1
|
Gandia D, Marcano L, Gandarias L, G. Gubieda A, García-Prieto A, Fernández Barquín L, Espeso JI, Martín Jefremovas E, Orue I, Abad Diaz de Cerio A, Fdez-Gubieda ML, Alonso J. Exploring the Complex Interplay of Anisotropies in Magnetosomes of Magnetotactic Bacteria. ACS OMEGA 2025; 10:16061-16072. [PMID: 40321550 PMCID: PMC12044567 DOI: 10.1021/acsomega.4c09371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 05/08/2025]
Abstract
Magnetotactic bacteria (MTB) are at the forefront of interest for biophysics applications, especially in cancer treatment. Magnetosomes biomineralized by these bacteria are high-quality magnetic nanoparticles that form chains inside the MTB through a highly reproducible, naturally driven process. In particular, Magnetovibrio blakemorei and Magnetospirillum gryphiswaldense MTB exhibit distinct magnetosome morphologies: truncated hexa-octahedral and cuboctahedral shapes, respectively. Despite having identical compositions (magnetite, Fe3O4) and dimensions within a similar size range, their effective uniaxial anisotropies significantly differ at room temperature, with M. blakemorei exhibiting ∼25 kJ/m3 and M. gryphiswaldense ∼ 11 kJ/m3. This prominent anisotropy variance provides a unique opportunity to explore the role of magnetic anisotropy contributions in the magnetic responses of these magnetite-based nanoparticles. This study systematically investigates these responses by examining static magnetization as a function of temperature (M vs T, 5 mT) and magnetic field (M vs μ0 H, up to 1 T). Above the Verwey transition temperature (∼110 K), the effective anisotropy is dominated by the shape anisotropy contribution, notably increasing the coercivity for M. blakemorei by up to twofold compared to M. gryphiswaldense. However, below this temperature, the effective uniaxial anisotropy rapidly increases in a nonmonotonic way, significantly changing the magnetic behavior. Computational simulations using a dynamic Stoner-Wohlfarth model provide insights into these phenomena, enabling careful interpretation of experimental data. According to our simulations, below the Verwey temperature, a uniaxial magnetocrystalline contribution progressively emerges, peaking around 22-24 kJ/m3 at 5 K. Our study reveals the complex evolution of magnetocrystalline contributions, which dominate the magnetic response of magnetosomes below the Verwey temperature. This demonstrates the profound impact of anisotropic properties on the magnetic behaviors and applications of magnetite-based nanoparticles and highlights the exceptional utility of magnetosomes as ideal model systems for studying the complex interplay of anisotropies in magnetite-based nanoparticles.
Collapse
Affiliation(s)
- David Gandia
- Departamento
de Ciencias, Universidad Pública
de Navarra, Pamplona 31006, Spain
| | - Lourdes Marcano
- Departamento
de Física, Universidad de Oviedo, Oviedo 33007, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
| | - Lucía Gandarias
- Departamento
de Inmunología, Microbiología
y Parasitología, Universidad del País Vasco
(UPV/EHU), Leioa 48940, Spain
- Aix-Marseille
Institute of Biosciences and Biotechnologies (BIAM), Aix-Marseille Université, CNRS, CEA − UMR 7265, Saint-Paul-lez-Durance 13108, France
| | - Alicia G. Gubieda
- Departamento
de Inmunología, Microbiología
y Parasitología, Universidad del País Vasco
(UPV/EHU), Leioa 48940, Spain
| | - Ana García-Prieto
- Departamento
de Física Aplicada, Universidad
del País Vasco (UPV/EHU), Bilbao 48013, Spain
| | | | | | - Elizabeth Martín Jefremovas
- Institute
of Physics, Johannes Gutenberg University
of Mainz, Mainz 55128, Germany
- Department
of Physics and Materials Science, University
of Luxembourg, Luxembourg L-1511, Grand Duchy
of Luxembourg
- Institute
for Advanced Studies, University of Luxembourg, Esch-sur-Alzette L-4365, Luxembourg
| | - Iñaki Orue
- SGIker, Universidad del País Vasco (UPV/EHU), Leioa 48940, Spain
| | - Ana Abad Diaz de Cerio
- Departamento
de Inmunología, Microbiología
y Parasitología, Universidad del País Vasco
(UPV/EHU), Leioa 48940, Spain
| | - Ma Luisa Fdez-Gubieda
- Departamento
de Electricidad y Electrónica, Universidad
del País Vasco (UPV/EHU), Leioa 48940, Spain
| | - Javier Alonso
- Departamento
de CITIMAC, Universidad de Cantabria, Santander 39005, Spain
| |
Collapse
|
2
|
Villanueva D, G Gubieda A, Gandarias L, Abad Díaz de Cerio A, Orue I, Ángel García J, de Cos D, Alonso J, Fdez-Gubieda ML. Heating Efficiency of Different Magnetotactic Bacterial Species: Influence of Magnetosome Morphology and Chain Arrangement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67216-67224. [PMID: 39592122 DOI: 10.1021/acsami.4c13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Magnetotactic bacteria have been proposed as ideal biological nanorobots due to the presence of an intracellular chain of magnetic nanoparticles (MNPs), which allows them to be guided and controlled by external magnetic fields and provides them with theragnostic capabilities intrinsic to magnetic nanoparticles, such as magnetic hyperthermia for cancer treatment. Here, we study three different bacterial species, Magnetospirillum gryphiswaldense (MSR-1), Magnetospirillum magneticum (AMB-1), and Magnetovibrio blakemorei (MV-1), which synthesize magnetite nanoparticles with different morphologies and chain arrangements. We analyzed the impact of these parameters on the effective magnetic anisotropy, Keff, and the heating capacity or Specific Absorption Rate, SAR, under alternating magnetic fields. SAR values have been obtained from the area of experimental AC hysteresis loops, while Keff has been determined from simulations of AC hysteresis loops using a dynamic Stoner-Wohlfarth model. The results demonstrate a clear relationship between the effective magnetic anisotropy and the heating efficiency of bacteria. As the Keff value increases, the saturated SAR values are higher; however, the threshold magnetic field required to observe a SAR response simultaneously increases. This factor is crucial to choose a bacterial species as the optimal hyperthermia agent.
Collapse
Affiliation(s)
- Danny Villanueva
- Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - Alicia G Gubieda
- Departamento de Inmunología, Microbiología y Parasitología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - Lucía Gandarias
- Departamento de Inmunología, Microbiología y Parasitología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
- Institute of Biosciences and Biotechnologies of Aix-Marseille (BIAM), Aix-Marseille Université, CNRS, CEA-UMR 7265, 13108 Saint-Paul-lez-Durance, France
| | - Ana Abad Díaz de Cerio
- Departamento de Inmunología, Microbiología y Parasitología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - Iñaki Orue
- SGIker Medidas Magnéticas, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - José Ángel García
- Departamento de Física, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - David de Cos
- Departamento de Física, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - Javier Alonso
- Departamento CITIMAC, Universidad de Cantabria (UC), 39005 Santander, Spain
| | - M Luisa Fdez-Gubieda
- Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
- Basque Center for Materials Applications and Nanostructures (BCMaterials) UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
3
|
Serna JDP, Alves OC, Abreu F, Acosta-Avalos D. Magnetite in the abdomen and antennae of Apis mellifera honeybees. J Biol Phys 2024; 50:215-228. [PMID: 38727764 PMCID: PMC11106226 DOI: 10.1007/s10867-024-09656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/16/2024] [Indexed: 05/21/2024] Open
Abstract
The detection of magnetic fields by animals is known as magnetoreception. The ferromagnetic hypothesis explains magnetoreception assuming that magnetic nanoparticles are used as magnetic field transducers. Magnetite nanoparticles in the abdomen of Apis mellifera honeybees have been proposed in the literature as the magnetic field transducer. However, studies with ants and stingless bees have shown that the whole body of the insect contain magnetic material, and that the largest magnetization is in the antennae. The aim of the present study is to investigate the magnetization of all the body parts of honeybees as has been done with ants and stingless bees. To do that, the head without antennae, antennae, thorax, and abdomen obtained from Apis mellifera honeybees were analyzed using magnetometry and Ferromagnetic Resonance (FMR) techniques. The magnetometry and FMR measurements show the presence of magnetic material in all honeybee body parts. Our results present evidence of the presence of biomineralized magnetite nanoparticles in the honeybee abdomen and, for the first time, magnetite in the antennae. FMR measurements permit to identify the magnetite in the abdomen as biomineralized. As behavioral experiments reported in the literature have shown that the abdomen is involved in magnetoreception, new experimental approaches must be done to confirm or discard the involvement of the antennae in magnetoreception.
Collapse
Affiliation(s)
- Jilder Dandy Peña Serna
- Coordenação de Física Aplicada (COMAN), Centro Brasileiro de Pesquisas Físicas (CBPF), R. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, Brazil
| | - Odivaldo Cambraia Alves
- Universidade Federal Fluminense (UFF), Outeiro de São Joao Batista, Campus do Valonguinho, Centro, RJ, Niterói 24020-141, Brazil
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21941-902, Brazil
| | - Daniel Acosta-Avalos
- Coordenação de Física Aplicada (COMAN), Centro Brasileiro de Pesquisas Físicas (CBPF), R. Xavier Sigaud, 150, Rio de Janeiro, 22290-180, Brazil.
| |
Collapse
|
4
|
Kaur T, Sharma D. Self-propelling bacteria-based magnetic nanoparticles (BacMags) for targeted magnetic hyperthermia therapy against hypoxic tumors. NANOSCALE 2024; 16:7892-7907. [PMID: 38568096 DOI: 10.1039/d3nr05082c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Magnetic hyperthermia-based cancer therapy (MHCT) holds great promise as a non-invasive approach utilizing heat generated by an alternating magnetic field for effective cancer treatment. For an efficacious therapeutic response, it is crucial to deliver therapeutic agents selectively at the depth of tumors. In this study, we present a new strategy using the naturally occurring tumor-colonizing bacteria Escherichia coli (E. coli) as a carrier to deliver magnetic nanoparticles to hypoxic tumor cores for effective MHCT. Self-propelling delivery agents, "nano-bacteriomagnets" (BacMags), were developed by incorporating anisotropic magnetic nanocubes into E. coli which demonstrated significantly improved hyperthermic performance, leading to an impressive 85% cell death in pancreatic cancer. The in vivo anti-cancer response was validated in a syngeneic xenograft model with a 50% tumor inhibition rate within 20 days and a complete tumor regression within 30 days. This proof-of-concept study demonstrates the potential of utilizing anaerobic bacteria for the delivery of magnetic nanocarriers as a smart therapeutic approach for enhanced MHCT.
Collapse
Affiliation(s)
- Tashmeen Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab-140306, India.
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab-140306, India.
| |
Collapse
|
5
|
He S, Yang J, Fan X, Lu D, Zhang S, Yan L. Magnetosome yield characteristics modeling of acidithiobacillus ferrooxidans in airlift bioreactor using response surface methodology. J Biomater Appl 2023; 37:1325-1338. [PMID: 36250565 DOI: 10.1177/08853282221133647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial magnetosomes had been proved to have great application potential in medicine and biotechnology. The objective of the present study was to obtain high yield of magnetosomes from Acidithiobacillus ferrooxidans (A. ferrooxidans) BYM in an airlift bioreactor using response surface methodology (RSM). The magnetosomes from A. ferrooxidans BYM were characterized using a transmission electron microscope and scanning electron microscopy. The maximum magnetosome yield of 0.4267 mg/L was achieved at ventilation capacity of 3.6 L/min and gluconic acid concentration of 10 mmol/L at 25oC. The correlation coefficient (R2) value of 0.8676 of the obtained model suggested a good correlation between the actual and predicted magnetosome yield. The confirmation experiment confirmed that the actual magnetosome yield of 0.391 mg/L obtained were in agreement with the predicted value of 0.398 mg/L. These results suggested that RSM can be employed to find out the optimum conditions for magnetosome formation in airlift bioreactor.
Collapse
Affiliation(s)
- Shuangjun He
- 91625Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Jiani Yang
- 91625Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Xinxin Fan
- 91625Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Dong Lu
- 53045Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shuang Zhang
- 91625Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Lei Yan
- 91625Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, PR China
| |
Collapse
|
6
|
de Souza Cabral A, Verdan M, Presciliano R, Silveira F, Correa T, Abreu F. Large-Scale Cultivation of Magnetotactic Bacteria and the Optimism for Sustainable and Cheap Approaches in Nanotechnology. Mar Drugs 2023; 21:60. [PMID: 36827100 PMCID: PMC9961000 DOI: 10.3390/md21020060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Magnetotactic bacteria (MTB), a diverse group of marine and freshwater microorganisms, have attracted the scientific community's attention since their discovery. These bacteria biomineralize ferrimagnetic nanocrystals, the magnetosomes, or biological magnetic nanoparticles (BMNs), in a single or multiple chain(s) within the cell. As a result, cells experience an optimized magnetic dipolar moment responsible for a passive alignment along the lines of the geomagnetic field. Advances in MTB cultivation and BMN isolation have contributed to the expansion of the biotechnological potential of MTB in recent decades. Several studies with mass-cultured MTB expanded the possibilities of using purified nanocrystals and whole cells in nano- and biotechnology. Freshwater MTB were primarily investigated in scaling up processes for the production of BMNs. However, marine MTB have the potential to overcome freshwater species applications due to the putative high efficiency of their BMNs in capturing molecules. Regarding the use of MTB or BMNs in different approaches, the application of BMNs in biomedicine remains the focus of most studies, but their application is not restricted to this field. In recent years, environment monitoring and recovery, engineering applications, wastewater treatment, and industrial processes have benefited from MTB-based biotechnologies. This review explores the advances in MTB large-scale cultivation and the consequent development of innovative tools or processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
7
|
Continuous Production of Biogenic Magnetite Nanoparticles by the Marine Bacterium Magnetovibrio blakemorei Strain MV-1T with a Nitrous Oxide Injection Strategy. Mar Drugs 2022; 20:md20110724. [PMID: 36422002 PMCID: PMC9692579 DOI: 10.3390/md20110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/29/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Magnetotactic bacteria (MTB) produce magnetosomes, which are membrane-embedded magnetic nanoparticles. Despite their technological applicability, the production of magnetite magnetosomes depends on the cultivation of MTB, which results in low yields. Thus, strategies for the large-scale cultivation of MTB need to be improved. Here, we describe a new approach for bioreactor cultivation of Magnetovibrio blakemorei strain MV-1T. Firstly, a fed-batch with a supplementation of iron source and N2O injection in 24-h pulses was established. After 120 h of cultivation, the production of magnetite reached 24.5 mg∙L−1. The maximum productivity (16.8 mg∙L−1∙day−1) was reached between 48 and 72 h. However, the productivity and mean number of magnetosomes per cell decreased after 72 h. Therefore, continuous culture in the chemostat was established. In the continuous process, magnetite production and productivity were 27.1 mg∙L−1 and 22.7 mg∙L−1∙day−1, respectively, at 120 h. This new approach prevented a decrease in magnetite production in comparison to the fed-batch strategy.
Collapse
|
8
|
Marcano L, Orue I, Gandia D, Gandarias L, Weigand M, Abrudan RM, García-Prieto A, García-Arribas A, Muela A, Fdez-Gubieda ML, Valencia S. Magnetic Anisotropy of Individual Nanomagnets Embedded in Biological Systems Determined by Axi-asymmetric X-ray Transmission Microscopy. ACS NANO 2022; 16:7398-7408. [PMID: 35472296 PMCID: PMC9878725 DOI: 10.1021/acsnano.1c09559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Over the past few years, the use of nanomagnets in biomedical applications has increased. Among others, magnetic nanostructures can be used as diagnostic and therapeutic agents in cardiovascular diseases, to locally destroy cancer cells, to deliver drugs at specific positions, and to guide (and track) stem cells to damaged body locations in regenerative medicine and tissue engineering. All these applications rely on the magnetic properties of the nanomagnets which are mostly determined by their magnetic anisotropy. Despite its importance, the magnetic anisotropy of the individual magnetic nanostructures is unknown. Currently available magnetic sensitive microscopic methods are either limited in spatial resolution or in magnetic field strength or, more relevant, do not allow one to measure magnetic signals of nanomagnets embedded in biological systems. Hence, the use of nanomagnets in biomedical applications must rely on mean values obtained after averaging samples containing thousands of dissimilar entities. Here we present a hybrid experimental/theoretical method capable of working out the magnetic anisotropy constant and the magnetic easy axis of individual magnetic nanostructures embedded in biological systems. The method combines scanning transmission X-ray microscopy using an axi-asymmetric magnetic field with theoretical simulations based on the Stoner-Wohlfarth model. The validity of the method is demonstrated by determining the magnetic anisotropy constant and magnetic easy axis direction of 15 intracellular magnetite nanoparticles (50 nm in size) biosynthesized inside a magnetotactic bacterium.
Collapse
Affiliation(s)
- Lourdes Marcano
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
- Dpto.
Electricidad y Electrónica, Universidad
del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - Iñaki Orue
- SGIker, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - David Gandia
- BCMaterials, Bld. Martina Casiano third floor, 48940 Leioa, Spain
| | - Lucía Gandarias
- Dpto.
Inmunología, Microbiología y Parasitología, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - Markus Weigand
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Radu Marius Abrudan
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Ana García-Prieto
- Dpto. Física
Aplicada, Universidad del País Vasco - UPV/EHU, 48013 Bilbao, Spain
| | - Alfredo García-Arribas
- Dpto.
Electricidad y Electrónica, Universidad
del País Vasco - UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Bld. Martina Casiano third floor, 48940 Leioa, Spain
| | - Alicia Muela
- Dpto.
Inmunología, Microbiología y Parasitología, Universidad del País Vasco - UPV/EHU, 48940 Leioa, Spain
| | - M. Luisa Fdez-Gubieda
- Dpto.
Electricidad y Electrónica, Universidad
del País Vasco - UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Bld. Martina Casiano third floor, 48940 Leioa, Spain
| | - Sergio Valencia
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| |
Collapse
|
9
|
Correa T, Presciliano R, Abreu F. Why Does Not Nanotechnology Go Green? Bioprocess Simulation and Economics for Bacterial-Origin Magnetite Nanoparticles. Front Microbiol 2021; 12:718232. [PMID: 34489907 PMCID: PMC8418543 DOI: 10.3389/fmicb.2021.718232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Nanotechnological developments, including fabrication and use of magnetic nanomaterials, are growing at a fast pace. Magnetic nanoparticles are exciting tools for use in healthcare, biological sensors, and environmental remediation. Due to better control over final-product characteristics and cleaner production, biogenic nanomagnets are preferable over synthetic ones for technological use. In this sense, the technical requirements and economic factors for setting up industrial production of magnetotactic bacteria (MTB)-derived nanomagnets were studied in the present work. Magnetite fabrication costs in a single-stage fed-batch and a semicontinuous process were US$ 10,372 and US$ 11,169 per kilogram, respectively. Depending on the variations of the production process, the minimum selling price for biogenic nanomagnets ranged between US$ 21 and US$ 120 per gram. Because these prices are consistently below commercial values for synthetic nanoparticles, we suggest that microbial production is competitive and constitutes an attractive alternative for a greener manufacturing of magnetic nanoparticles nanotools with versatile applicability.
Collapse
Affiliation(s)
- Tarcisio Correa
- Laboratório de Biologia Celular e Magnetotaxia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rogério Presciliano
- Laboratório de Biologia Celular e Magnetotaxia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Laboratório de Biologia Celular e Magnetotaxia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Correa T, Bazylinski DA, Garcia F, Abreu F. A rapid and simple preparation of amphotericin B-loaded bacterial magnetite nanoparticles. RSC Adv 2021; 11:28000-28007. [PMID: 35480720 PMCID: PMC9038061 DOI: 10.1039/d1ra03950d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional representation of amphotericin B molecules bound to magnetosomes derived from Magnetovibrio blakemorei strain MV-1T. Drug molecules are electrostatically adsorbed onto nanoparticles coated with positively charged poly-l-lysine.
Collapse
Affiliation(s)
- Tarcisio Correa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil
| | - Dennis A. Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, USA
| | - Flávio Garcia
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
11
|
Pekarsky A, Spadiut O. Intrinsically Magnetic Cells: A Review on Their Natural Occurrence and Synthetic Generation. Front Bioeng Biotechnol 2020; 8:573183. [PMID: 33195134 PMCID: PMC7604359 DOI: 10.3389/fbioe.2020.573183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
The magnetization of non-magnetic cells has great potential to aid various processes in medicine, but also in bioprocess engineering. Current approaches to magnetize cells with magnetic nanoparticles (MNPs) require cellular uptake or adsorption through in vitro manipulation of cells. A relatively new field of research is "magnetogenetics" which focuses on in vivo production and accumulation of magnetic material. Natural intrinsically magnetic cells (IMCs) produce intracellular, MNPs, and are called magnetotactic bacteria (MTB). In recent years, researchers have unraveled function and structure of numerous proteins from MTB. Furthermore, protein engineering studies on such MTB proteins and other potentially magnetic proteins, like ferritins, highlight that in vivo magnetization of non-magnetic hosts is a thriving field of research. This review summarizes current knowledge on recombinant IMC generation and highlights future steps that can be taken to succeed in transforming non-magnetic cells to IMCs.
Collapse
Affiliation(s)
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
12
|
Alphandéry E. Applications of magnetotactic bacteria and magnetosome for cancer treatment: A review emphasizing on practical and mechanistic aspects. Drug Discov Today 2020; 25:1444-1452. [PMID: 32561298 DOI: 10.1016/j.drudis.2020.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Magnetotactic bacteria (MTB) synthesize iron oxide (Fe3O4) nanoparticles (NPs), called magnetosomes, with large sizes leading to a ferrimagnetic behavior and a stable magnetic moment at physiological temperature, a chain structure that prevents NP aggregation and promotes uniform NP distribution, and a mineral core of magnetite/maghemite composition, which can be stabilized by an organic coating. Such properties can favor magnetosome administration to humans under certain optimized non-toxic conditions of fabrication. In this review, I describe the fabrication methods, physico-chemical properties, and the anti-tumor activity of different types of MTB/magnetosome preparations, highlighting the bio-compatibility and excellent anti-tumor activity of purified non-pyrogenic magnetosome minerals stabilized by a synthetic chemical compound.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Paris Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France; Nanobacterie SARL, 36 Boulevard Flandrin, 75116, Paris, France; Institute of Anatomy, UZH University of Zurich, Institute of Anatomy, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
13
|
Kuzajewska D, Wszołek A, Żwierełło W, Kirczuk L, Maruszewska A. Magnetotactic Bacteria and Magnetosomes as Smart Drug Delivery Systems: A New Weapon on the Battlefield with Cancer? BIOLOGY 2020; 9:E102. [PMID: 32438567 PMCID: PMC7284773 DOI: 10.3390/biology9050102] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
An important direction of research in increasing the effectiveness of cancer therapies is the design of effective drug distribution systems in the body. The development of the new strategies is primarily aimed at improving the stability of the drug after administration and increasing the precision of drug delivery to the destination. Due to the characteristic features of cancer cells, distributing chemotherapeutics exactly to the microenvironment of the tumor while sparing the healthy tissues is an important issue here. One of the promising solutions that would meet the above requirements is the use of Magnetotactic bacteria (MTBs) and their organelles, called magnetosomes (BMs). MTBs are commonly found in water reservoirs, and BMs that contain ferromagnetic crystals condition the magnetotaxis of these microorganisms. The presented work is a review of the current state of knowledge on the potential use of MTBs and BMs as nanocarriers in the therapy of cancer. The growing amount of literature data indicates that MTBs and BMs may be used as natural nanocarriers for chemotherapeutics, such as classic anti-cancer drugs, antibodies, vaccine DNA, and siRNA. Their use as transporters increases the stability of chemotherapeutics and allows the transfer of individual ligands or their combinations precisely to cancerous tumors, which, in turn, enables the drugs to reach molecular targets more effectively.
Collapse
Affiliation(s)
- Danuta Kuzajewska
- Institute of Biology, University of Szczecin, Felczaka 3c St, 71-412 Szczecin, Poland; (D.K.); (L.K.)
| | - Agata Wszołek
- Institute of Biology, University of Szczecin, Felczaka 3c St, 71-412 Szczecin, Poland; (D.K.); (L.K.)
| | - Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St, 70-111 Szczecin, Poland;
| | - Lucyna Kirczuk
- Institute of Biology, University of Szczecin, Felczaka 3c St, 71-412 Szczecin, Poland; (D.K.); (L.K.)
| | - Agnieszka Maruszewska
- Institute of Biology, University of Szczecin, Felczaka 3c St, 71-412 Szczecin, Poland; (D.K.); (L.K.)
| |
Collapse
|
14
|
Cypriano J, Bahri M, Dembelé K, Baaziz W, Leão P, Bazylinski DA, Abreu F, Ersen O, Farina M, Werckmann J. Insight on thermal stability of magnetite magnetosomes: implications for the fossil record and biotechnology. Sci Rep 2020; 10:6706. [PMID: 32317676 PMCID: PMC7174351 DOI: 10.1038/s41598-020-63531-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/25/2020] [Indexed: 11/14/2022] Open
Abstract
Magnetosomes are intracellular magnetic nanocrystals composed of magnetite (Fe3O4) or greigite (Fe3S4), enveloped by a lipid bilayer membrane, produced by magnetotactic bacteria. Because of the stability of these structures in certain environments after cell death and lysis, magnetosome magnetite crystals contribute to the magnetization of sediments as well as providing a fossil record of ancient microbial ecosystems. The persistence or changes of the chemical and magnetic features of magnetosomes under certain conditions in different environments are important factors in biotechnology and paleomagnetism. Here we evaluated the thermal stability of magnetosomes in a temperature range between 150 and 500 °C subjected to oxidizing conditions by using in situ scanning transmission electron microscopy. Results showed that magnetosomes are stable and structurally and chemically unaffected at temperatures up to 300 °C. Interestingly, the membrane of magnetosomes was still observable after heating the samples to 300 °C. When heated between 300 °C and 500 °C cavity formation in the crystals was observed most probably associated to the partial transformation of magnetite into maghemite due to the Kirkendall effect at the nanoscale. This study provides some insight into the stability of magnetosomes in specific environments over geological periods and offers novel tools to investigate biogenic nanomaterials.
Collapse
Affiliation(s)
- Jefferson Cypriano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Mounib Bahri
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg, France
| | - Kassiogé Dembelé
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg, France.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry, Faradayweg 4-6, 14195, Berlin, Germany
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg, France
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, 89154-4004, USA
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg, France
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Jacques Werckmann
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil. .,Centro Brasileiro de Pesquisas Físicas, LABNANO, rua Xavier Sigaud, 150, CEP, 22290-180, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Desai MP, Pawar KD. Immobilization of cellulase on iron tolerant Pseudomonas stutzeri biosynthesized photocatalytically active magnetic nanoparticles for increased thermal stability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110169. [DOI: 10.1016/j.msec.2019.110169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023]
|
16
|
Ke L, Chen Y, Liu P, Liu S, Wu D, Yuan Y, Wu Y, Gao M. Characteristics and optimised fermentation of a novel magnetotactic bacterium, Magnetospirillum sp. ME-1. FEMS Microbiol Lett 2019. [PMID: 29514248 DOI: 10.1093/femsle/fny052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Magnetotactic bacteria (MTB) can biosynthesise magnetosomes, which have great potential for commercial applications. A new MTB strain, Magnetospirillum sp. ME-1, was isolated and cultivated from freshwater sediments of East Lake (Wuhan, China) using the limiting dilution method. ME-1 had a chain of 17 ± 4 magnetosomes in the form of cubooctahedral crystals with a shape factor of 0.89. ME-1 was closest to Magnetospirillum sp. XM-1 according to 16S rRNA gene sequence similarity. Compared with XM-1, ME-1 possessed an additional copy of mamPA and a larger mamO in magnetosome-specific genes. ME-1 had an intact citric acid cycle, and complete pathway models of ammonium assimilation and dissimilatory nitrate reduction. Potential carbon and nitrogen sources in these pathways were confirmed to be used in ME-1. Adipate was determined to be used in the fermentation medium as a new kind of dicarboxylic acid. The optimised fermentation medium was determined by orthogonal tests. The large-scale production of magnetosomes was achieved and the magnetosome yield (wet weight) reached 120 mg L-1 by fed-batch cultivation of ME-1 at 49 h in a 10-L fermenter with the optimised fermentation medium. This study may provide insights into the isolation and cultivation of other new MTB strains and the production of magnetosomes.
Collapse
Affiliation(s)
- Linfeng Ke
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yajun Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Pengming Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Shan Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Dandan Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Yihui Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Yan Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| | - Meiying Gao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P.R. China
| |
Collapse
|
17
|
Cypriano J, Werckmann J, Vargas G, Lopes dos Santos A, Silva KT, Leão P, Almeida FP, Bazylinski DA, Farina M, Lins U, Abreu F. Uptake and persistence of bacterial magnetite magnetosomes in a mammalian cell line: Implications for medical and biotechnological applications. PLoS One 2019; 14:e0215657. [PMID: 31013301 PMCID: PMC6478323 DOI: 10.1371/journal.pone.0215657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/07/2019] [Indexed: 01/29/2023] Open
Abstract
Magnetotactic bacteria biomineralize intracellular magnetic nanocrystals surrounded by a lipid bilayer called magnetosomes. Due to their unique characteristics, magnetite magnetosomes are promising tools in Biomedicine. However, the uptake, persistence, and accumulation of magnetosomes within mammalian cells have not been well studied. Here, the endocytic pathway of magnetite magnetosomes and their effects on human cervix epithelial (HeLa) cells were studied by electron microscopy and high spatial resolution nano-analysis techniques. Transmission electron microscopy of HeLa cells after incubation with purified magnetosomes showed the presence of magnetic nanoparticles inside or outside endosomes within the cell, which suggests different modes of internalization, and that these structures persisted beyond 120 h after internalization. High-resolution transmission electron microscopy and electron energy loss spectra of internalized magnetosome crystals showed no structural or chemical changes in these structures. Although crystal morphology was preserved, iron oxide crystalline particles of approximately 5 nm near internalized magnetosomes suggests that minor degradation of the original mineral structures might occur. Cytotoxicity and microscopy analysis showed that magnetosomes did not result in any apparent effect on HeLa cells viability or morphology. Based on our results, magnetosomes have significant biocompatibility with mammalian cells and thus have great potential in medical, biotechnological applications.
Collapse
Affiliation(s)
- Jefferson Cypriano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jacques Werckmann
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
| | - Gabriele Vargas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana Lopes dos Santos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Karen T. Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando P. Almeida
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dennis A. Bazylinski
- School of life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, United States of America
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ulysses Lins
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
18
|
Qian Z, Tianwei H, Mackey HR, van Loosdrecht MCM, Guanghao C. Recent advances in dissimilatory sulfate reduction: From metabolic study to application. WATER RESEARCH 2019; 150:162-181. [PMID: 30508713 DOI: 10.1016/j.watres.2018.11.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 05/24/2023]
Abstract
Sulfate-reducing bacteria (SRB) are a group of diverse anaerobic microorganisms omnipresent in natural habitats and engineered environments that use sulfur compounds as the electron acceptor for energy metabolism. Dissimilatory sulfate reduction (DSR)-based techniques mediated by SRB have been utilized in many sulfate-containing wastewater treatment systems worldwide, particularly for acid mine drainage, groundwater, sewage and industrial wastewater remediation. However, DSR processes are often operated suboptimally and disturbances are common in practical application. To improve the efficiency and robustness of SRB-based processes, it is necessary to study SRB metabolism and operational conditions. In this review, the mechanisms of DSR processes are reviewed and discussed focusing on intracellular and extracellular electron transfer with different electron donors (hydrogen, organics, methane and electrodes). Based on the understanding of the metabolism of SRB, responses of SRB to environmental stress (pH-, temperature-, and salinity-related stress) are summarized at the species and community levels. Application in these stressed conditions is discussed and future research is proposed. The feasibility of recovering energy and resources such as biohydrogen, hydrocarbons, polyhydroxyalkanoates, magnetite and metal sulfides through the use of SRB were investigated but some long-standing questions remain unanswered. Linking the existing scientific understanding and observations to practical application is the challenge as always for promotion of SRB-based techniques.
Collapse
Affiliation(s)
- Zeng Qian
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Tianwei
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Chen Guanghao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Hong Kong, China; Wastewater Treatment Laboratory, FYT Graduate School, The Hong Kong University of Science and Technology, Nansha, Guangzhou, China.
| |
Collapse
|
19
|
Yan L, Xing W. Methods to Study Magnetotactic Bacteria and Magnetosomes. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
21
|
Werckmann J, Cypriano J, Lefèvre CT, Dembelé K, Ersen O, Bazylinski DA, Lins U, Farina M. Localized iron accumulation precedes nucleation and growth of magnetite crystals in magnetotactic bacteria. Sci Rep 2017; 7:8291. [PMID: 28811607 PMCID: PMC5557804 DOI: 10.1038/s41598-017-08994-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022] Open
Abstract
Many magnetotactic bacteria (MTB) biomineralize magnetite crystals that nucleate and grow inside intracellular membranous vesicles that originate from invaginations of the cytoplasmic membrane. The crystals together with their surrounding membranes are referred to magnetosomes. Magnetosome magnetite crystals nucleate and grow using iron transported inside the vesicle by specific proteins. Here we address the question: can iron transported inside MTB for the production of magnetite crystals be spatially mapped using electron microscopy? Cultured and uncultured MTB from brackish and freshwater lagoons were studied using analytical transmission electron microscopy in an attempt to answer this question. Scanning transmission electron microscopy was used at sub-nanometric resolution to determine the distribution of elements by implementing high sensitivity energy dispersive X-ray (EDS) mapping and electron energy loss spectroscopy (EELS). EDS mapping showed that magnetosomes are enmeshed in a magnetosomal matrix in which iron accumulates close to the magnetosome forming a continuous layer visually appearing as a corona. EELS, obtained at high spatial resolution, confirmed that iron was present close to and inside the lipid bilayer magnetosome membrane. This study provides important clues to magnetite formation in MTB through the discovery of a mechanism where iron ions accumulate prior to magnetite biomineralization.
Collapse
Affiliation(s)
- Jacques Werckmann
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
| | - Jefferson Cypriano
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Christopher T Lefèvre
- CNRS/CEA/Aix-Marseille Université, UMR7265 Institut de biosciences et biotechnologies, Laboratoire de Bioénergétique Cellulaire, 13108, Saint Paul lez Durance, France
| | - Kassiogé Dembelé
- Institut de physique et chimie des matériaux de Strasbourg (IPCMS) UMR 7504 CNRS 23 rue du Lœss, BP 43 67034, Strasbourg Cedex 2, France
| | - Ovidiu Ersen
- Institut de physique et chimie des matériaux de Strasbourg (IPCMS) UMR 7504 CNRS 23 rue du Lœss, BP 43 67034, Strasbourg Cedex 2, France
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, 89154-4004, USA
| | - Ulysses Lins
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Molcan M, Petrenko V, Avdeev M, Ivankov O, Garamus V, Skumiel A, Jozefczak A, Kubovcikova M, Kopcansky P, Timko M. Structure characterization of the magnetosome solutions for hyperthermia study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.12.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Abstract
Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.
Collapse
|
24
|
Ali I, Peng C, Khan ZM, Naz I. Yield cultivation of magnetotactic bacteria and magnetosomes: A review. J Basic Microbiol 2017; 57:643-652. [PMID: 28464298 DOI: 10.1002/jobm.201700052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/11/2017] [Accepted: 04/09/2017] [Indexed: 11/11/2022]
Abstract
Magnetotactic bacteria (MTB) have started to be employed for the biosynthesis of magnetic nanoparticles, due to the rapidly increasing demand for nanoparticles in biomedical, biotechnology and environmental protection. MBT are the group of prokaryotes that have the ability to produce bio-magnetic minerals or bio-magnetic crystals of either magnetite (Fe3 O4 ) or greigite (Fe3 S4 ) in numerous shapes and size ranges, known as magnetosomes (MS). MS compel MTB to respond to the applied external magnetic field. However, it is extremely difficult to grow MTB and produce high yield of MS under artificial environmental conditions, thus creating a major hurdle to relocate MTB technology from laboratory scale to industrial or commercial level. Therefore, to best of our knowledge this review is the first attempt to highlight existing research developments about the laboratory scale and mass production of MS by MTB. Moreover, the optimum culture media and environmental conditions used for the cultivation of MTB were also considered. Finally, future research is encouraged for the improvement of MS yield which will result in the development of advanced nanotechnology/magnetotechnology.
Collapse
Affiliation(s)
- Imran Ali
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Changsheng Peng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Zahid M Khan
- Department of Agricultural Engineering, Bahauddin Zakariya University, Multan, Pakistan
| | - Iffat Naz
- Department of Biology, Scientific Unit, Deanship of Educational services, Qassim University, Buraidah, Kingdom of Saudi Arabia
| |
Collapse
|
25
|
Jacob JJ, Suthindhiran K. Magnetotactic bacteria and magnetosomes - Scope and challenges. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:919-928. [PMID: 27524094 DOI: 10.1016/j.msec.2016.07.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/24/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
Geomagnetism aided navigation has been demonstrated by certain organisms which allows them to identify a particular location using magnetic field. This attractive technique to recognize the course was earlier exhibited in numerous animals, for example, birds, insects, reptiles, fishes and mammals. Magnetotactic bacteria (MTB) are one of the best examples for magnetoreception among microorganisms as the magnetic mineral functions as an internal magnet and aid the microbe to move towards the water columns in an oxic-anoxic interface (OAI). The ability of MTB to biomineralize the magnetic particles (magnetosomes) into uniform nano-sized, highly crystalline structure with uniform magnetic properties has made the bacteria an important topic of research. The superior properties of magnetosomes over chemically synthesized magnetic nanoparticles made it an attractive candidate for potential applications in microbiology, biophysics, biochemistry, nanotechnology and biomedicine. In this review article, the scope of MTB, magnetosomes and its challenges in research and industrial application have been discussed in brief. This article mainly focuses on the application based on the magnetotactic behaviour of MTB and magnetosomes in different areas of modern science.
Collapse
Affiliation(s)
- Jobin John Jacob
- Marine Biotechnology and Bioproducts Lab, School of Biosciences and Technology, VIT University, Vellore 632014, India
| | - K Suthindhiran
- Marine Biotechnology and Bioproducts Lab, School of Biosciences and Technology, VIT University, Vellore 632014, India.
| |
Collapse
|
26
|
Yan L, Zhang S, Liu H, Wang W, Chen P, Li H. Optimization of magnetosome production by Acidithiobacillus ferrooxidans using desirability function approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:731-739. [PMID: 26652427 DOI: 10.1016/j.msec.2015.10.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/24/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Present study aimed to resolve the conflict between cell growth and magnetosome formation of Acidithiobacillus ferrooxidans (A. ferrooxidans) in batch experiments by applying response surface methodology (RSM) integrated a desirability function approach. The effects of several operating parameters on cell growth (OD600) and magnetosome production (Cmag) were evaluated. The maximum overall desirability (D) of 0.923 was achieved at iron concentration of 125.07mM, shake speed of 122.37rpm and nitrogen concentration of 2.40g/L. Correspondingly, the OD600 and Cmag were 0.522 and 1.196, respectively. The confirmation experiment confirmed that the optimum OD600 and Cmag obtained were in good agreement with the predicted values. The inductively coupled plasma atomic emission spectrometer (ICP-AES) and transmission electron microscopy (TEM) analyses revealed that the production of magnetosomes could be improved via optimization. X-ray diffraction (XRD) showed the magnetosomes are magnetite. Results indicated that RSM with a desirability function was a useful technique to get the maximum OD600 and Cmag simultaneously.
Collapse
Affiliation(s)
- Lei Yan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Shuang Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Hetao Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, PR China
| | - Weidong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| | - Hongyu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
27
|
Wang Y, Lin W, Li J, Zhang T, Li Y, Tian J, Gu L, Heyden YV, Pan Y. Characterizing and optimizing magnetosome production ofMagnetospirillumsp. XM-1 isolated from Xi'an City Moat, China. FEMS Microbiol Lett 2015; 362:fnv167. [DOI: 10.1093/femsle/fnv167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2015] [Indexed: 02/04/2023] Open
|
28
|
Magnetotactic bacteria as potential sources of bioproducts. Mar Drugs 2015; 13:389-430. [PMID: 25603340 PMCID: PMC4306944 DOI: 10.3390/md13010389] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/17/2014] [Indexed: 11/16/2022] Open
Abstract
Magnetotactic bacteria (MTB) produce intracellular organelles called magnetosomes which are magnetic nanoparticles composed of magnetite (Fe3O4) or greigite (Fe3S4) enveloped by a lipid bilayer. The synthesis of a magnetosome is through a genetically controlled process in which the bacterium has control over the composition, direction of crystal growth, and the size and shape of the mineral crystal. As a result of this control, magnetosomes have narrow and uniform size ranges, relatively specific magnetic and crystalline properties, and an enveloping biological membrane. These features are not observed in magnetic particles produced abiotically and thus magnetosomes are of great interest in biotechnology. Most currently described MTB have been isolated from saline or brackish environments and the availability of their genomes has contributed to a better understanding and culturing of these fastidious microorganisms. Moreover, genome sequences have allowed researchers to study genes related to magnetosome production for the synthesis of magnetic particles for use in future commercial and medical applications. Here, we review the current information on the biology of MTB and apply, for the first time, a genome mining strategy on these microorganisms to search for secondary metabolite synthesis genes. More specifically, we discovered that the genome of the cultured MTB Magnetovibrio blakemorei, among other MTB, contains several metabolic pathways for the synthesis of secondary metabolites and other compounds, thereby raising the possibility of the co-production of new bioactive molecules along with magnetosomes by this species.
Collapse
|