bp) and 5,063 coding sequences with a G+C content of 59.8%.
Collapse
|
24
|
Shams M, Vial L, Chapulliot D, Nesme X, Lavire C. Rapid and accurate species and genomic species identification and exhaustive population diversity assessment of Agrobacterium spp. using recA-based PCR. Syst Appl Microbiol 2013; 36:351-8. [PMID: 23578959 DOI: 10.1016/j.syapm.2013.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/04/2013] [Accepted: 03/10/2013] [Indexed: 11/17/2022]
Abstract
Agrobacteria are common soil bacteria that interact with plants as commensals, plant growth promoting rhizobacteria or alternatively as pathogens. Indigenous agrobacterial populations are composites, generally with several species and/or genomic species and several strains per species. We thus developed a recA-based PCR approach to accurately identify and specifically detect agrobacteria at various taxonomic levels. Specific primers were designed for all species and/or genomic species of Agrobacterium presently known, including 11 genomic species of the Agrobacterium tumefaciens complex (G1-G9, G13 and G14, among which only G2, G4, G8 and G14 still received a Latin epithet: pusense, radiobacter, fabrum and nepotum, respectively), A. larrymoorei, A. rubi, R. skierniewicense, A. sp. 1650, and A. vitis, and for the close relative Allorhizobium undicola. Specific primers were also designed for superior taxa, Agrobacterium spp. and Rhizobiaceace. Primer specificities were assessed with target and non-target pure culture DNAs as well as with DNAs extracted from composite agrobacterial communities. In addition, we showed that the amplicon cloning-sequencing approach used with Agrobacterium-specific or Rhizobiaceae-specific primers is a way to assess the agrobacterial diversity of an indigenous agrobacterial population. Hence, the agrobacterium-specific primers designed in the present study enabled the first accurate and rapid identification of all species and/or genomic species of Agrobacterium, as well as their direct detection in environmental samples.
Collapse
Affiliation(s)
- M Shams
- Université de Lyon, F-69622 Lyon, France; Université Lyon 1, F-69622 Villeurbanne, France
| | | | | | | | | |
Collapse
|