1
|
Identification of an l-Arabitol Transporter from Aspergillus niger. Biomolecules 2023; 13:biom13020188. [PMID: 36830558 PMCID: PMC9953744 DOI: 10.3390/biom13020188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
l-arabitol is an intermediate of the pentose catabolic pathway in fungi but can also be used as a carbon source by many fungi, suggesting the presence of transporters for this polyol. In this study, an l-arabitol transporter, LatA, was identified in Aspergillus niger. Growth and expression profiles as well as sugar consumption analysis indicated that LatA only imports l-arabitol and is regulated by the arabinanolytic transcriptional activator AraR. Moreover, l-arabitol production from wheat bran was increased in a metabolically engineered A. niger mutant by the deletion of latA, indicating its potential for improving l-arabitol-producing cell factories. Phylogenetic analysis showed that homologs of LatA are widely conserved in fungi.
Collapse
|
2
|
Havukainen S, Pujol-Giménez J, Valkonen M, Hediger MA, Landowski CP. Functional characterization of a highly specific L-arabinose transporter from Trichoderma reesei. Microb Cell Fact 2021; 20:177. [PMID: 34496831 PMCID: PMC8425032 DOI: 10.1186/s12934-021-01666-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lignocellulose biomass has been investigated as a feedstock for second generation biofuels and other value-added products. Some of the processes for biofuel production utilize cellulases and hemicellulases to convert the lignocellulosic biomass into a range of soluble sugars before fermentation with microorganisms such as yeast Saccharomyces cerevisiae. One of these sugars is L-arabinose, which cannot be utilized naturally by yeast. The first step in L-arabinose catabolism is its transport into the cells, and yeast lacks a specific transporter, which could perform this task. RESULTS We identified Trire2_104072 of Trichoderma reesei as a potential L-arabinose transporter based on its expression profile. This transporter was described already in 2007 as D-xylose transporter XLT1. Electrophysiology experiments with Xenopus laevis oocytes and heterologous expression in yeast revealed that Trire2_104072 is a high-affinity L-arabinose symporter with a Km value in the range of [Formula: see text] 0.1-0.2 mM. It can also transport D-xylose but with low affinity (Km [Formula: see text] 9 mM). In yeast, L-arabinose transport was inhibited slightly by D-xylose but not by D-glucose in an assay with fivefold excess of the inhibiting sugar. Comparison with known L-arabinose transporters revealed that the expression of Trire2_104072 enabled yeast to uptake L-arabinose at the highest rate in conditions with low extracellular L-arabinose concentration. Despite the high specificity of Trire2_104072 for L-arabinose, the growth of its T. reesei deletion mutant was only affected at low L-arabinose concentrations. CONCLUSIONS Due to its high affinity for L-arabinose and low inhibition by D-glucose or D-xylose, Trire2_104072 could serve as a good candidate for improving the existing pentose-utilizing yeast strains. The discovery of a highly specific L-arabinose transporter also adds to our knowledge of the primary metabolism of T. reesei. The phenotype of the deletion strain suggests the involvement of other transporters in L-arabinose transport in this species.
Collapse
Affiliation(s)
- Sami Havukainen
- VTT Technical Research Center of Finland Ltd, Tietotie 2, 02150, Espoo, Finland
| | - Jonai Pujol-Giménez
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Mari Valkonen
- VTT Technical Research Center of Finland Ltd, Tietotie 2, 02150, Espoo, Finland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | | |
Collapse
|
3
|
Membrane Protein Production and Purification from Escherichia coli and Sf9 Insect Cells. Methods Mol Biol 2021. [PMID: 33582985 DOI: 10.1007/978-1-0716-0724-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
A major obstacle to studying membrane proteins by biophysical techniques is the difficulty in producing sufficient amounts of materials for functional and structural studies. To overexpress the target membrane protein heterologously, especially an eukaryotic protein, a key step is to find the optimal host expression system and perform subsequent expression optimization. In this chapter, we describe protocols for screening membrane protein production using bacterial and insect cells, solubilization screening, large-scale production, and commonly used affinity chromatography purification methods. We discuss general optimization conditions, such as promoters and tags, and describe current techniques that can be used in any laboratory without specialized expensive equipment. Especially for insect cells, GFP fusions are particularly useful for localization and in-gel fluorescence detection of the proteins on SDS-PAGE. We give detailed protocols that can be used to screen the best expression and purification conditions for membrane protein study.
Collapse
|
4
|
Kono M, Kon Y, Ohmura Y, Satta Y, Terai Y. In vitro resynthesis of lichenization reveals the genetic background of symbiosis-specific fungal-algal interaction in Usnea hakonensis. BMC Genomics 2020; 21:671. [PMID: 32993496 PMCID: PMC7526373 DOI: 10.1186/s12864-020-07086-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Symbiosis is central to ecosystems and has been an important driving force of the diversity of life. Close and long-term interactions are known to develop cooperative molecular mechanisms between the symbiotic partners and have often given them new functions as symbiotic entities. In lichen symbiosis, mutualistic relationships between lichen-forming fungi and algae and/or cyanobacteria produce unique features that make lichens adaptive to a wide range of environments. Although the morphological, physiological, and ecological uniqueness of lichens has been described for more than a century, the genetic mechanisms underlying this symbiosis are still poorly known. RESULTS This study investigated the fungal-algal interaction specific to the lichen symbiosis using Usnea hakonensis as a model system. The whole genome of U. hakonensis, the fungal partner, was sequenced by using a culture isolated from a natural lichen thallus. Isolated cultures of the fungal and the algal partners were co-cultured in vitro for 3 months, and thalli were successfully resynthesized as visible protrusions. Transcriptomes of resynthesized and natural thalli (symbiotic states) were compared to that of isolated cultures (non-symbiotic state). Sets of fungal and algal genes up-regulated in both symbiotic states were identified as symbiosis-related genes. CONCLUSION From predicted functions of these genes, we identified genetic association with two key features fundamental to the symbiotic lifestyle in lichens. The first is establishment of a fungal symbiotic interface: (a) modification of cell walls at fungal-algal contact sites; and (b) production of a hydrophobic layer that ensheaths fungal and algal cells;. The second is symbiosis-specific nutrient flow: (a) the algal supply of photosynthetic product to the fungus; and (b) the fungal supply of phosphorous and nitrogen compounds to the alga. Since both features are widespread among lichens, our result may indicate important facets of the genetic basis of the lichen symbiosis.
Collapse
Affiliation(s)
- Mieko Kono
- SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa, 240-0193, Japan.
- Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05, Stockholm, Sweden.
| | - Yoshiaki Kon
- Tokyo Metropolitan Hitotsubashi High School, 1-12-13 Higashikanda, Chiyoda-ku, Tokyo, 101-0031, Japan
| | - Yoshihito Ohmura
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| | - Yoko Satta
- SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Yohey Terai
- SOKENDAI (The Graduate University for Advanced Studies), Department of Evolutionary Studies of Biosystems, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| |
Collapse
|
5
|
Nijland JG, Driessen AJM. Engineering of Pentose Transport in Saccharomyces cerevisiae for Biotechnological Applications. Front Bioeng Biotechnol 2020; 7:464. [PMID: 32064252 PMCID: PMC7000353 DOI: 10.3389/fbioe.2019.00464] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Lignocellulosic biomass yields after hydrolysis, besides the hexose D-glucose, D-xylose, and L-arabinose as main pentose sugars. In second generation bioethanol production utilizing the yeast Saccharomyces cerevisiae, it is critical that all three sugars are co-consumed to obtain an economically feasible and robust process. Since S. cerevisiae is unable to metabolize pentose sugars, metabolic pathway engineering has been employed to introduce the respective pathways for D-xylose and L-arabinose metabolism. However, S. cerevisiae lacks specific pentose transporters, and these sugars enter the cell with low affinity via glucose transporters of the Hxt family. Therefore, in the presence of D-glucose, utilization of D-xylose and L-arabinose is poor as the Hxt transporters prefer D-glucose. To solve this problem, heterologous expression of pentose transporters has been attempted but often with limited success due to poor expression and stability, and/or low turnover. A more successful approach is the engineering of the endogenous Hxt transporter family and evolutionary selection for D-glucose insensitive growth on pentose sugars. This has led to the identification of a critical and conserved asparagine residue in Hxt transporters that, when mutated, reduces the D-glucose affinity while leaving the D-xylose affinity mostly unaltered. Likewise, mutant Gal2 transporter have been selected supporting specific uptake of L-arabinose. In fermentation experiments, the transporter mutants support efficient uptake and consumption of pentose sugars, and even co-consumption of D-xylose and D-glucose when used at industrial concentrations. Further improvements are obtained by interfering with the post-translational inactivation of Hxt transporters at high or low D-glucose concentrations. Transporter engineering solved major limitations in pentose transport in yeast, now allowing for co-consumption of sugars that is limited only by the rates of primary metabolism. This paves the way for a more economical second-generation biofuels production process.
Collapse
Affiliation(s)
- Jeroen G Nijland
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, Netherlands
| | - Arnold J M Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Yoshino K, Yamamoto K, Hara K, Sonoda M, Yamamoto Y, Sakamoto K. The conservation of polyol transporter proteins and their involvement in lichenized Ascomycota. Fungal Biol 2019; 123:318-329. [PMID: 30928040 DOI: 10.1016/j.funbio.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/30/2018] [Accepted: 01/21/2019] [Indexed: 01/08/2023]
Abstract
In lichen symbiosis, polyol transfer from green algae is important for acquiring the fungal carbon source. However, the existence of polyol transporter genes and their correlation with lichenization remain unclear. Here, we report candidate polyol transporter genes selected from the genome of the lichen-forming fungus (LFF) Ramalina conduplicans. A phylogenetic analysis using characterized polyol and monosaccharide transporter proteins and hypothetical polyol transporter proteins of R. conduplicans and various ascomycetous fungi suggested that the characterized yeast' polyol transporters form multiple clades with the polyol transporter-like proteins selected from the diverse ascomycetous taxa. Thus, polyol transporter genes are widely conserved among Ascomycota, regardless of lichen-forming status. In addition, the phylogenetic clusters suggested that LFFs belonging to Lecanoromycetes have duplicated proteins in each cluster. Consequently, the number of sequences similar to characterized yeast' polyol transporters were evaluated using the genomes of 472 species or strains of Ascomycota. Among these, LFFs belonging to Lecanoromycetes had greater numbers of deduced polyol transporter proteins. Thus, various polyol transporters are conserved in Ascomycota and polyol transporter genes appear to have expanded during the evolution of Lecanoromycetes.
Collapse
Affiliation(s)
- Kanami Yoshino
- Division of Environmental Horticulture, Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-0092, Japan.
| | - Kohei Yamamoto
- Tochigi Prefectural Museum, 2-2 Mutsumi-cho, Utsunomiya, Tochigi, 320-0865, Japan.
| | - Kojiro Hara
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-nishi, Shimoshinjo-nakano, Akita, 010-0195, Japan.
| | - Masatoshi Sonoda
- Division of Environmental Horticulture, Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-0092, Japan.
| | - Yoshikazu Yamamoto
- Faculty of Bioresource Sciences, Akita Prefectural University, 241-438 Kaidobata-nishi, Shimoshinjo-nakano, Akita, 010-0195, Japan.
| | - Kazunori Sakamoto
- Division of Environmental Horticulture, Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-0092, Japan.
| |
Collapse
|
7
|
Vidgren V, Londesborough J. Overexpressed maltose transporters in laboratory and lager yeasts: Localization and competition with endogenous transporters. Yeast 2018; 35:567-576. [PMID: 29851426 DOI: 10.1002/yea.3322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/01/2018] [Indexed: 11/10/2022] Open
Abstract
Plain and fluorescently tagged versions of Agt1, Mtt1 and Malx1 maltose transporters were overexpressed in two laboratory yeasts and one lager yeast. The plain and tagged versions of each transporter supported similar transport activities, indicating that they are similarly trafficked and have similar catalytic activities. When they were expressed under the control of the strong constitutive PGK1 promoter only minor proportions of the fluorescent transporters were associated with the plasma membrane, the rest being found in intracellular structures. Transport activity of each tagged transporter in each host was roughly proportional to the plasma membrane-associated fluorescence. All three transporters were subject to glucose-triggered inactivation when the medium glucose concentration was abruptly raised. Results also suggest competition between endogenous and overexpressed transporters for access to the plasma membrane.
Collapse
Affiliation(s)
- Virve Vidgren
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | | |
Collapse
|
8
|
Ma Y, Kim SS, Kwag DG, Kim SH, Kim MS, Ryu SH, Lee DH, So JH, Nam BH, Kim YO, An CM, Park JS. High-Level Expression and Purification of Tag-free Peptides Containing Multiple Disulfide Bond in Pichia pastoris. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yunqi Ma
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 609-735 Republic of Korea
| | - So-Sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 609-735 Republic of Korea
| | - Dong-Geon Kwag
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 609-735 Republic of Korea
| | - Seo-Hyun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 609-735 Republic of Korea
| | - Min-Seob Kim
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 609-735 Republic of Korea
| | - Seung-Ho Ryu
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 609-735 Republic of Korea
| | - Dong-Hoon Lee
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 609-735 Republic of Korea
| | - Jae-Hyeong So
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 609-735 Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, Aquaculture Industry Department; National Fisheries Research and Development Institute; Busan 619-902 Republic of Korea
| | - Yong-Ok Kim
- Biotechnology Research Division, Aquaculture Industry Department; National Fisheries Research and Development Institute; Busan 619-902 Republic of Korea
| | - Cheul-Min An
- Biotechnology Research Division, Aquaculture Industry Department; National Fisheries Research and Development Institute; Busan 619-902 Republic of Korea
| | - Jang-Su Park
- Department of Chemistry and Chemistry Institute of Functional Materials; Pusan National University; Busan 609-735 Republic of Korea
| |
Collapse
|
9
|
Bracher JM, Verhoeven MD, Wisselink HW, Crimi B, Nijland JG, Driessen AJM, Klaassen P, van Maris AJA, Daran JMG, Pronk JT. The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:63. [PMID: 29563966 PMCID: PMC5848512 DOI: 10.1186/s13068-018-1047-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/08/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these feedstocks by engineered pentose-metabolizing S. cerevisiae strains. RESULTS Chemostat-based transcriptome analysis yielded 16 putative sugar transporter genes in the filamentous fungus Penicillium chrysogenum whose transcript levels were at least threefold higher in l-arabinose-limited cultures than in d-glucose-limited and ethanol-limited cultures. Of five genes, that encoded putative transport proteins and showed an over 30-fold higher transcript level in l-arabinose-grown cultures compared to d-glucose-grown cultures, only one (Pc20g01790) restored growth on l-arabinose upon expression in an engineered l-arabinose-fermenting S. cerevisiae strain in which the endogenous l-arabinose transporter, GAL2, had been deleted. Sugar transport assays indicated that this fungal transporter, designated as PcAraT, is a high-affinity (Km = 0.13 mM), high-specificity l-arabinose-proton symporter that does not transport d-xylose or d-glucose. An l-arabinose-metabolizing S. cerevisiae strain in which GAL2 was replaced by PcaraT showed 450-fold lower residual substrate concentrations in l-arabinose-limited chemostat cultures than a congenic strain in which l-arabinose import depended on Gal2 (4.2 × 10-3 and 1.8 g L-1, respectively). Inhibition of l-arabinose transport by the most abundant sugars in hydrolysates, d-glucose and d-xylose was far less pronounced than observed with Gal2. Expression of PcAraT in a hexose-phosphorylation-deficient, l-arabinose-metabolizing S. cerevisiae strain enabled growth in media supplemented with both 20 g L-1 l-arabinose and 20 g L-1 d-glucose, which completely inhibited growth of a congenic strain in the same condition that depended on l-arabinose transport via Gal2. CONCLUSION Its high affinity and specificity for l-arabinose, combined with limited sensitivity to inhibition by d-glucose and d-xylose, make PcAraT a valuable transporter for application in metabolic engineering strategies aimed at engineering S. cerevisiae strains for efficient conversion of lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Jasmine M. Bracher
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maarten D. Verhoeven
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - H. Wouter Wisselink
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Present Address: Isobionics, Urmonderbaan 22-B 45, 6167 RD Geleen, The Netherlands
| | - Barbara Crimi
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Present Address: Institut de Génétique Humaine, UMR9002-CNRS-UM, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Jeroen G. Nijland
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paul Klaassen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Antonius J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Present Address: Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 20691 Stockholm, Sweden
| | - Jean-Marc G. Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
10
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
11
|
Knoshaug EP, Vidgren V, Magalhães F, Jarvis EE, Franden MA, Zhang M, Singh A. Novel transporters from
Kluyveromyces marxianus
and
Pichia guilliermondii
expressed in
Saccharomyces cerevisiae
enable growth on
l
‐arabinose and
d
‐xylose. Yeast 2015; 32:615-28. [DOI: 10.1002/yea.3084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/11/2015] [Accepted: 06/23/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
- Eric P. Knoshaug
- National Renewable Energy Laboratory National Bioenergy Centre Golden CO USA
| | - Virve Vidgren
- VTT Technical Research Centre of Finland PO Box 1000 FI‐02044 VTT Finland
| | | | - Eric E. Jarvis
- National Renewable Energy Laboratory National Bioenergy Centre Golden CO USA
| | - Mary Ann Franden
- National Renewable Energy Laboratory National Bioenergy Centre Golden CO USA
| | - Min Zhang
- National Renewable Energy Laboratory National Bioenergy Centre Golden CO USA
| | - Arjun Singh
- National Renewable Energy Laboratory National Bioenergy Centre Golden CO USA
| |
Collapse
|