1
|
Schumann C, Kugler A, Shah BA, Berggren G, Land H, Blikstad C, Stensjö K. Structure-guided engineering of α-ketoisocaproate dioxygenase increases isobutene production in Synechocystis sp. PCC 6803. Microb Cell Fact 2025; 24:93. [PMID: 40269832 PMCID: PMC12020224 DOI: 10.1186/s12934-025-02708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Isobutene is a promising precursor for jet fuel due to its high energy density and favorable combustion properties. Light-driven bioproduction of isobutene has recently been investigated as an alternative strategy to crude oil refinement or fermentation-based manufacturing processes by harnessing the unicellular cyanobacterium Synechocystis sp. PCC 6803 and the α-ketoisocaproate dioxygenase (RnKICD) from Rattus norvegicus. However, the obtained production level was not sufficient, partially due to the promiscuous activity of RnKICD. The enzyme catalyzes both the reaction with ρ-hydroxyphenylpyruvate (HPP) for homogentisate formation, as well as the reaction with α-ketoisocaproate (KIC), the precursor for isobutene synthesis. Here, to overcome this bottleneck step in the isobutene biosynthesis, protein engineering was employed to improve RnKICD activity and in vivo isobutene production. Purified RnKICD variants were characterized by measuring in vitro KIC and HPP consumption rates, as well as isobutene formation rate. The active site mutations F336V, N363A altered the KIC and HPP consumption rates, while the KIC-to-isobutene conversion ratio was only marginally affected. Besides, the RnKICD variants F336V, N363A and F336V/N363A exhibited a substantially enhanced substrate selectivity for KIC over HPP. Among the examined engineered Synechocystis strains, Syn-F336V showed a 4-fold improvement in isobutene production, compared to the base strain (Syn-RnKICD). Our findings reveal that residues F336 and N363 play a crucial role in substrate interactions, as targeted mutations at these sites shifted the substrate selectivity towards KIC while F336V elevated the in vivo isobutene production levels significantly. We conclude that engineering the active site of RnKICD is a potent tool for improving isobutene bioproduction in Synechocystis.
Collapse
Affiliation(s)
- Conrad Schumann
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Amit Kugler
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Bhavik Ashwin Shah
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Gustav Berggren
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Henrik Land
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Cecilia Blikstad
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden
| | - Karin Stensjö
- Department of Chemistry-Ångström Laboratory, Uppsala University, 751 20, Uppsala, Sweden.
| |
Collapse
|
2
|
Qian X, Sarsaiya S, Dong Y, Yu T, Chen J. Recent Advances and New Insights in Genome Analysis and Transcriptomic Approaches to Reveal Enzymes Associated with the Biosynthesis of Dendrobine-Type Sesquiterpenoid Alkaloids (DTSAs) from the Last Decade. Molecules 2024; 29:3787. [PMID: 39202866 PMCID: PMC11356883 DOI: 10.3390/molecules29163787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Dendrobium species, which are perennial herbs widely distributed in tropical and subtropical regions, are notable for their therapeutic properties attributed to various bioactive compounds, including dendrobine-type sesquiterpenoid alkaloids (DTSAs). The objective of this review article is to provide a comprehensive overview of recent advances in the biosynthesis of DTSAs, including their extraction from Dendrobium species and endophytes, elucidation of associated genes through genomic and transcriptomic sequencing in both Dendrobium spp. and endophytes, exploration of the biosynthetic pathways of DTSAs, and drawing conclusions and outlining future perspectives in this field. Alkaloids, predominantly nitrogen-containing compounds found in medicinal orchids, include over 140 types discovered across more than 50 species. DTSAs, identified in 37 picrotoxane alkaloids, have a distinctive five-membered nitrogen heterocyclic ring. This review highlights endophytic fungi as alternative sources of DTSAs, emphasizing their potential in pharmaceutical applications when plant-derived compounds are scarce or complex. Genomic and transcriptomic sequencing of Dendrobium spp. and their endophytes has identified key genes involved in DTSAs biosynthesis, elucidating pathways such as the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways. Genes encoding enzymes, such as acetyl-CoA C-acetyltransferase and diphosphomevalonate decarboxylase, are positively associated with dendrobine production. Despite significant advancements, the complexity of terpenoid biosynthesis in different subcellular compartments remains a challenge. Future research should focus on leveraging high-quality genomic data and omics technologies to further understand and manipulate the biosynthetic pathways of DTSAs and enhance their medicinal use.
Collapse
Affiliation(s)
- Xu Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Surendra Sarsaiya
- Bioresource Institute of Healthy Utilization, Zunyi Medical University, Zunyi 563000, China
| | - Yuanyuan Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Tuifan Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jishuang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
- Bioresource Institute of Healthy Utilization, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
3
|
Golyshina OV, Lunev EA, Distaso MA, Bargiela R, Gaines MC, Daum B, Ferrer M, Bale NJ, Koenen M, Damsté JSS, Yakimov MM, Golyshin PN. Oxyplasma meridianum gen. nov., sp. nov., an extremely acidophilic organotrophic member of the order Thermoplasmatales. Int J Syst Evol Microbiol 2024; 74:006499. [PMID: 39190454 PMCID: PMC11349054 DOI: 10.1099/ijsem.0.006499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
A mesophilic, hyperacidophilic archaeon, strain M1T, was isolated from a rock sample from Vulcano Island, Italy. Cells of this organism were cocci with an average diameter of 1 µm. Some cells possessed filaments. The strain grew in the range of temperatures between 15 and 52 °C and pH 0.5-4.0 with growth optima at 40 °C and pH 1.0. Strain M1T was aerobic and chemoorganotrophic, growing on complex substrates, such as casamino acids, trypticase, tryptone, yeast and beef extracts. No growth at expenses of oxidation of elemental sulphur or reduced sulphur compounds, pyrite, or ferrous sulphate was observed. The core lipids were glycerol dibiphytanyl glycerol tetraether lipids (membrane spanning) with 0 to 4 cyclopentane moieties and archaeol, with trace amounts of hydroxy archaeol. The dominant quinone was MK-7 : 7. The genome size of M1T was 1.67 Mbp with a G+C content of 39.76 mol%, and both characteristics were well within the common range for Thermoplasmatales. The phylogenetic analysis based on 16S rRNA gene sequence placed the strain M1T within the order Thermoplasmatales with sequence identities of 90.9, 90.3 and 90.5% to the closest SSU rRNA gene sequences from organisms with validly published names, Thermoplasma acidophilum, Thermoplasma volcanium and Thermogymnomonas acidicola, respectively. Based on the results of our genomic, phylogenetic, physiological and chemotaxonomic studies, we propose that strain M1T (=DSM 116605T=JCM 36570T) represents a new genus and species, Oxyplasma meridianum gen. nov., sp. nov., within the order Thermoplasmatales.
Collapse
Affiliation(s)
- Olga V. Golyshina
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Evgenii A. Lunev
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Marco A. Distaso
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Rafael Bargiela
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
| | - Matthew C. Gaines
- Living Systems Institute and Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Bertram Daum
- Living Systems Institute and Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, Madrid, Spain
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | | | - Peter N. Golyshin
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| |
Collapse
|
4
|
Zhang X, Wang X, Zhang Y, Wang F, Zhang C, Li X. Development of isopentenyl phosphate kinases and their application in terpenoid biosynthesis. Biotechnol Adv 2023; 64:108124. [PMID: 36863457 DOI: 10.1016/j.biotechadv.2023.108124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
As the largest class of natural products, terpenoids (>90,000) have multiple biological activities and a wide range of applications (e.g., pharmaceutical, agricultural, personal care and food industries). Therefore, the sustainable production of terpenoids by microorganisms is of great interest. Microbial terpenoid production depends on two common building blocks: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In addition to the natural biosynthetic pathways, mevalonate and methyl-D-erythritol-4-phosphate pathways, IPP and DMAPP can be produced through the conversion of isopentenyl phosphate and dimethylallyl monophosphate by isopentenyl phosphate kinases (IPKs), offering an alternative route for terpenoid biosynthesis. This review summarizes the properties and functions of various IPKs, novel IPP/DMAPP synthesis pathways involving IPKs, and their applications in terpenoid biosynthesis. Furthermore, we have discussed strategies to exploit novel pathways and unleash their potential for terpenoid biosynthesis.
Collapse
Affiliation(s)
- Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Komeyama M, Kanno K, Mino H, Yasuno Y, Shinada T, Ito T, Hemmi H. A [4Fe-4S] cluster resides at the active center of phosphomevalonate dehydratase, a key enzyme in the archaeal modified mevalonate pathway. Front Microbiol 2023; 14:1150353. [PMID: 36992929 PMCID: PMC10040528 DOI: 10.3389/fmicb.2023.1150353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/22/2023] [Indexed: 03/15/2023] Open
Abstract
The recent discovery of the archaeal modified mevalonate pathway revealed that the fundamental units for isoprenoid biosynthesis (isopentenyl diphosphate and dimethylallyl diphosphate) are biosynthesized via a specific intermediate, trans-anhydromevalonate phosphate. In this biosynthetic pathway, which is unique to archaea, the formation of trans-anhydromevalonate phosphate from (R)-mevalonate 5-phosphate is catalyzed by a key enzyme, phosphomevalonate dehydratase. This archaea-specific enzyme belongs to the aconitase X family within the aconitase superfamily, along with bacterial homologs involved in hydroxyproline metabolism. Although an iron–sulfur cluster is thought to exist in phosphomevalonate dehydratase and is believed to be responsible for the catalytic mechanism of the enzyme, the structure and role of this cluster have not been well characterized. Here, we reconstructed the iron–sulfur cluster of phosphomevalonate dehydratase from the hyperthermophilic archaeon Aeropyrum pernix to perform biochemical characterization and kinetic analysis of the enzyme. Electron paramagnetic resonance, iron quantification, and mutagenic studies of the enzyme demonstrated that three conserved cysteine residues coordinate a [4Fe-4S] cluster—as is typical in aconitase superfamily hydratases/dehydratases, in contrast to bacterial aconitase X-family enzymes, which have been reported to harbor a [2Fe-2S] cluster.
Collapse
Affiliation(s)
- Mutsumi Komeyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Kohsuke Kanno
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroyuki Mino
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka Metropolitan University, Sugimoto, Osaka, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka Metropolitan University, Sugimoto, Osaka, Japan
| | - Tomokazu Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Hemmi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- *Correspondence: Hisashi Hemmi,
| |
Collapse
|
6
|
Aoki M, Vinokur J, Motoyama K, Ishikawa R, Collazo M, Cascio D, Sawaya MR, Ito T, Bowie JU, Hemmi H. Crystal structure of mevalonate 3,5-bisphosphate decarboxylase reveals insight into the evolution of decarboxylases in the mevalonate metabolic pathways. J Biol Chem 2022; 298:102111. [PMID: 35690147 PMCID: PMC9254496 DOI: 10.1016/j.jbc.2022.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Mevalonate 3,5-bisphosphate decarboxylase is involved in the recently discovered Thermoplasma-type mevalonate pathway. The enzyme catalyzes the elimination of the 3-phosphate group from mevalonate 3,5-bisphosphate as well as concomitant decarboxylation of the substrate. This entire reaction of the enzyme resembles the latter half-reactions of its homologs, diphosphomevalonate decarboxylase and phosphomevalonate decarboxylase, which also catalyze ATP-dependent phosphorylation of the 3-hydroxyl group of their substrates. However, the crystal structure of mevalonate 3,5-bisphosphate decarboxylase and the structural reasons of the difference between reactions catalyzed by the enzyme and its homologs are unknown. In this study, we determined the X-ray crystal structure of mevalonate 3,5-bisphosphate decarboxylase from Picrophilus torridus, a thermoacidophilic archaeon of the order Thermoplasmatales. Structural and mutational analysis demonstrated the importance of a conserved aspartate residue for enzyme activity. In addition, although crystallization was performed in the absence of substrate or ligands, residual electron density having the shape of a fatty acid was observed at a position overlapping the ATP-binding site of the homologous enzyme, diphosphomevalonate decarboxylase. This finding is in agreement with the expected evolutionary route from phosphomevalonate decarboxylase (ATP-dependent) to mevalonate 3,5-bisphosphate decarboxylase (ATP-independent) through the loss of kinase activity. We found that the binding of geranylgeranyl diphosphate, an intermediate of the archeal isoprenoid biosynthesis pathway, evoked significant activation of mevalonate 3,5-bisphosphate decarboxylase, and several mutations at the putative geranylgeranyl diphosphate-binding site impaired this activation, suggesting the physiological importance of ligand binding as well as a possible novel regulatory system employed by the Thermoplasma-type mevalonate pathway.
Collapse
Affiliation(s)
- Mizuki Aoki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, Aichi, Japan
| | - Jeffrey Vinokur
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Kento Motoyama
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, Aichi, Japan
| | - Rino Ishikawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, Aichi, Japan
| | - Michael Collazo
- Departments of Biological Chemistry, UCLA-DOE Institute of Genomics and Proteomics, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Duilio Cascio
- Departments of Biological Chemistry, UCLA-DOE Institute of Genomics and Proteomics, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Michael R Sawaya
- UCLA-DOE Institute of Genomics and Proteomics, Howard Hughes Medical Institute, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Tomokazu Ito
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, Aichi, Japan
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Hisashi Hemmi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, Aichi, Japan.
| |
Collapse
|
7
|
Johnson BP, Kumar V, Scull EM, Thomas LM, Bourne CR, Singh S. Molecular Basis for the Substrate Promiscuity of Isopentenyl Phosphate Kinase from Candidatus methanomethylophilus alvus. ACS Chem Biol 2022; 17:85-102. [PMID: 34905349 PMCID: PMC9745668 DOI: 10.1021/acschembio.1c00655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Isopentenyl phosphate kinases (IPKs) catalyze the ATP-dependent phosphorylation of isopentenyl monophosphate (IP) to isopentenyl diphosphate (IPP) in the alternate mevalonate pathways of the archaea and plant cytoplasm. In recent years, IPKs have also been employed in artificial biosynthetic pathways called "(iso) prenol pathways" that utilize promiscuous kinases to sequentially phosphorylate (iso) prenol and generate the isoprenoid precursors IPP and dimethylallyl diphosphate (DMAPP). Furthermore, IPKs have garnered attention for their impressive substrate promiscuity toward non-natural alkyl-monophosphates (alkyl-Ps), which has prompted their utilization as biocatalysts for the generation of novel isoprenoids. However, none of the IPK crystal structures currently available contain non-natural substrates, leaving the roles of active-site residues in substrate promiscuity ambiguous. To address this, we present herein the high-resolution crystal structures of an IPK from Candidatus methanomethylophilus alvus (CMA) in the apo form and bound to natural and non-natural substrates. Additionally, we describe active-site engineering studies leading to enzyme variants with broadened substrate scope, as well as structure determination of two such variants (Ile74Ala and Ile146Ala) bound to non-natural alkyl-Ps. Collectively, our crystallographic studies compare six structures of CMA variants in different ligand-bound forms and highlight contrasting structural dynamics of the two substrate-binding sites. Furthermore, the structural and mutational studies confirm a novel role of the highly conserved DVTGG motif in catalysis, both in CMA and in IPKs at large. As such, the current study provides a molecular basis for the substrate-binding modes and catalytic performance of CMA toward the goal of developing IPKs into useful biocatalysts.
Collapse
Affiliation(s)
- Bryce P. Johnson
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Vikas Kumar
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Erin M. Scull
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Leonard M. Thomas
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Christina R. Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| | - Shanteri Singh
- Department of Chemistry and Biochemistry, University of Oklahoma, Stephenson Life Sciences Research Center, Norman, Oklahoma 73019, United States
| |
Collapse
|
8
|
Cui M, Lin L, Guo H, Zhang D, Zhang J, Cheng W, Song X, Xing Z, Long Y. In silico/computational analysis of mevalonate pyrophosphate decarboxylase gene families in Campanulids. Open Life Sci 2021; 16:1022-1036. [PMID: 34616915 PMCID: PMC8462128 DOI: 10.1515/biol-2021-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/15/2022] Open
Abstract
Mevalonate pyrophosphate decarboxylase (MPD) is a key enzyme in terpenoid biosynthesis. MPD plays an important role in the upstream regulation of secondary plant metabolism. However, studies on the MPD gene are relatively very few despite its importance in plant metabolism. Currently, no systematic analysis has been conducted on the MPD gene in plants under the order Apiales, which comprises important medicinal plants such as Panax ginseng and Panax notoginseng. This study sought to explore the structural characteristics of the MPD gene and the effect of adaptive evolution on the gene by comparing and analyzing MPD gene sequences of different campanulids species. For that, phylogenetic and adaptive evolution analyses were carried out using sequences for 11 Campanulids species. MPD sequence characteristics of each species were then analyzed, and the collinearity analysis of the genes was performed. As a result, a total of 21 MPD proteins were identified in 11 Campanulids species through BLAST analysis. Phylogenetic analysis, physical and chemical properties prediction, gene family analysis, and gene structure prediction showed that the MPD gene has undergone purifying selection and exhibited highly conserved structure. Analysis of physicochemical properties further showed that the MPD protein was a hydrophilic protein without a transmembrane region. Moreover, collinearity analysis in Apiales showed that MPD gene on chromosome 2 of D. carota and chromosome 1 of C. sativum were collinear. The findings showed that MPD gene is highly conserved. This may be a common characteristic of all essential enzymes in the biosynthesis pathways of medicinal plants. Notably, MPD gene is significantly affected by environmental factors which subsequently modulate its expression. The current study’s findings provide a basis for follow-up studies on MPD gene and key enzymes in other medicinal plants.
Collapse
Affiliation(s)
- Minghui Cui
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Limei Lin
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Hongyu Guo
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Duoduo Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Jie Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Wenwen Cheng
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xin Song
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Zhaobin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yuehong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
9
|
Kumar V, Johnson BP, Dimas DA, Singh S. Novel Homologs of Isopentenyl Phosphate Kinase Reveal Class-Wide Substrate Flexibility. ChemCatChem 2021; 13:3781-3788. [PMID: 34630731 PMCID: PMC8500459 DOI: 10.1002/cctc.202100595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Indexed: 12/26/2022]
Abstract
The widespread utility of isoprenoids has recently sparked interest in efficient synthesis of isoprene-diphosphate precursors. Current efforts have focused on evaluating two-step "isoprenol pathways," which phosphorylate prenyl alcohols using promiscuous kinases/phosphatases. The convergence on isopentenyl phosphate kinases (IPKs) in these schemes has prompted further speculation about the class's utility in synthesizing non-natural isoprenoids. However, the substrate promiscuity of IPKs in general has been largely unexplored. Towards this goal, we report the biochemical characterization of five novel IPKs from Archaea and the assessment of their substrate specificity using 58 alkyl-monophosphates. This study reveals the IPK-catalyzed synthesis of 38 alkyl-diphosphate analogs and discloses broad substrate specificity of IPKs. Further, to demonstrate the biocatalytic utility of IPK-generated alkyl-diphosphates, we also highlight the synthesis of alkyl-l-tryptophan derivatives using coupled IPK-prenyltransferase reactions. These results reveal IPK-catalyzed reactions are compatible with downstream isoprenoid enzymes and further support their development as biocatalytic tools for the synthesis of non-natural isoprenoids.
Collapse
Affiliation(s)
- Vikas Kumar
- Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019 (USA)
| | - Bryce P Johnson
- Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019 (USA)
| | - Dustin A Dimas
- Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019 (USA)
| | - Shanteri Singh
- Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019 (USA)
| |
Collapse
|
10
|
Saaret A, Villiers B, Stricher F, Anissimova M, Cadillon M, Spiess R, Hay S, Leys D. Directed evolution of prenylated FMN-dependent Fdc supports efficient in vivo isobutene production. Nat Commun 2021; 12:5300. [PMID: 34489427 PMCID: PMC8421414 DOI: 10.1038/s41467-021-25598-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022] Open
Abstract
Isobutene is a high value gaseous alkene used as fuel additive and a chemical building block. As an alternative to fossil fuel derived isobutene, we here develop a modified mevalonate pathway for the production of isobutene from glucose in vivo. The final step in the pathway consists of the decarboxylation of 3-methylcrotonic acid, catalysed by an evolved ferulic acid decarboxylase (Fdc) enzyme. Fdc belongs to the prFMN-dependent UbiD enzyme family that catalyses reversible decarboxylation of (hetero)aromatic acids or acrylic acids with extended conjugation. Following a screen of an Fdc library for inherent 3-methylcrotonic acid decarboxylase activity, directed evolution yields variants with up to an 80-fold increase in activity. Crystal structures of the evolved variants reveal that changes in the substrate binding pocket are responsible for increased selectivity. Solution and computational studies suggest that isobutene cycloelimination is rate limiting and strictly dependent on presence of the 3-methyl group. Isobutene is a high value gaseous alkene that is widely used as fuel additive and a chemical building block. Here, the authors report an alternative pathway for isobutene bioproduction by directed evolution of prenylated FMN-dependent ferulic acid decarboxylase.
Collapse
Affiliation(s)
- Annica Saaret
- Department of Chemistry, Manchester Institute for Biotechnology, University of Manchester, Manchester, UK
| | | | | | | | | | - Reynard Spiess
- Department of Chemistry, Manchester Institute for Biotechnology, University of Manchester, Manchester, UK
| | - Sam Hay
- Department of Chemistry, Manchester Institute for Biotechnology, University of Manchester, Manchester, UK
| | - David Leys
- Department of Chemistry, Manchester Institute for Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Mustila H, Kugler A, Stensjö K. Isobutene production in Synechocystis sp. PCC 6803 by introducing α-ketoisocaproate dioxygenase from Rattus norvegicus. Metab Eng Commun 2021; 12:e00163. [PMID: 33552898 PMCID: PMC7856465 DOI: 10.1016/j.mec.2021.e00163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Cyanobacteria can be utilized as a platform for direct phototrophic conversion of CO2 to produce several types of carbon-neutral biofuels. One promising compound to be produced photobiologically in cyanobacteria is isobutene. As a volatile compound, isobutene will quickly escape the cells without building up to toxic levels in growth medium or get caught in the membranes. Unlike liquid biofuels, gaseous isobutene may be collected from the headspace and thus avoid the costly extraction of a chemical from culture medium or from cells. Here we investigate a putative synthetic pathway for isobutene production suitable for a photoautotrophic host. First, we expressed α-ketoisocaproate dioxygenase from Rattus norvegicus (RnKICD) in Escherichia coli. We discovered isobutene formation with the purified RnKICD with the rate of 104.6 ± 9 ng (mg protein)-1 min-1 using α-ketoisocaproate as a substrate. We further demonstrate isobutene production in the cyanobacterium Synechocystis sp. PCC 6803 by introducing the RnKICD enzyme. Synechocystis strain heterologously expressing the RnKICD produced 91 ng l−1 OD750−1 h−1. Thus, we demonstrate a novel sustainable platform for cyanobacterial production of an important building block chemical, isobutene. These results indicate that RnKICD can be used to further optimize the synthetic isobutene pathway by protein and metabolic engineering efforts. Photosynthetic isobutene production is demonstrated in a cyanobacterium. A Synechocystis strain capable of continuous direct conversion of CO2 to isobutene. α-ketoisocaproate dioxygenase from R. norvegicus (RnKICD) is determined to form isobutene. RnKICD can convert α-ketoisocaproate to isobutene both in vitro and in vivo.
Collapse
Affiliation(s)
- Henna Mustila
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| |
Collapse
|
12
|
Qian W, Wu J, Tang H, Zhen Q, Ge H, Gao J, Chen J, Chang Y, Wang W, Sun L. Mutation Analysis of the MVD Gene in a Chinese Family with Disseminated Superficial Actinic Porokeratosis and a Chinese Literature Review. Indian J Dermatol 2021; 66:126-131. [PMID: 34188266 PMCID: PMC8208265 DOI: 10.4103/ijd.ijd_226_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Porokeratosis (PK) is a rare, heterogeneous group of keratinization disorders with an autosomal dominant inheritance pattern and is characterized by the presence of cornoid lamella. Disseminated superficial actinic PK is the most encountered subtype and typically manifests as multiple, small annular plaques with atrophic centers and slightly raised hyperkeratotic edges. Seven associated mutations (SSH1, SART3, MVKP, MVK, MVD, FDPS, and SLC17A9) have been reported in disseminated superficial actinic PK patients. Aim: We searched a Chinese disseminated superficial porokeratosis (DSAP) family to detect the causative genes. In the meantime, we reviewed the articles reported about DSAP in Chinese population, summarizing their clinical manifestations and discussing the incidence of DSAP in Chinese population. Materials and Methods: Sanger sequencing on the MVD and MVK genes was performed to identify the pathogenic mutation in a Chinese family with DSAP. Literature for DSAP cases reported in Chinese populations was searched by Sinomed and PubMed. Results: We identified the c. 875A > G (p. Asn292Ser) mutation in the MVD gene in the family. Conclusions: That mutation was a hotspot mutation. Literature review showed that the age of onset in DSAP family was earlier than that in sporadic patients; the lesion is common in the face in Chinese population which is distinct from studies in Caucasians; ultraviolet exposure is the main aggravating factor.
Collapse
Affiliation(s)
- Wenjun Qian
- Department of Dermatology at First Hospital, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Jing Wu
- Department of Dermatology at First Hospital, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Huayang Tang
- Department of Dermatology at First Hospital, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Qi Zhen
- Department of Dermatology at First Hospital, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Huiyao Ge
- Department of Dermatology at First Hospital, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Jinping Gao
- Department of Dermatology at First Hospital, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Jingjing Chen
- Department of Dermatology at First Hospital, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Yuling Chang
- Department of Dermatology at First Hospital, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Wenjun Wang
- Department of Dermatology at First Hospital, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China
| | - Liangdan Sun
- Department of Dermatology at First Hospital, Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Department of Dermatology, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, China.,Department of Dermatology, Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| |
Collapse
|
13
|
McClory J, Hui C, Zhang J, Huang M. The phosphorylation mechanism of mevalonate diphosphate decarboxylase: a QM/MM study. Org Biomol Chem 2020; 18:518-529. [PMID: 31854421 DOI: 10.1039/c9ob02254f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mevalonate diphosphate decarboxylase (MDD) catalyses a crucial step of the mevalonate pathway via Mg2+-ATP-dependent phosphorylation and decarboxylation reactions to ultimately produce isopentenyl diphosphate, the precursor of isoprenoids, which is essential to bacterial functions and provides ideal building blocks for the biosynthesis of isopentenols. However, the metal ion(s) in MDD has not been unambiguously resolved, which limits the understanding of the catalytic mechanism and the exploitation of enzymes for the development of antibacterial therapies or the mevalonate metabolic pathway for the biosynthesis of biofuels. Here by analogizing structurally related kinases and molecular dynamics simulations, we constructed a model of the MDD-substrate-ATP-Mg2+ complex and proposed that MDD requires two Mg2+ ions for maintaining a catalytically active conformation. Subsequent QM/MM studies indicate that MDD catalyses the phosphorylation of its substrate mevalonate diphosphate (MVAPP) via a direct phosphorylation reaction, instead of the previously assumed catalytic base mechanism. The results here would shed light on the active conformation of MDD-related enzymes and their catalytic mechanisms and therefore be useful for developing novel antimicrobial therapies or reconstructing mevalonate metabolic pathways for the biosynthesis of biofuels.
Collapse
Affiliation(s)
- James McClory
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK.
| | | | | | | |
Collapse
|
14
|
Abstract
Isoprenoids and their derivatives represent the largest group of organic compounds in nature and are distributed universally in the three domains of life. Isoprenoids are biosynthesized from isoprenyl diphosphate units, generated by two distinctive biosynthetic pathways: mevalonate pathway and methylerthritol 4-phosphate pathway. Archaea and eukaryotes exclusively have the former pathway, while most bacteria have the latter. Some bacteria, however, are known to possess the mevalonate pathway genes. Understanding the evolutionary history of these two isoprenoid biosynthesis pathways in each domain of life is critical since isoprenoids are so interweaved in the architecture of life that they would have had indispensable roles in the early evolution of life. Our study provides a detailed phylogenetic analysis of enzymes involved in the mevalonate pathway and sheds new light on its evolutionary history. The results suggest that a potential mevalonate pathway is present in the recently discovered superphylum Candidate Phyla Radiation (CPR), and further suggest a strong evolutionary relationship exists between archaea and CPR. Interestingly, CPR harbors the characteristics of both the bacterial-type and archaeal-type mevalonate pathways and may retain signatures regarding the ancestral isoprenoid biosynthesis pathway in the last universal common ancestor. Our study supports the ancient origin of the mevalonate pathway in the three domains of life as previously inferred, but concludes that the evolution of the mevalonate pathway was more complex.
Collapse
Affiliation(s)
- Yosuke Hoshino
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Eric A Gaucher
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA.,School of Chemistry and Biochemistry, and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA.,Department of Biology, Georgia State University, Atlanta, GA
| |
Collapse
|
15
|
Thomas ST, Louie GV, Lubin JW, Lundblad V, Noel JP. Substrate Specificity and Engineering of Mevalonate 5-Phosphate Decarboxylase. ACS Chem Biol 2019; 14:1767-1779. [PMID: 31268677 DOI: 10.1021/acschembio.9b00322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A bifurcation of the mevalonate (MVA) pathway was recently discovered in bacteria of the Chloroflexi phylum. In this alternative route for the biosynthesis of isopentenylpyrophosphate (IPP), the penultimate step is the decarboxylation of (R)-mevalonate 5-phosphate ((R)-MVAP) to isopentenyl phosphate (IP), which is followed by the ATP-dependent phosphorylation of IP to IPP catalyzed by isopentenyl phosphate kinase (IPK). Notably, the decarboxylation reaction is catalyzed by mevalonate 5-phosphate decarboxylase (MPD), which shares considerable sequence similarity with mevalonate diphosphate decarboxylase (MDD) of the classical MVA pathway. We show that an enzyme originally annotated as an MDD from the Chloroflexi bacterium Anaerolinea thermophila possesses equal catalytic efficiency for (R)-MVAP and (R)-mevalonate 5-diphosphate ((R)-MVAPP). Further, the molecular basis for this dual specificity is revealed by near atomic-resolution X-ray crystal structures of A. thermophila MPD/MDD bound to (R)-MVAP or (R)-MVAPP. These findings, when combined with sequence and structural comparisons of this bacterial enzyme, functional MDDs, and several putative MPDs, delineate key active-site residues that confer substrate specificity and functionally distinguish MPD and MDD enzyme classes. Extensive sequence analyses identified functional MPDs in the halobacteria class of archaea that had been annotated as MDDs. Finally, no eukaryotic MPD candidates were identified, suggesting the absence of the alternative MVA (altMVA) pathway in all eukaryotes, including, paradoxically, plants, which universally encode a structural and functional homologue of IPK. Additionally, we have developed a viable engineered strain of Saccharomyces cerevisiae as an in vivo metabolic model and a synthetic biology platform for enzyme engineering and terpene biosynthesis in which the classical MVA pathway has been replaced with the altMVA pathway.
Collapse
|
16
|
Conversion of Mevalonate 3-Kinase into 5-Phosphomevalonate 3-Kinase by Single Amino Acid Mutations. Appl Environ Microbiol 2019; 85:AEM.00256-19. [PMID: 30824437 DOI: 10.1128/aem.00256-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 11/20/2022] Open
Abstract
Mevalonate 3-kinase plays a key role in a recently discovered modified mevalonate pathway specific to thermophilic archaea of the order Thermoplasmatales The enzyme is homologous to diphosphomevalonate decarboxylase, which is involved in the widely distributed classical mevalonate pathway, and to phosphomevalonate decarboxylase, which is possessed by halophilic archaea and some Chloroflexi bacteria. Mevalonate 3-kinase catalyzes the ATP-dependent 3-phosphorylation of mevalonate but does not catalyze the subsequent decarboxylation as related decarboxylases do. In this study, a substrate-interacting glutamate residue of Thermoplasma acidophilum mevalonate 3-kinase was replaced by smaller amino acids, including its counterparts in diphosphomevalonate decarboxylase and phosphomevalonate decarboxylase, with the aim of altering substrate specificity. These single amino acid mutations resulted in the conversion of mevalonate 3-kinase into 5-phosphomevalonate 3-kinase, which can synthesize 3,5-bisphosphomevalonate from 5-phosphomevalonate. The mutants catalyzing the hitherto undiscovered reaction enabled the construction of an artificial mevalonate pathway in Escherichia coli cells, as was demonstrated by the accumulation of lycopene, a red carotenoid pigment.IMPORTANCE Isoprenoid is the largest family of natural compounds, including important bioactive molecules such as vitamins, hormones, and natural medicines. The mevalonate pathway is a target for metabolic engineering because it supplies precursors for isoprenoid biosynthesis. Mevalonate 3-kinase is an enzyme involved in the modified mevalonate pathway specific to limited species of thermophilic archaea. Replacement of a single amino acid residue in the active site of the enzyme changed its substrate preference and allowed the mutant enzymes to catalyze a previously undiscovered reaction. Using the genes encoding the mutant enzymes and other archaeal enzymes, we constructed an artificial mevalonate pathway, which can produce the precursor of isoprenoid through an unexplored route, in bacterial cells.
Collapse
|
17
|
Liman GLS, Hulko T, Febvre HP, Brachfeld AC, Santangelo TJ. A linear pathway for mevalonate production supports growth of Thermococcus kodakarensis. Extremophiles 2019; 23:229-238. [PMID: 30673855 DOI: 10.1007/s00792-019-01076-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/13/2019] [Indexed: 10/27/2022]
Abstract
The sole unifying feature of Archaea is the use of isoprenoid-based glycerol lipid ethers to compose cellular membranes. The branched hydrocarbon tails of archaeal lipids are synthesized via the polymerization of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), but many questions still surround the pathway(s) that result in production of IPP and DMAPP in archaeal species. Isotopic-labeling strategies argue for multiple biological routes for production of mevalonate, but biochemical and bioinformatic studies support only a linear pathway for mevalonate production. Here, we use a combination of genetic and biochemical assays to detail the production of mevalonate in the model archaeon Thermococcus kodakarensis. We demonstrate that a single, linear pathway to mevalonate biosynthesis is essential and that alternative routes of mevalonate production, if present, are not biologically sufficient to support growth in the absence of the classical mevalonate pathway resulting in IPP production from acetyl-CoA. Archaeal species provide an ideal platform for production of high-value isoprenoids in large quantities, and the results obtained provide avenues to further increase the production of mevalonate to drive isoprenoid production in archaeal hosts.
Collapse
Affiliation(s)
- Geraldy L S Liman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Tyler Hulko
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Hallie P Febvre
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Aaron C Brachfeld
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
18
|
Yang J, Zhang CT, Yuan XJ, Zhang M, Mo XH, Tan LL, Zhu LP, Chen WJ, Yao MD, Hu B, Yang S. Metabolic engineering of Methylobacterium extorquens AM1 for the production of butadiene precursor. Microb Cell Fact 2018; 17:194. [PMID: 30572892 PMCID: PMC6300920 DOI: 10.1186/s12934-018-1042-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Butadiene is a platform chemical used as an industrial feedstock for the manufacture of automobile tires, synthetic resins, latex and engineering plastics. Currently, butadiene is predominantly synthesized as a byproduct of ethylene production from non-renewable petroleum resources. Although the idea of biological synthesis of butadiene from sugars has been discussed in the literature, success for that goal has so far not been reported. As a model system for methanol assimilation, Methylobacterium extorquens AM1 can produce several unique metabolic intermediates for the production of value-added chemicals, including crotonyl-CoA as a potential precursor for butadiene synthesis. RESULTS In this work, we focused on constructing a metabolic pathway to convert crotonyl-CoA into crotyl diphosphate, a direct precursor of butadiene. The engineered pathway consists of three identified enzymes, a hydroxyethylthiazole kinase (THK) from Escherichia coli, an isopentenyl phosphate kinase (IPK) from Methanothermobacter thermautotrophicus and an aldehyde/alcohol dehydrogenase (ADHE2) from Clostridium acetobutylicum. The Km and kcat of THK, IPK and ADHE2 were determined as 8.35 mM and 1.24 s-1, 1.28 mM and 153.14 s-1, and 2.34 mM and 1.15 s-1 towards crotonol, crotyl monophosphate and crotonyl-CoA, respectively. Then, the activity of one of rate-limiting enzymes, THK, was optimized by random mutagenesis coupled with a developed high-throughput screening colorimetric assay. The resulting variant (THKM82V) isolated from over 3000 colonies showed 8.6-fold higher activity than wild-type, which helped increase the titer of crotyl diphosphate to 0.76 mM, corresponding to a 7.6% conversion from crotonol in the one-pot in vitro reaction. Overexpression of native ADHE2, IPK with THKM82V under a strong promoter mxaF in M. extorquens AM1 did not produce crotyl diphosphate from crotonyl-CoA, but the engineered strain did generate 0.60 μg/mL of intracellular crotyl diphosphate from exogenously supplied crotonol at mid-exponential phase. CONCLUSIONS These results represent the first step in producing a butadiene precursor in recombinant M. extorquens AM1. It not only demonstrates the feasibility of converting crotonol to key intermediates for butadiene biosynthesis, it also suggests future directions for improving catalytic efficiency of aldehyde/alcohol dehydrogenase to produce butadiene precursor from methanol.
Collapse
Affiliation(s)
- Jing Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Chang-Tai Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Xiao-Jie Yuan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Min Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Xu-Hua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Ling-Ling Tan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Li-Ping Zhu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Wen-Jing Chen
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
| | - Ming-Dong Yao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Bo Hu
- Industrial Product Division, Intrexon Corporation, South San Francisco, CA 94080 USA
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, Shandong China
| |
Collapse
|
19
|
Modified mevalonate pathway of the archaeon Aeropyrum pernix proceeds via trans-anhydromevalonate 5-phosphate. Proc Natl Acad Sci U S A 2018; 115:10034-10039. [PMID: 30224495 DOI: 10.1073/pnas.1809154115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The modified mevalonate pathway is believed to be the upstream biosynthetic route for isoprenoids in general archaea. The partially identified pathway has been proposed to explain a mystery surrounding the lack of phosphomevalonate kinase and diphosphomevalonate decarboxylase by the discovery of a conserved enzyme, isopentenyl phosphate kinase. Phosphomevalonate decarboxylase was considered to be the missing link that would fill the vacancy in the pathway between mevalonate 5-phosphate and isopentenyl phosphate. This enzyme was recently discovered from haloarchaea and certain Chroloflexi bacteria, but their enzymes are close homologs of diphosphomevalonate decarboxylase, which are absent in most archaea. In this study, we used comparative genomic analysis to find two enzymes from a hyperthermophilic archaeon, Aeropyrum pernix, that can replace phosphomevalonate decarboxylase. One enzyme, which has been annotated as putative aconitase, catalyzes the dehydration of mevalonate 5-phosphate to form a previously unknown intermediate, trans-anhydromevalonate 5-phosphate. Then, another enzyme belonging to the UbiD-decarboxylase family, which likely requires a UbiX-like partner, converts the intermediate into isopentenyl phosphate. Their activities were confirmed by in vitro assay with recombinant enzymes and were also detected in cell-free extract from A. pernix These data distinguish the modified mevalonate pathway of A. pernix and likely, of the majority of archaea from all known mevalonate pathways, such as the eukaryote-type classical pathway, the haloarchaea-type modified pathway, and another modified pathway recently discovered from Thermoplasma acidophilum.
Collapse
|
20
|
Mori Y, Shirai T. Designing artificial metabolic pathways, construction of target enzymes, and analysis of their function. Curr Opin Biotechnol 2018; 54:41-44. [PMID: 29452926 DOI: 10.1016/j.copbio.2018.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/26/2017] [Accepted: 01/22/2018] [Indexed: 11/24/2022]
Abstract
Artificial design of metabolic pathways is essential for the production of useful compounds using microbes. Based on this design, heterogeneous genes are introduced into the host, and then various analysis and evaluation methods are conducted to ensure that the target enzyme reactions are functionalized within the cell. In this chapter, we list successful examples of useful compounds produced by designing artificial metabolic pathways, and describe the methods involved in analyzing, evaluating, and optimizing the target enzyme reaction.
Collapse
Affiliation(s)
- Yutaro Mori
- Biomass Engineering Research Division, Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomokazu Shirai
- Biomass Engineering Research Division, Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
21
|
Wilson J, Gering S, Pinard J, Lucas R, Briggs BR. Bio-production of gaseous alkenes: ethylene, isoprene, isobutene. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:234. [PMID: 30181774 PMCID: PMC6114056 DOI: 10.1186/s13068-018-1230-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/17/2018] [Indexed: 05/05/2023]
Abstract
To reduce emissions from petrochemical refinement, bio-production has been heralded as a way to create economically valuable compounds with fewer harmful effects. For example, gaseous alkenes are precursor molecules that can be polymerized into a variety of industrially significant compounds and have biological production pathways. Production levels, however, remain low, thus enhancing bio-production of gaseous petrochemicals for chemical precursors is critical. This review covers the metabolic pathways and production levels of the gaseous alkenes ethylene, isoprene, and isobutene. Techniques needed to drive production to higher levels are also discussed.
Collapse
Affiliation(s)
- James Wilson
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Sarah Gering
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Jessica Pinard
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Ryan Lucas
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| | - Brandon R. Briggs
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508 USA
| |
Collapse
|
22
|
Kazieva E, Yamamoto Y, Tajima Y, Yokoyama K, Katashkina J, Nishio Y. Characterization of feedback-resistant mevalonate kinases from the methanogenic archaeons Methanosaeta concilii and Methanocella paludicola. MICROBIOLOGY-SGM 2017; 163:1283-1291. [PMID: 28869407 PMCID: PMC5817203 DOI: 10.1099/mic.0.000510] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The inhibition of mevalonate kinase (MVK) by downstream metabolites is an important mechanism in the regulation of isoprenoid production in a broad range of organisms. The first feedback-resistant MVK was previously discovered in the methanogenic archaeon Methanosarcinamazei. Here, we report the cloning, expression, purification, kinetic characterization and inhibition analysis of MVKs from two other methanogens, Methanosaetaconcilii and Methanocellapaludicola. Similar to the M. mazei MVK, these enzymes were not inhibited by diphosphomevalonate (DPM), dimethylallyl diphosphate (DMAPP), isopentenyldiphosphate (IPP), geranylpyrophosphate (GPP) or farnesylpyrophosphate (FPP). However, they exhibited significantly higher affinity to mevalonate and higher catalytic efficiency than the previously characterized enzyme.
Collapse
Affiliation(s)
| | - Yoko Yamamoto
- Institute for Innovation, Ajinomoto Co., Inc., Kanagawa, Japan
| | | | | | | | - Yousuke Nishio
- Institute for Innovation, Ajinomoto Co., Inc., Kanagawa, Japan
| |
Collapse
|
23
|
Chai J, Wang D, Peng Y, Zhao X, Zhang Q, Li P, Fang X, Wang M, Cai X. Molecular cloning, expression and immunolocalization analysis of diphosphomevalonate decarboxylase involved in terpenoid biosynthesis from Euphorbia helioscopia L. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1370677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jia Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Dou Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Yong Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Xueyan Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Qing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Peng Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Xiaoai Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Meng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| | - Xia Cai
- Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi’ an, China
| |
Collapse
|
24
|
Straathof AJJ, Cuellar MC. Microbial Hydrocarbon Formation from Biomass. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:411-425. [PMID: 28707104 DOI: 10.1007/10_2016_62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fossil carbon sources mainly contain hydrocarbons, and these are used on a huge scale as fuel and chemicals. Producing hydrocarbons from biomass instead is receiving increased attention. Achievable yields are modest because oxygen atoms need to be removed from biomass, keeping only the lighter carbon and hydrogen atoms. Microorganisms can perform the required conversions, potentially with high selectivity, using metabolic pathways that often end with decarboxylation. Metabolic and protein engineering are used successfully to achieve hydrocarbon production levels that are relevant in a biorefinery context. This has led to pilot or demo processes for hydrocarbons such as isobutene, isoprene, and farnesene. In addition, some non-hydrocarbon fermentation products are being further converted into hydrocarbons using a final chemical step, for example, ethanol into ethene. The main advantage of direct microbial production of hydrocarbons, however, is their potentially easy recovery because they do not dissolve in fermentation broth.
Collapse
Affiliation(s)
- Adrie J J Straathof
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Maria C Cuellar
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
25
|
Wohlgemuth R, Liese A, Streit W. Biocatalytic Phosphorylations of Metabolites: Past, Present, and Future. Trends Biotechnol 2017; 35:452-465. [DOI: 10.1016/j.tibtech.2017.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 01/08/2023]
|
26
|
Transcriptome Analysis of Genes Involved in Dendrobine Biosynthesis in Dendrobium nobile Lindl. Infected with Mycorrhizal Fungus MF23 (Mycena sp.). Sci Rep 2017; 7:316. [PMID: 28331229 PMCID: PMC5428410 DOI: 10.1038/s41598-017-00445-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/27/2017] [Indexed: 11/09/2022] Open
Abstract
Content determination and microscopic observation proved that dendrobine accumulation in the stem of Dendrobium nobile Lindl. increased after infection with mycorrhizal fungus MF23 (Mycena sp.). Large-scale transcriptome sequencing of symbiotic and asymbiotic D. nobile revealed that 30 unigenes encoding proteins were possibly related to the biosynthesis of dendrobine sesquiterpene backbone. A qRT-PCR experiment of 16 unigenes, selected randomly, proved that there were significant changes in the expression levels of AACT, MVD, PMK and TPS21 at 9 weeks after inoculation. These results implied that MF23 might stimulate dendrobine biosynthesis by regulating the expressions of genes involved in the mevalonate (MVA) pathway. The biogenetic pathway of dendrobine was suggested systematically according to the structural features of dendrobine alkaloids and their sesquiterpene precursors, which implied that post-modification enzymes might play a major role in dendrobine biosynthesis. Thus, genes encoding post-modification enzymes, including cytochrome P450, aminotransferase and methyltransferase, were screened for their possible involvement in dendrobine biosynthesis. This study provides a good example of endophytes promoting the formation of bioactive compounds in their host and paves the way for further investigation of the dendrobine biosynthetic pathway.
Collapse
|
27
|
Li Q, Ding G, Li B, Guo SX. Transcriptome Analysis of Genes Involved in Dendrobine Biosynthesis in Dendrobium nobile Lindl. Infected with Mycorrhizal Fungus MF23 (Mycena sp.). Sci Rep 2017. [PMID: 28331229 DOI: 10.1038/s41598-017-00445-9/2045-2322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Content determination and microscopic observation proved that dendrobine accumulation in the stem of Dendrobium nobile Lindl. increased after infection with mycorrhizal fungus MF23 (Mycena sp.). Large-scale transcriptome sequencing of symbiotic and asymbiotic D. nobile revealed that 30 unigenes encoding proteins were possibly related to the biosynthesis of dendrobine sesquiterpene backbone. A qRT-PCR experiment of 16 unigenes, selected randomly, proved that there were significant changes in the expression levels of AACT, MVD, PMK and TPS21 at 9 weeks after inoculation. These results implied that MF23 might stimulate dendrobine biosynthesis by regulating the expressions of genes involved in the mevalonate (MVA) pathway. The biogenetic pathway of dendrobine was suggested systematically according to the structural features of dendrobine alkaloids and their sesquiterpene precursors, which implied that post-modification enzymes might play a major role in dendrobine biosynthesis. Thus, genes encoding post-modification enzymes, including cytochrome P450, aminotransferase and methyltransferase, were screened for their possible involvement in dendrobine biosynthesis. This study provides a good example of endophytes promoting the formation of bioactive compounds in their host and paves the way for further investigation of the dendrobine biosynthetic pathway.
Collapse
Affiliation(s)
- Qing Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Gang Ding
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Biao Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China.
| | - Shun-Xing Guo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
28
|
Eichler J, Guan Z. Lipid sugar carriers at the extremes: The phosphodolichols Archaea use in N-glycosylation. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:589-599. [PMID: 28330764 DOI: 10.1016/j.bbalip.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/28/2022]
Abstract
N-glycosylation, a post-translational modification whereby glycans are covalently linked to select Asn residues of target proteins, occurs in all three domains of life. Across evolution, the N-linked glycans are initially assembled on phosphorylated cytoplasmically-oriented polyisoprenoids, with polyprenol (mainly C55 undecaprenol) fulfilling this role in Bacteria and dolichol assuming this function in Eukarya and Archaea. The eukaryal and archaeal versions of dolichol can, however, be distinguished on the basis of their length, degree of saturation and by other traits. As is true for many facets of their biology, Archaea, best known in their capacity as extremophiles, present unique approaches for synthesizing phosphodolichols. At the same time, general insight into the assembly and processing of glycan-bearing phosphodolichols has come from studies of the archaeal enzymes responsible. In this review, these and other aspects of archaeal phosphodolichol biology are addressed.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva 84105, Israel.
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|