1
|
Kuwata K, Sato-Takabe Y, Nakai R, Sugimura Y, Tazato N, Kunihiro T, Morohoshi S, Iwataki M, Hamasaki K, Shiozaki T. Novel aerobic anoxygenic phototrophic bacterium Jannaschia pagri sp. nov., isolated from seawater around a fish farm. Antonie Van Leeuwenhoek 2024; 117:70. [PMID: 38658407 DOI: 10.1007/s10482-024-01971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
The genus Jannaschia is one of the representatives of aerobic anoxygenic phototrophic (AAP) bacteria, which is a strictly aerobic bacterium, producing a photosynthetic pigment bacteriochlorophyll (BChl) a. However, a part of the genus Jannaschia members have not been confirmed the photosynthetic ability. The partly presence of the ability in the genus Jannaschia could suggest the complexity of evolutionary history for anoxygenic photosynthesis in the genus, which is expected as gene loss and/or horizontal gene transfer. Here a novel AAP bacterium designated as strain AI_62T (= DSM 115720 T = NBRC 115938 T), was isolated from coastal seawater around a fish farm in the Uwa Sea, Japan. Its closest relatives were identified as Jannaschia seohaensis SMK-146 T (95.6% identity) and J. formosa 12N15T (94.6% identity), which have been reported to produce BChl a. The genomic characteristic of strain AI_62T clearly showed the possession of the anoxygenic photosynthesis related gene sets. This could be a useful model organism to approach the evolutionary mystery of anoxygenic photosynthesis in the genus Jannaschia. Based on a comprehensive consideration of both phylogenetic and phenotypic characteristics, we propose the classification of a novel species within the genus Jannaschia, designated as Jannaschia pagri sp. nov. The type strain for this newly proposed species is AI_62T (= DSM 115720 T = NBRC 115938 T).
Collapse
Affiliation(s)
- Koyo Kuwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Yuki Sato-Takabe
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8564, Japan.
- School of Economics, Senshu University, 2-1-1 Higashi-Mita, Tama-Ku, Kawasaki-Shi, Kanagawa, 214-8580, Japan.
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-Ku, Sapporo, 062-8517, Japan
| | - Yuya Sugimura
- Technical Department, TechnoSuruga Laboratory Co., Ltd, 388-1 Nagasaki, Shimizu-Ku, Shizuoka, 424-0065, Japan
| | - Nozomi Tazato
- Technical Department, TechnoSuruga Laboratory Co., Ltd, 388-1 Nagasaki, Shimizu-Ku, Shizuoka, 424-0065, Japan
| | - Tadao Kunihiro
- Technical Department, TechnoSuruga Laboratory Co., Ltd, 388-1 Nagasaki, Shimizu-Ku, Shizuoka, 424-0065, Japan
| | - Sho Morohoshi
- Technical Department, TechnoSuruga Laboratory Co., Ltd, 388-1 Nagasaki, Shimizu-Ku, Shizuoka, 424-0065, Japan
| | - Mitsunori Iwataki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Koji Hamasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8564, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Takuhei Shiozaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8564, Japan
| |
Collapse
|
2
|
Koblížek M, Ferrera I, Kolářová E, Duhamel S, Popendorf KJ, Gasol JM, Van Mooy BAS. Growth and mortality of aerobic anoxygenic phototrophs in the North Pacific Subtropical Gyre. Appl Environ Microbiol 2024; 90:e0003224. [PMID: 38551354 PMCID: PMC11022572 DOI: 10.1128/aem.00032-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/08/2024] [Indexed: 04/18/2024] Open
Abstract
Aerobic anoxygenic phototrophic (AAP) bacteria harvest light energy using bacteriochlorophyll-containing reaction centers to supplement their mostly heterotrophic metabolism. While their abundance and growth have been intensively studied in coastal environments, much less is known about their activity in oligotrophic open ocean regions. Therefore, we combined in situ sampling in the North Pacific Subtropical Gyre, north of O'ahu island, Hawaii, with two manipulation experiments. Infra-red epifluorescence microscopy documented that AAP bacteria represented approximately 2% of total bacteria in the euphotic zone with the maximum abundance in the upper 50 m. They conducted active photosynthetic electron transport with maximum rates up to 50 electrons per reaction center per second. The in situ decline of bacteriochlorophyll concentration over the daylight period, an estimate of loss rates due to predation, indicated that the AAP bacteria in the upper 50 m of the water column turned over at rates of 0.75-0.90 d-1. This corresponded well with the specific growth rate determined in dilution experiments where AAP bacteria grew at a rate 1.05 ± 0.09 d-1. An amendment of inorganic nitrogen to obtain N:P = 32 resulted in a more than 10 times increase in AAP abundance over 6 days. The presented data document that AAP bacteria are an active part of the bacterioplankton community in the oligotrophic North Pacific Subtropical Gyre and that their growth was mostly controlled by nitrogen availability and grazing pressure.IMPORTANCEMarine bacteria represent a complex assembly of species with different physiology, metabolism, and substrate preferences. We focus on a specific functional group of marine bacteria called aerobic anoxygenic phototrophs. These photoheterotrophic organisms require organic carbon substrates for growth, but they can also supplement their metabolic needs with light energy captured by bacteriochlorophyll. These bacteria have been intensively studied in coastal regions, but rather less is known about their distribution, growth, and mortality in the oligotrophic open ocean. Therefore, we conducted a suite of measurements in the North Pacific Subtropical Gyre to determine the distribution of these organisms in the water column and their growth and mortality rates. A nutrient amendment experiment showed that aerobic anoxygenic phototrophs were limited by inorganic nitrogen. Despite this, they grew more rapidly than average heterotrophic bacteria, but their growth was balanced by intense grazing pressure.
Collapse
Affiliation(s)
- Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Science, Třeboň, Czechia
| | - Isabel Ferrera
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía (IEO-CSIC), Fuengirola, Málaga, Spain
| | - Eva Kolářová
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Science, Třeboň, Czechia
| | - Solange Duhamel
- Department of Cellular and Molecular Biology, University of Arizona, Tucson, Arizona, USA
| | - Kimberly J. Popendorf
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Coral Gables, Florida, USA
| | - Josep M. Gasol
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Catalonia, Spain
| | - Benjamin A. S. Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
3
|
Wang Z, Yang K, Yu J, Zhou D, Li Y, Guan B, Yu Y, Wang X, Ren Z, Wang W, Chen X, Yang J. Soil Bacterial Community Structure in Different Micro-Habitats on the Tidal Creek Section in the Yellow River Estuary. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.950605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tidal creeks have attracted considerable attention in estuary wetland conservation and restoration with diverse micro-habitats and high hydrological connectivity. Bacterial communities act effectively as invisible engines to regulate nutrient element biogeochemical processes. However, few studies have unveiled the bacterial community structures and diversities of micro-habitats soils on the tidal creek section. Our study selected three sections cross a tidal creek with obviously belt-like habitats “pluff mudflat – bare mudflat – Tamarix chinensis community – T. chinensis-Suaeda salsa community– S. salsa community” in the Yellow River estuarine wetland. Based on soil samples, we dissected and untangled the bacterial community structures and special bacterial taxa of different habitats on the tidal creek section. The results showed that bacterial community structures and dominant bacterial taxa were significantly different in the five habitats. The bacterial community diversities significantly decreased with distance away from tidal creeks, as well as the dominant bacteria Flavobacteriia and δ-Proteobacteria, but in reverse to Bacteroidetes and Gemmatimonadetes. Moreover, the important biomarkers sulfate-reducing bacteria and photosynthetic bacteria were different distributions within the five habitats, which were closely associated with the sulfur and carbon cycles. We found that the bacterial communities were heterogeneous in different micro-habitats on the tidal creek section, which was related to soil salinity, moisture, and nutrients as well as tidal action. The study would provide fundamental insights into understanding the ecological functions of bacterial diversities and biogeochemical processes influenced by tidal creeks.
Collapse
|
4
|
Muramatsu S, Kanamuro M, Sato-Takabe Y, Hirose S, Muramatsu Y, Takaichi S, Hanada S. Roseobacter cerasinus sp. nov., isolated from a fish farm. Int J Syst Evol Microbiol 2020; 70:4920-4926. [PMID: 32730197 DOI: 10.1099/ijsem.0.004360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An obligate aerobic and bacteriochlorophyll a-containing bacterium, designated strain AI77T, was isolated from a fish farm in Uwa Sea, Japan. Cells were Gram-stain-negative, coccoid- to oval-shaped, and showed no motility. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain AI77T is a member of the genus Roseobacter and closely related to Roseobacter ponti MM-7T (97.8 %), Roseobacter denitrificans OCh 114T (97.3 %) and Roseobacter litoralis OCh 149T (97.3 %). The G+C content of strain AI77T was 61.0 mol%. The average amino acid identity values of the genome in strain AI77T with those in R. denitrificans OCh 114T and R. litoralis OCh 149T were 73.26 % (SD 16.46) and 72.63 % (SD 16.76), respectively. The digital DNA-DNA hybridization values of strain AI77T with the type strains R. denitrificans OCh 114T and R. litoralis OCh 149T were 18.70 and 18.50 %, respectively. The dominant fatty acids (>10 % of total fatty acids) of AI77T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and saturated fatty acid C16 : 0. The sole respiratory quinone was ubiquinone-10. The predominant polar lipids were phosphatidylcholine, phosphatidylglycerol and diphosphatidylglycerol. Based on the genetic and phenotypic data obtained herein, we conclude that strain AI77T represents a new species of the genus Roseobacter, for which we propose the name Roseobacter cerasinus sp. nov.; the type strain is AI77T (=DSM 110091T=NBRC 114115T).
Collapse
Affiliation(s)
- So Muramatsu
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Masataka Kanamuro
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yuki Sato-Takabe
- Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan.,Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Setsuko Hirose
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yuki Muramatsu
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8, Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
5
|
Ruiz-González C, Garcia-Chaves MC, Ferrera I, Niño-García JP, Del Giorgio PA. Taxonomic differences shape the responses of freshwater aerobic anoxygenic phototrophic bacterial communities to light and predation. Mol Ecol 2020; 29:1267-1283. [PMID: 32147876 DOI: 10.1111/mec.15404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/29/2022]
Abstract
Aerobic anoxygenic phototrophic (AAP) bacteria are a phylogenetically diverse and ubiquitous group of prokaryotes that use organic matter but can harvest light using bacteriochlorophyll a. Although the factors regulating AAP ecology have long been investigated through field surveys, the few available experimental studies have considered AAPs as a group, thus disregarding the potential differential responses between taxonomically distinct AAP assemblages. Here, we used sequencing of the pufM gene to describe the diversity of AAPs in 10 environmentally distinct temperate lakes, and to investigate the taxonomic responses of AAP communities in these lakes when subjected to similar experimental manipulations of light and predator removal. The studied communities were clearly dominated by Limnohabitans AAP but presented a clear taxonomic segregation between lakes presumably driven by local conditions, which was maintained after experimental manipulations. Predation reduction (but not light exposure) caused significant compositional shifts across most assemblages, but the magnitude of these changes could not be clearly related to changes in bulk AAP abundances or taxonomic richness of AAP assemblages during experiments. Only a few operational taxonomic units, which differed taxonomically between lakes, were found to respond positively during experimental treatments. Our results highlight that different freshwater AAP communities respond differently to similar control mechanisms, highlighting that in-depth knowledge on AAP diversity is essential to understand the ecology and potential role of these photoheterotrophs.
Collapse
Affiliation(s)
- Clara Ruiz-González
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain.,Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Maria Carolina Garcia-Chaves
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada.,Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Isabel Ferrera
- Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain.,Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Málaga, Spain
| | - Juan Pablo Niño-García
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada.,Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Paul A Del Giorgio
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Bhatnagar S, Cowley ES, Kopf SH, Pérez Castro S, Kearney S, Dawson SC, Hanselmann K, Ruff SE. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. ENVIRONMENTAL MICROBIOME 2020; 15:3. [PMID: 33902727 PMCID: PMC8066431 DOI: 10.1186/s40793-019-0348-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/25/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. RESULTS Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. CONCLUSIONS The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.
Collapse
Affiliation(s)
- Srijak Bhatnagar
- Department of Biological Sciences, University of Calgary, Calgary, AB Canada
| | - Elise S. Cowley
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI USA
| | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado, Boulder, CO USA
| | - Sherlynette Pérez Castro
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| | - Sean Kearney
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Scott C. Dawson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA USA
| | | | - S. Emil Ruff
- Ecosystems Center and J. Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA USA
| |
Collapse
|
7
|
Characteristics and Evolutionary Analysis of Photosynthetic Gene Clusters on Extrachromosomal Replicons: from Streamlined Plasmids to Chromids. mSystems 2019; 4:4/5/e00358-19. [PMID: 31506262 PMCID: PMC6739100 DOI: 10.1128/msystems.00358-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerobic anoxygenic photoheterotrophic bacteria (AAPB) represent a bacteriochlorophyll a-containing functional group. Substantial evidence indicates that highly conserved photosynthetic gene clusters (PGCs) of AAPB can be transferred between species, genera, and even phyla. Furthermore, analysis of recently discovered PGCs carried by extrachromosomal replicons (exPGCs) suggests that extrachromosomal replicons (ECRs) play an important role in the transfer of PGCs. In this study, 13 Roseobacter clade genomes from seven genera that harbored exPGCs were used to analyze the characteristics and evolution of PGCs. The identification of plasmid-like and chromid-like ECRs among PGC-containing ECRs revealed two different functions: the spread of PGCs among strains and the maintenance of PGCs within genomes. Phylogenetic analyses indicated two independent origins of exPGCs, corresponding to PufC-containing and PufX-containing puf operons. Furthermore, the two different types of operons were observed within different strains of the same Tateyamaria and Jannaschia genera. The PufC-containing and PufX-containing operons were also differentially carried by chromosomes and ECRs in the strains, respectively, which provided clear evidence for ECR-mediated PGC transfer. Multiple recombination events of exPGCs were also observed, wherein the majority of exPGCs were inserted by replication modules at the same genomic positions. However, the exPGCs of the Jannaschia strains comprised superoperons without evidence of insertion and therefore likely represent an initial evolutionary stage where the PGC was translocated from chromosomes to ECRs without further combinations. Finally, a scenario of PGC gain and loss is proposed that specifically focuses on ECR-mediated exPGC transfer to explain the evolution and patchy distribution of AAPB within the Roseobacter clade.IMPORTANCE The evolution of photosynthesis was a significant event during the diversification of biological life. Aerobic anoxygenic photoheterotrophic bacteria (AAPB) share physiological characteristics with chemoheterotrophs and represent an important group associated with bacteriochlorophyll-dependent phototrophy in the environment. Here, characterization and evolutionary analyses were conducted for 13 bacterial strains that contained photosynthetic gene clusters (PGCs) carried by extrachromosomal replicons (ECRs) to shed light on the evolution of chlorophototrophy in bacteria. This report advances our understanding of the importance of ECRs in the transfer of PGCs within marine photoheterotrophic bacteria.
Collapse
|
8
|
Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea. WATER 2019. [DOI: 10.3390/w11081655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Southern Adriatic (Eastern Mediterranean Sea) is a region strongly dominated by large-scale oceanographic processes and local open-ocean dense water formation. In this study, picoplankton biomass, distribution, and activity were examined during two oceanographic cruises and analyzed in relation to environmental parameters and hydrographic conditions comparing pre and post-winter phases (December 2015, April 2016). Picoplankton density with the domination of autotrophic biomasses was higher in the pre-winter phase when significant amounts of picoaoutotrophs were also found in the meso-and bathy-pelagic layers, while Synechococcus dominated the picoautotrophic group. Higher values of bacterial production and domination of High Nucleic Acid content bacteria (HNA bacteria) were found in deep waters, especially during the post-winter phase, suggesting that bacteria can have an active role in the deep-sea environment. Aerobic anoxygenic phototrophic bacteria accounted for a small proportion of total heterotrophic bacteria but contributed up to 4% of bacterial carbon content. Changes in the picoplankton community were mainly driven by nutrient availability, heterotrophic nanoflagellates abundance, and water mass movements and mixing. Our results suggest that autotrophic and heterotrophic members of the picoplankton community are an important carbon source in the food web in the deep-sea, as well as in the epipelagic layer. Besides, viral lysis may affect the activity of the picoplankton community and enrich the water column with dissolved organic carbon.
Collapse
|
9
|
Auladell A, Sánchez P, Sánchez O, Gasol JM, Ferrera I. Long-term seasonal and interannual variability of marine aerobic anoxygenic photoheterotrophic bacteria. THE ISME JOURNAL 2019; 13:1975-1987. [PMID: 30914777 PMCID: PMC6776013 DOI: 10.1038/s41396-019-0401-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/21/2019] [Accepted: 03/06/2019] [Indexed: 01/22/2023]
Abstract
We studied the long-term temporal dynamics of the aerobic anoxygenic phototrophic (AAP) bacteria, a relevant functional group in the coastal marine microbial food web, using high-throughput sequencing of the pufM gene coupled with multivariate, time series and co-occurrence analyses at the Blanes Bay Microbial Observatory (NW Mediterranean). Additionally, using metagenomics, we tested whether the used primers captured accurately the seasonality of the most relevant AAP groups. Phylogroup K (Gammaproteobacteria) was the greatest contributor to community structure over all seasons, with phylogroups E and G (Alphaproteobacteria) being prevalent in spring. Diversity indices showed a clear seasonal trend, with maximum values in winter, which was inverse to that of AAP abundance. Multivariate analyses revealed sample clustering by season, with a relevant proportion of the variance explained by day length, temperature, salinity, phototrophic nanoflagellate abundance, chlorophyll a, and silicate concentration. Time series analysis showed robust rhythmic patterns of co-occurrence, but distinct seasonal behaviors within the same phylogroup, and even within different amplicon sequence variants (ASVs) conforming the same operational taxonomic unit (OTU). Altogether, our results picture the AAP assemblage as highly seasonal and recurrent but containing ecotypes showing distinctive temporal niche partitioning, rather than being a cohesive functional group.
Collapse
Affiliation(s)
- Adrià Auladell
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta, 37-49, Barcelona, Catalunya, Spain.
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta, 37-49, Barcelona, Catalunya, Spain
| | - Olga Sánchez
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalunya, Spain
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta, 37-49, Barcelona, Catalunya, Spain
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Isabel Ferrera
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta, 37-49, Barcelona, Catalunya, Spain.
- Centro Oceanográfico de Málaga, Instituto Español de Oceanografía, Fuengirola, Málaga, Spain.
| |
Collapse
|
10
|
Staebe K, Meiklejohn KI, Singh SM, Matcher GF. Biogeography of soil bacterial populations in the Jutulsessen and Ahlmannryggen of Western Dronning Maud Land, Antarctica. Polar Biol 2019. [DOI: 10.1007/s00300-019-02532-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Qiu D, Huang L, Liu X, Lin S. Flourishing deep-sea AAP bacteria detected by flow cytometric sorting and molecular analysis. PLoS One 2019; 14:e0218753. [PMID: 31216335 PMCID: PMC6583994 DOI: 10.1371/journal.pone.0218753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/09/2019] [Indexed: 11/24/2022] Open
Abstract
Pigmented bacteria cells, including aerobic anoxygenic phototrophic (AAP) bacteria, contribute significantly to secondary production and aquatic carbon cycling but their distribution in the deep sea is still not well understood, especially in the South China Sea. In this study, microscopic, flow cytometric, and molecular analyses were carried out to investigate the abundance and diversity of AAP bacteria at seven stations in the South China Sea. The results revealed the existence of bacteriochlorophyll-containing bacteria below 500 m from two of seven stations. Flow cytometric analysis detected red and infra-red fluorescence under blue (488 nm) light excitation from fluorescent cells. Blue light-excited red fluorescence of these cells from the 1000 m depth at station E403 were verified using epifluorescence microscopy. Based on fluorescence and side scatter features, fluorescent cells were sorted and subjected to molecular analysis. DNA was extracted from these sorted cells from both stations for PCR amplification using 16S rDNA primers. Sequencing of the PCR products showed that the sorted cells from the 1000 m depth at station E403 belonged to the genus Porphyrobacter. The cell population sorted from 500 m at station E703 contained Sphingomonas and a Methylobacterium-like taxon. All these three taxa belong to aerobic anoxygenic phototrophic alpha-proteobacteria. Using flow cytometric analysis, we found that the abundance of Porphyrobacter sp. at 1000 m was 2.71–2.95×104 cells mL-1 whereas cell counts of Sphingomonas sp. and Methylobacterium at 500 m were about 3.75–4.12×105 cells mL-1. These results indicate that albeit not ubiquitous in deep water, bacteriochlorophyll-containing bacteria can be abundant in the deep-sea aphotic zone.
Collapse
Affiliation(s)
- Dajun Qiu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail:
| | - Liangmin Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, United States of America
| |
Collapse
|
12
|
Buckley KM, Schuh NW, Heyland A, Rast JP. Analysis of immune response in the sea urchin larva. Methods Cell Biol 2018; 150:333-355. [PMID: 30777183 DOI: 10.1016/bs.mcb.2018.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sea urchin larvae deploy a complex immune system in the context of relatively simple morphology. Several types of phagocytic or granular immune cells respond rapidly to microbes and microbial components within the body cavity. Many of these cells also respond to microbial disturbances in the gut lumen. In the course of immune response, hundreds of genes are up- and downregulated, many of which have homologs involved in immunity in other species. Thus, the larval sea urchin provides an experimentally advantageous model for investigating the response to immune challenge at the level of cell behavior and gene regulatory networks. Importantly, the morphological simplicity and optical clarity of these larvae allow studies to be carried out within the intact animal. Here, we outline techniques to probe and visualize the immune system of the feeding sea urchin larva, particularly for quantifying gene expression and cell migration as the animal responds to both pathogens and symbionts. Techniques addressed in this chapter include (1) exposure of larvae to microbes and microbial products in sea water and by blastocoelar microinjection, (2) time-lapse imaging of immune response, (3) isolation of culturable bacteria associated with feeding larvae, (4) quantification of larval associations with isolated bacterial strains and (5) preparation of secreted products from isolated bacteria for testing in larval culture.
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Nicholas W Schuh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Jonathan P Rast
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Emory University School of Medicine, Pathology and Laboratory Medicine, Atlanta, GA, United States.
| |
Collapse
|
13
|
Kirchhoff C, Ebert M, Jahn D, Cypionka H. Chemiosmotic Energy Conservation in Dinoroseobacter shibae: Proton Translocation Driven by Aerobic Respiration, Denitrification, and Photosynthetic Light Reaction. Front Microbiol 2018; 9:903. [PMID: 29867814 PMCID: PMC5954134 DOI: 10.3389/fmicb.2018.00903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
Dinoroseobacter shibae is an aerobic anoxygenic phototroph and able to utilize light energy to support its aerobic energy metabolism. Since the cells can also grow anaerobically with nitrate and nitrite as terminal electron acceptor, we were interested in how the cells profit from photosynthesis during denitrification and what the steps of chemiosmotic energy conservation are. Therefore, we conducted proton translocation experiments and compared O2-, NO3-, and NO2- respiration during different light regimes and in the dark. We used wild type cells and transposon mutants with knocked-out nitrate- and nitrite- reductase genes (napA and nirS), as well as a mutant (ppsR) impaired in bacteriochlorophyll a synthesis. Light had a positive impact on proton translocation, independent of the type of terminal electron acceptor present. In the absence of an electron acceptor, however, light did not stimulate proton translocation. The light-driven add-on to proton translocation was about 1.4 H+/e- for O2 respiration and about 1.1 H+/e- for NO3- and NO2-. We could see that the chemiosmotic energy conservation during aerobic respiration involved proton translocation, mediated by the NADH dehydrogenase, the cytochrome bc1 complex, and the cytochrome c oxidase. During denitrification the last proton translocation step of the electron transport was missing, resulting in a lower H+/e- ratio during anoxia. Furthermore, we studied the type of light-harvesting and found that the cells were able to channel light from the green–blue spectrum most efficiently, while red light has only minor impact. This fits well with the depth profiles for D. shibae abundance in the ocean and the penetration depth of light with different wavelengths into the water column.
Collapse
Affiliation(s)
- Christian Kirchhoff
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Matthias Ebert
- Institute of Microbiology, Braunschweig University of Technology, Braunschweig, Germany
| | - Dieter Jahn
- Institute of Microbiology, Braunschweig University of Technology, Braunschweig, Germany
| | - Heribert Cypionka
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
14
|
Biogeographic patterns of aerobic anoxygenic phototrophic bacteria reveal an ecological consistency of phylogenetic clades in different oceanic biomes. Sci Rep 2018. [PMID: 29515205 PMCID: PMC5841314 DOI: 10.1038/s41598-018-22413-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In marine environments, aerobic anoxygenic phototrophic (AAP) bacterial assemblages vary in space and along environmental gradients but the factors shaping their diversity and distribution at different taxonomic levels remain poorly identified. Using sets of sequences encoding the M sub-unit of the photosynthetic apparatus from different oceanic regions, we prioritized the processes underlying AAP bacterial biogeographical patterns. The present analysis offers novel insights into the ecological distribution of marine AAP bacteria and highlights that physiological constraints play a key role in structuring AAP bacterial assemblages at a global scale. Salinity especially seems to favor lineage-specific adaptations. Moreover, by inferring the evolutionary history of habitat transitions, a substantial congruence between habitat and evolutionary relatedness was highlighted. The identification of ecological cohesive clades for AAP bacteria suggests that prediction of AAP bacterial assemblages is possible from marine habitat properties.
Collapse
|
15
|
Tahon G, Willems A. Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sør Rondane Mountains, East Antarctica. Syst Appl Microbiol 2017; 40:357-369. [DOI: 10.1016/j.syapm.2017.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022]
|
16
|
Šantić D, Šestanović S, Vrdoljak A, Šolić M, Kušpilić G, Ninčević Gladan Ž, Koblížek M. Distribution of aerobic anoxygenic phototrophs in the Eastern Adriatic Sea. MARINE ENVIRONMENTAL RESEARCH 2017; 130:134-141. [PMID: 28760621 DOI: 10.1016/j.marenvres.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
The spatial patterns of aerobic anoxygenic phototrophs abundances were investigated, for the first time, in the Adriatic Sea. Also, the spatial patterns of the whole picoplankton community as well as the environmental factors that potentially influence these patterns were highlighted. AAP abundances was in average 66.9 ± 66.8 × 103 cell mL-1, and their proportion in total bacteria was 7.3 ± 4.3%. These values are in the upper range of AAP abundances observed in marine environments. Multivariate analyses proved that environmental factors influenced the picoplankton community interdependently. Chl a was the main driving factor for the picoplankton community, accounting for 33.3% of picoplankton community variance, followed by NO2- (17.9% of variance explained) and temperature (14.2% of variance explained). Chl a showed stronger correlation with AAPs, non-pigmented bacteria and Picoeucaryotes than with cyanobacteria. Abundance of cyanobacteria was stronger correlated to salinity and the N:P ratio than to nutrient concentrations.
Collapse
Affiliation(s)
- Danijela Šantić
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, Split, Croatia.
| | - Stefanija Šestanović
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, Split, Croatia.
| | - Ana Vrdoljak
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, Split, Croatia.
| | - Mladen Šolić
- Laboratory of Marine Microbiology, Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, Split, Croatia.
| | - Grozdan Kušpilić
- Laboratory of Chemical Oceanography and Sedimentology of the Sea, Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, Split, Croatia.
| | - Živana Ninčević Gladan
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, Split, Croatia.
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology CAS, 379 81 Trebon, Czech Republic.
| |
Collapse
|
17
|
Ferrera I, Sarmento H, Priscu JC, Chiuchiolo A, González JM, Grossart HP. Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient. Front Microbiol 2017; 8:175. [PMID: 28275369 PMCID: PMC5320280 DOI: 10.3389/fmicb.2017.00175] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/24/2017] [Indexed: 11/13/2022] Open
Abstract
Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient).
Collapse
Affiliation(s)
- Isabel Ferrera
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Consejo Superior de Investigaciones CientíficasBarcelona, Spain; Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland FisheriesStechlin, Germany
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos São Carlos, Brazil
| | - John C Priscu
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Amy Chiuchiolo
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - José M González
- Department of Microbiology, University of La Laguna La Laguna, Spain
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland FisheriesStechlin, Germany; Department of Biochemistry and Biology, Potsdam UniversityPotsdam, Germany
| |
Collapse
|
18
|
Das A, Singh T, LokaBharathi PA, Dhakephalkar PK, Mallik S, Kshirsagar PR, Khadge NH, Nath BN, Bhattacharya S, Dagar AK, Kaur P, Ray D, Shukla AD, Fernandes CEG, Fernandes SO, Thomas TRA, S S M, Mourya BS, Meena RM. Astrobiological implications of dim light phototrophy in deep-sea red clays. LIFE SCIENCES IN SPACE RESEARCH 2017; 12:39-50. [PMID: 28212707 DOI: 10.1016/j.lssr.2017.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/20/2017] [Indexed: 06/06/2023]
Abstract
Red clays of Central Indian Basin (CIB) under influence of trace of Rodriguez Triple Junction exhibited chemoautotrophy, low temperature hydrothermal alterations and photoautotrophic potential. Seamount flank TVBC-08, hosting such signatures revealed dominance of aerobic anoxygenic phototroph Erythrobacter, with 93% of total 454 pyrosequencing tags. Subsequently, enrichments for both aerobic (Erythrobacter) and anaerobic anoxygenic phototrophs (green and purple sulphur bacteria) under red and white LED light illumination, with average irradiance 30.66Wm-2, were attempted for three red-clay sediment cores. Successful enrichments were obtained after incubation for c.a. 120 days at 4°± 2°C and 25°± 2°C, representing ambient psychrophilic and low temperature hydrothermal alteration conditions respectively. During hydrothermal cooling, a microbial succession from anaerobic chemolithotrophy to oxygenic photoautotrophy through anaerobic/aerobic anoxygenic phototrophic microbes is indicated. Spectral absorbance patterns of the methanol extracted cell pellets showed peaks corresponding to metal sulphide precipitations, the Soret band of chlorosome absorbance by photosystem II and absence of peaks at Qy transition band. Dendritic nano-structures of metal sulphides are common in these sediments and are comparable with other sulphidic paleo-marine Martian analogues. Significant blue and redshifts have been observed for the experimental samples relative to the un-inoculated medium. These observations indicate the propensity of metal-sulphide deposits contributing to chemiluminiscence supporting the growth of phototrophs at least partially, in the otherwise dark abyss. The effects of other geothermal heat and light sources are also under further consideration. The potential of phototrophic microbial cells to exhibit Doppler shift in absorbance patterns is significant towards understanding planetary microbial habitability. Planetary desiccation could considerably influence Doppler effects and consequently spectral detection techniques exo-planetary microbial life.
Collapse
Affiliation(s)
- Anindita Das
- Agharkar Research Institute-Maharashtra Association for the Cultivation of Science (MACS), G.G. Agarkar Road, Pune-411004, Maharastra, India; Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula-403004, Goa, India.
| | - Tanya Singh
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula-403004, Goa, India; Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0277, Japan
| | - P A LokaBharathi
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula-403004, Goa, India
| | - Prashant K Dhakephalkar
- Agharkar Research Institute-Maharashtra Association for the Cultivation of Science (MACS), G.G. Agarkar Road, Pune-411004, Maharastra, India
| | - Sweta Mallik
- Agharkar Research Institute-Maharashtra Association for the Cultivation of Science (MACS), G.G. Agarkar Road, Pune-411004, Maharastra, India
| | - Pranav R Kshirsagar
- Agharkar Research Institute-Maharashtra Association for the Cultivation of Science (MACS), G.G. Agarkar Road, Pune-411004, Maharastra, India
| | - N H Khadge
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula-403004, Goa, India
| | - B Nagender Nath
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula-403004, Goa, India
| | - Satadru Bhattacharya
- Space Application Centre- Indian Space Research Organisation (SAC-ISRO), #4361, Satellite Road, Ambawadi Vistar P. O., Ahmedabad - 380 015, Gujarat, India
| | - Aditya Kumar Dagar
- Space Application Centre- Indian Space Research Organisation (SAC-ISRO), #4361, Satellite Road, Ambawadi Vistar P. O., Ahmedabad - 380 015, Gujarat, India
| | - Prabhjot Kaur
- Space Application Centre- Indian Space Research Organisation (SAC-ISRO), #4361, Satellite Road, Ambawadi Vistar P. O., Ahmedabad - 380 015, Gujarat, India
| | - Dwijesh Ray
- Physical Research Laboratory, Thaltej, Ahmedabad-380054, Gujrat, India
| | - Anil D Shukla
- Physical Research Laboratory, Thaltej, Ahmedabad-380054, Gujrat, India
| | - Christabelle E G Fernandes
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula-403004, Goa, India
| | - Sheryl O Fernandes
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula-403004, Goa, India; National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-da-Gama 403804, Goa, India
| | - Tresa Remya A Thomas
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula-403004, Goa, India
| | - Mamatha S S
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula-403004, Goa, India
| | - Babu Shashikant Mourya
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula-403004, Goa, India
| | - Ram Murti Meena
- Council of Scientific and Industrial Research-National Institute of Oceanography, Dona Paula-403004, Goa, India
| |
Collapse
|
19
|
Tahon G, Tytgat B, Willems A. Diversity of Phototrophic Genes Suggests Multiple Bacteria May Be Able to Exploit Sunlight in Exposed Soils from the Sør Rondane Mountains, East Antarctica. Front Microbiol 2016; 7:2026. [PMID: 28066352 PMCID: PMC5165242 DOI: 10.3389/fmicb.2016.02026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023] Open
Abstract
Microbial life in exposed terrestrial surface layers in continental Antarctica is faced with extreme environmental conditions, including scarcity of organic matter. Bacteria in these exposed settings can therefore be expected to use alternative energy sources such as solar energy, abundant during the austral summer. Using Illumina MiSeq sequencing, we assessed the diversity and abundance of four conserved protein encoding genes involved in different key steps of light-harvesting pathways dependent on (bacterio)chlorophyll (pufM, bchL/chlL, and bchX genes) and rhodopsins (actinorhodopsin genes), in exposed soils from the Sør Rondane Mountains, East Antarctica. Analysis of pufM genes, encoding a subunit of the type 2 photochemical reaction center found in anoxygenic phototrophic bacteria, revealed a broad diversity, dominated by Roseobacter- and Loktanella-like sequences. The bchL and chlL, involved in (bacterio)chlorophyll synthesis, on the other hand, showed a high relative abundance of either cyanobacterial or green algal trebouxiophyceael chlL reads, depending on the sample, while most bchX sequences belonged mostly to previously unidentified phylotypes. Rhodopsin-containing phototrophic bacteria could not be detected in the samples. Our results, while suggesting that Cyanobacteria and green algae are the main phototrophic groups, show that light-harvesting bacteria are nevertheless very diverse in microbial communities in Antarctic soils.
Collapse
Affiliation(s)
- Guillaume Tahon
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Bjorn Tytgat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University Ghent, Belgium
| |
Collapse
|
20
|
Geographic Impact on Genomic Divergence as Revealed by Comparison of Nine Citromicrobial Genomes. Appl Environ Microbiol 2016; 82:7205-7216. [PMID: 27736788 DOI: 10.1128/aem.02495-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/03/2016] [Indexed: 11/20/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria (AAPB) are thought to be important players in oceanic carbon and energy cycling in the euphotic zone of the ocean. The genus Citromicrobium, widely found in oligotrophic oceans, is a member of marine alphaproteobacterial AAPB. Nine Citromicrobium strains isolated from the South China Sea, the Mediterranean Sea, or the tropical South Atlantic Ocean were found to harbor identical 16S rRNA sequences. The sequencing of their genomes revealed high synteny in major regions. Nine genetic islands (GIs) involved mainly in type IV secretion systems, flagellar biosynthesis, prophage, and integrative conjugative elements, were identified by a fine-scale comparative genomics analysis. These GIs played significant roles in genomic evolution and divergence. Interestingly, the coexistence of two different photosynthetic gene clusters (PGCs) was not only found in the analyzed genomes but also confirmed, for the first time, to our knowledge, in environmental samples. The prevalence of the coexistence of two different PGCs may suggest an adaptation mechanism for Citromicrobium members to survive in the oceans. Comparison of genomic characteristics (e.g., GIs, average nucleotide identity [ANI], single-nucleotide polymorphisms [SNPs], and phylogeny) revealed that strains within a marine region shared a similar evolutionary history that was distinct from that of strains isolated from other regions (South China Sea versus Mediterranean Sea). Geographic differences are partly responsible for driving the observed genomic divergences and allow microbes to evolve through local adaptation. Three Citromicrobium strains isolated from the Mediterranean Sea diverged millions of years ago from other strains and evolved into a novel group. IMPORTANCE Aerobic anoxygenic phototrophic bacteria are a widespread functional group in the upper ocean, and their abundance could be up to 15% of the total heterotrophic bacteria. To date, a great number of studies display AAPB biogeographic distribution patterns in the ocean; however, little is understood about the geographic isolation impact on the genome divergence of marine AAPB. In this study, we compare nine Citromicrobium genomes of strains that have identical 16S rRNA sequences but different ocean origins. Our results reveal that strains isolated from the same marine region share a similar evolutionary history that is distinct from that of strains isolated from other regions. These Citromicrobium strains diverged millions of years ago. In addition, the coexistence of two different PGCs is prevalent in the analyzed genomes and in environmental samples.
Collapse
|
21
|
Bibiloni-Isaksson J, Seymour JR, Ingleton T, van de Kamp J, Bodrossy L, Brown MV. Spatial and temporal variability of aerobic anoxygenic photoheterotrophic bacteria along the east coast of Australia. Environ Microbiol 2016; 18:4485-4500. [PMID: 27376620 DOI: 10.1111/1462-2920.13436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/28/2016] [Indexed: 11/29/2022]
Abstract
Aerobic Anoxygenic Phototrophic Bacteria (AAnPB) are ecologically important microorganisms, widespread in oceanic photic zones. However, the key environmental drivers underpinning AAnPB abundance and diversity are still largely undefined. The temporal patterns in AAnPB dynamics at three oceanographic reference stations spanning at approximately 15° latitude along the Australian east coast were examined. AAnPB abundance was highly variable, with pufM gene copies ranging from 1.1 × 102 to 1.4 × 105 ml-1 and positively correlated with day length and solar radiation. pufM gene Miseq sequencing revealed that the majority of sequences were closely related to those obtained previously, suggesting that key AAnPB groups are widely distributed across similar environments globally. Temperature was a major structuring factor for AAnPB assemblages across large spatial scales, correlating positively with richness and Gammaproteobacteria (phylogroup K) abundance but negatively with Roseobacter-clade (phylogroup E) abundance, with temperatures between 16°C and 18°C identified as a potential transition zone between these groups. Network analysis revealed that discrete AAnPB populations exploit specific niches defined by varying temperature, light and nutrient conditions in the Tasman Sea system, with evidence for both niche sharing and partitioning amongst closely related operational taxonomic units.
Collapse
Affiliation(s)
- Jaime Bibiloni-Isaksson
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Justin R Seymour
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, Australia
| | - Tim Ingleton
- Department of Environment, Climate Change and Water, Waters and Coastal Science Section, Sydney South, NSW, 1232, Australia
| | - Jodie van de Kamp
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, TAS, 7000, Australia
| | - Levente Bodrossy
- CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, TAS, 7000, Australia
| | - Mark V Brown
- School of Biotechnology and Biomolecular Science, UNSW Australia, Sydney, 2052, Australia
| |
Collapse
|
22
|
Lew S, Lew M, Koblížek M. Influence of selected environmental factors on the abundance of aerobic anoxygenic phototrophs in peat-bog lakes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13853-13863. [PMID: 27032635 PMCID: PMC4943989 DOI: 10.1007/s11356-016-6521-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Aerobic anoxygenic phototrophs (AAPs) are photoheterotrophic prokaryotes that are widespread in many limnic and marine environments. So far, little is known about their distribution in peat-bog lakes. Seventeen peat-bog lakes were sampled during three summer seasons 2009, 2011, and 2012, and the vertical distribution of AAPs was determined by infrared epifluorescence microscopy. The analysis demonstrated that in the surface layers of the studied lakes, AAP abundance ranged from 0.3 to 12.04 × 10(5) cells mL(-1), which represents <1 to 18.3 % of the total bacteria. The vertical distribution of AAPs confirmed their presence in the upper parts of the water column with minimum numbers in the anoxic bottom waters. We have shown that the AAP abundance was significantly positively correlated with the water pH, and the highest proportion of photoheterotrophs was found in peat-bog lakes with a pH between 6.7 and 7.6. Our results demonstrated an influence of water acidity on the abundance of AAPs, which may reflect a fundamental difference in the microbial composition between acidic and pH neutral peat-bog lakes.
Collapse
Affiliation(s)
- Sylwia Lew
- />Faculty of Biology and Biotechnology, University of Warmia and Mazury in Poland, Oczapowskiego 1a, 10-957 Olsztyn, Poland
| | - Marcin Lew
- />Faculty of Veterinary Medicine, University of Warmia and Mazury in Poland, Oczapowskiego 2, 10-957 Olsztyn, Poland
| | - Michal Koblížek
- />Institute of Microbiology CAS, Center Algatech, 37981 Třeboň, Czech Republic
| |
Collapse
|
23
|
Zheng Q, Lin W, Liu Y, Chen C, Jiao N. A Comparison of 14 Erythrobacter Genomes Provides Insights into the Genomic Divergence and Scattered Distribution of Phototrophs. Front Microbiol 2016; 7:984. [PMID: 27446024 PMCID: PMC4919336 DOI: 10.3389/fmicb.2016.00984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/08/2016] [Indexed: 11/15/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria (AAPB) are bacteriochlorophyll a (Bchl a)-containing microbial functional population. Erythrobacter is the first genus that was identified to contain AAPB species. Here, we compared 14 Erythrobacter genomes: seven phototrophic strains and seven non- phototrophic strains. Interestingly, AAPB strains are scattered in this genus based on their phylogenetic relationships. All 14 strains could be clustered into three groups based on phylo-genomic analysis, average genomic nucleotide identity and the phylogeny of signature genes (16S rRNA and virB4 genes). The AAPB strains were distributed in three groups, and gain and loss of phototrophic genes co-occurred in the evolutionary history of the genus Erythrobacter. The organization and structure of photosynthesis gene clusters (PGCs) in seven AAPB genomes displayed high synteny of major regions except for few insertions. The 14 Erythrobacter genomes had a large range of genome sizes, from 2.72 to 3.60 M, and the sizes of the core and pan- genomes were 1231 and 8170 orthologous clusters, respectively. Integrative and conjugative elements (ICEs) were frequently identified in genomes we studied, which might play significant roles in shaping or contributing to the pan-genome of Erythrobacter. Our findings suggest the ongoing evolutionary divergence of Erythrobacter genomes and the scattered distribution characteristic of PGC.
Collapse
Affiliation(s)
- Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Wenxin Lin
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Yanting Liu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| | - Chang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhou, China
- Xisha Deep Sea Marine Environment Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of SciencesSansha, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen UniversityXiamen, China
| |
Collapse
|
24
|
Cuadrat RRC, Ferrera I, Grossart HP, Dávila AMR. Picoplankton Bloom in Global South? A High Fraction of Aerobic Anoxygenic Phototrophic Bacteria in Metagenomes from a Coastal Bay (Arraial do Cabo--Brazil). OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:76-87. [PMID: 26871866 PMCID: PMC4770915 DOI: 10.1089/omi.2015.0142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Marine habitats harbor a great diversity of microorganism from the three domains of life, only a small fraction of which can be cultivated. Metagenomic approaches are increasingly popular for addressing microbial diversity without culture, serving as sensitive and relatively unbiased methods for identifying and cataloging the diversity of nucleic acid sequences derived from organisms in environmental samples. Aerobic anoxygenic phototrophic bacteria (AAP) play important roles in carbon and energy cycling in aquatic systems. In oceans, those bacteria are widely distributed; however, their abundance and importance are still poorly understood. The aim of this study was to estimate abundance and diversity of AAPs in metagenomes from an upwelling affected coastal bay in Arraial do Cabo, Brazil, using in silico screening for the anoxygenic photosynthesis core genes. Metagenomes from the Global Ocean Sample Expedition (GOS) were screened for comparative purposes. AAPs were highly abundant in the free-living bacterial fraction from Arraial do Cabo: 23.88% of total bacterial cells, compared with 15% in the GOS dataset. Of the ten most AAP abundant samples from GOS, eight were collected close to the Equator where solar irradiation is high year-round. We were able to assign most retrieved sequences to phylo-groups, with a particularly high abundance of Roseobacter in Arraial do Cabo samples. The high abundance of AAP in this tropical bay may be related to the upwelling phenomenon and subsequent picoplankton bloom. These results suggest a link between upwelling and light abundance and demonstrate AAP even in oligotrophic tropical and subtropical environments. Longitudinal studies in the Arraial do Cabo region are warranted to understand the dynamics of AAP at different locations and seasons, and the ecological role of these unique bacteria for biogeochemical and energy cycling in the ocean.
Collapse
Affiliation(s)
- Rafael R C Cuadrat
- 1 Computational and Systems Biology Laboratory, Oswaldo Cruz Institute , Fiocruz, Brazil .,2 Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Berlin, Germany .,5 Berlin Center for Genomics in Biodiversity Research , Berlin, Germany
| | - Isabel Ferrera
- 2 Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Berlin, Germany .,4 Institut de Ciències del Mar , CSIC, Barcelona, Spain
| | - Hans-Peter Grossart
- 2 Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Berlin, Germany .,3 Potsdam University, Institute for Biochemistry and Biology , Potsdam, Germany
| | - Alberto M R Dávila
- 1 Computational and Systems Biology Laboratory, Oswaldo Cruz Institute , Fiocruz, Brazil
| |
Collapse
|
25
|
Tahon G, Tytgat B, Stragier P, Willems A. Analysis of cbbL, nifH, and pufLM in Soils from the Sør Rondane Mountains, Antarctica, Reveals a Large Diversity of Autotrophic and Phototrophic Bacteria. MICROBIAL ECOLOGY 2016; 71:131-149. [PMID: 26582318 DOI: 10.1007/s00248-015-0704-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Cyanobacteria are generally thought to be responsible for primary production and nitrogen fixation in the microbial communities that dominate Antarctic ecosystems. Recent studies of bacterial communities in terrestrial Antarctica, however, have shown that Cyanobacteria are sometimes only scarcely present, suggesting that other bacteria presumably take over their role as primary producers and diazotrophs. The diversity of key genes in these processes was studied in surface samples from the Sør Rondane Mountains, Dronning Maud Land, using clone libraries of the large subunit of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) genes (cbbL, cbbM) and dinitrogenase-reductase (nifH) genes. We recovered a large diversity of non-cyanobacterial cbbL type IC in addition to cyanobacterial type IB, suggesting that non-cyanobacterial autotrophs may contribute to primary production. The nifH diversity recovered was predominantly related to Cyanobacteria, particularly members of the Nostocales. We also investigated the occurrence of proteorhodopsin and anoxygenic phototrophy as mechanisms for non-Cyanobacteria to exploit solar energy. While proteorhodopsin genes were not detected, a large diversity of genes coding for the light and medium subunits of the type 2 phototrophic reaction center (pufLM) was observed, suggesting for the first time, that the aerobic photoheterotrophic lifestyle may be important in oligotrophic high-altitude ice-free terrestrial Antarctic habitats.
Collapse
Affiliation(s)
- Guillaume Tahon
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Bjorn Tytgat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Pieter Stragier
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
26
|
Lehours AC, Jeanthon C. The hydrological context determines the beta-diversity of aerobic anoxygenic phototrophic bacteria in European Arctic seas but does not favor endemism. Front Microbiol 2015; 6:638. [PMID: 26191046 PMCID: PMC4490794 DOI: 10.3389/fmicb.2015.00638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/12/2015] [Indexed: 11/25/2022] Open
Abstract
Despite an increasing number of studies over the last 15 years, aerobic anoxygenic photoheterotrophic (AAP) bacteria remain a puzzling functional group in terms of physiology, metabolism, and ecology. To contribute to a better knowledge of their environmental distribution, the present study aims at analyzing their diversity and structure at the boundary between the Norwegian, Greenland, and Barents Seas. The polymorphism of a marker gene encoding a sub-unit of the photosynthetic apparatus (pufM gene) was analyzed and attempted to be related to environmental parameters. The Atlantic or Arctic origin of water masses had a strong impact on the AAP bacterial community structure whose populations mostly belonged to the Alpha- and Gammaproteobacteria. A majority (>60%) of pufM sequences were affiliated to the Gammaproteobacteria reasserting that this class often represents the major component of the AAP bacterial community in oceanic regions. Two alphaproteobacterial groups dominate locally suggesting that they can constitute key players in this marine system transiently. We found that temperature is a major determinant of alpha diversity of AAP bacteria in this marine biome with specific clades emerging locally according to the partitioning of water masses. Whereas we expected specific AAP bacterial populations in this peculiar and newly explored ecosystem, most pufM sequences were highly related to sequences retrieved elsewhere. This observation highlights that the studied area does not favor AAP bacteria endemism but also opens new questions about the truthfulness of biogeographical patterns and on the extent of AAP bacterial diversity.
Collapse
Affiliation(s)
- Anne-Catherine Lehours
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal Clermont-Ferrand, France ; Laboratoire Microorganismes: Génome et Environnement, Centre National de la Recherche Scientifique, UMR 6023 Aubière, France
| | - Christian Jeanthon
- Oceanic Plankton Group, Station Biologique, Centre National de la Recherche Scientifique, UMR 7144 Roscoff, France ; Oceanic Plankton Group, Station Biologique, Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, UMR 7144 Roscoff, France
| |
Collapse
|
27
|
Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 2015; 39:854-70. [DOI: 10.1093/femsre/fuv032] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 11/13/2022] Open
|
28
|
Zheng Q, Liu Y, Steindler L, Jiao N. Pyrosequencing analysis of aerobic anoxygenic phototrophic bacterial community structure in the oligotrophic western Pacific Ocean. FEMS Microbiol Lett 2015; 362:fnv034. [DOI: 10.1093/femsle/fnv034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 11/13/2022] Open
|
29
|
Stegman MR, Cottrell MT, Kirchman DL. Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary. ISME JOURNAL 2014; 8:2339-48. [PMID: 24824666 DOI: 10.1038/ismej.2014.75] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 11/09/2022]
Abstract
Aerobic anoxygenic phototrophic (AAP) bacteria are well known to be abundant in estuaries, coastal regions and in the open ocean, but little is known about their activity in any aquatic ecosystem. To explore the activity of AAP bacteria in the Delaware estuary and coastal waters, single-cell (3)H-leucine incorporation by these bacteria was examined with a new approach that combines infrared epifluorescence microscopy and microautoradiography. The approach was used on samples from the Delaware coast from August through December and on transects through the Delaware estuary in August and November 2011. The percent of active AAP bacteria was up to twofold higher than the percentage of active cells in the rest of the bacterial community in the estuary. Likewise, the silver grain area around active AAP bacteria in microautoradiography preparations was larger than the area around cells in the rest of the bacterial community, indicating higher rates of leucine consumption by AAP bacteria. The cell size of AAP bacteria was 50% bigger than the size of other bacteria, about the same difference on average as measured for activity. The abundance of AAP bacteria was negatively correlated and their activity positively correlated with light availability in the water column, although light did not affect (3)H-leucine incorporation in light-dark experiments. Our results suggest that AAP bacteria are bigger and more active than other bacteria, and likely contribute more to organic carbon fluxes than indicated by their abundance.
Collapse
Affiliation(s)
- Monica R Stegman
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Matthew T Cottrell
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - David L Kirchman
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| |
Collapse
|
30
|
Ferrera I, Borrego CM, Salazar G, Gasol JM. Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. Environ Microbiol 2013; 16:2953-65. [PMID: 24131493 DOI: 10.1111/1462-2920.12278] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
Abstract
The abundance and diversity of aerobic anoxygenic phototrophs (AAPs) were studied for a year cycle at the Blanes Bay Microbial Observatory (NW Mediterranean) and their potential links to an array of environmental variables were explored. Cell numbers were low in winter and peaked in summer, showing a marked seasonality that positively correlated with day length and light at the surface. Bacteriochlorophyll a concentration, their light-harvesting pigment, was only detected between April and October, and pigment cell quota showed large variations during this period. Pyrosequencing analysis of the pufM gene revealed that the most abundant operational taxonomic units (OTUs) were affiliated to phylogroup K (Gammaproteobacteria) and uncultured phylogroup C, although they were outnumbered by alphaproteobacterial OTUs in spring. Overall, richness was higher in winter than in summer, showing an opposite trend to abundance and day length. Clustering of samples by multivariate analyses showed a clear seasonality that suggests a succession of different AAP subpopulations over time. Temperature, chlorophyll a and day length were the environmental drivers that best explained the distribution of AAP assemblages. These results indicate that AAP bacteria are highly dynamic and undergo seasonal variations in diversity and abundance mostly dictated by environmental conditions as exemplified by light availability.
Collapse
Affiliation(s)
- Isabel Ferrera
- Department de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain
| | | | | | | |
Collapse
|
31
|
Vester JK, Glaring MA, Stougaard P. Improving diversity in cultures of bacteria from an extreme environment. Can J Microbiol 2013; 59:581-6. [PMID: 23899002 DOI: 10.1139/cjm-2013-0087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ikaite columns in the Ikka Fjord in Greenland represent one of the few permanently cold and alkaline environments on Earth, and the interior of the columns is home to a bacterial community adapted to these extreme conditions. The community is characterized by low cell numbers imbedded in a calcium carbonate matrix, making extraction of bacterial cells and DNA a challenge and limiting molecular and genomic studies of this environment. To utilize this genetic resource, cultivation at high pH and low temperature was studied as a method for obtaining biomass and DNA from the fraction of this community that would not otherwise be amenable to genetic analyses. The diversity and community dynamics in mixed cultures of bacteria from ikaite columns was investigated using denaturing gradient gel electrophoresis and pyrosequencing of 16S rDNA. Both medium composition and incubation time influenced the diversity of the culture and many hitherto uncharacterized genera could be brought into culture by extended incubation time. Extended incubation time also gave rise to a more diverse community with a significant number of rare species not detected in the initial community.
Collapse
Affiliation(s)
- Jan Kjølhede Vester
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | |
Collapse
|
32
|
Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere. Appl Environ Microbiol 2013; 79:4895-905. [PMID: 23770907 DOI: 10.1128/aem.01087-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources.
Collapse
|
33
|
Smith MW, Zeigler Allen L, Allen AE, Herfort L, Simon HM. Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem. Front Microbiol 2013; 4:120. [PMID: 23750156 PMCID: PMC3668451 DOI: 10.3389/fmicb.2013.00120] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/29/2013] [Indexed: 11/22/2022] Open
Abstract
The Columbia River (CR) is a powerful economic and environmental driver in the US Pacific Northwest. Microbial communities in the water column were analyzed from four diverse habitats: (1) an estuarine turbidity maximum (ETM), (2) a chlorophyll maximum of the river plume, (3) an upwelling-associated hypoxic zone, and (4) the deep ocean bottom. Three size fractions, 0.1-0.8, 0.8-3, and 3-200 μm were collected for each habitat in August 2007, and used for DNA isolation and 454 sequencing, resulting in 12 metagenomes of >5 million reads (>1.6 Gbp). To characterize the dominant microorganisms and metabolisms contributing to coastal biogeochemistry, we used predicted peptide and rRNA data. The 3- and 0.8-μm metagenomes, representing particulate fractions, were taxonomically diverse across habitats. The 3-μm size fractions contained a high abundance of eukaryota with diatoms dominating the hypoxic water and plume, while cryptophytes were more abundant in the ETM. The 0.1-μm metagenomes represented mainly free-living bacteria and archaea. The most abundant archaeal hits were observed in the deep ocean and hypoxic water (19% of prokaryotic peptides in the 0.1-μm metagenomes), and were homologous to Nitrosopumilus maritimus (ammonia-oxidizing Thaumarchaeota). Bacteria dominated metagenomes of all samples. In the euphotic zone (estuary, plume and hypoxic ocean), the most abundant bacterial taxa (≥40% of prokaryotic peptides) represented aerobic photoheterotrophs. In contrast, the low-oxygen, deep water metagenome was enriched with sequences for strict and facultative anaerobes. Interestingly, many of the same anaerobic bacterial families were enriched in the 3-μm size fraction of the ETM (2-10X more abundant relative to the 0.1-μm metagenome), indicating possible formation of anoxic microniches within particles. Results from this study provide a metagenome perspective on ecosystem-scale metabolism in an upwelling-influenced river-dominated coastal margin.
Collapse
Affiliation(s)
- Maria W. Smith
- Center for Coastal Margin Observation and Prediction, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Lisa Zeigler Allen
- Microbial and Environmental Genomics, J. Craig Venter InstituteSan Diego, CA, USA
| | - Andrew E. Allen
- Microbial and Environmental Genomics, J. Craig Venter InstituteSan Diego, CA, USA
| | - Lydie Herfort
- Center for Coastal Margin Observation and Prediction, Oregon Health and Science UniversityBeaverton, OR, USA
| | - Holly M. Simon
- Center for Coastal Margin Observation and Prediction, Oregon Health and Science UniversityBeaverton, OR, USA
- Division of Environmental and Biomolecular Systems, Department of Science and Engineering, Oregon Health and Science UniversityBeaverton, OR, USA
| |
Collapse
|
34
|
Spring S, Riedel T, Spröer C, Yan S, Harder J, Fuchs BM. Taxonomy and evolution of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria: description of Luminiphilus syltensis gen. nov., sp. nov., reclassification of Haliea rubra as Pseudohaliea rubra gen. nov., comb. nov., and emendation of Chromatocurvus halotolerans. BMC Microbiol 2013; 13:118. [PMID: 23705883 PMCID: PMC3679898 DOI: 10.1186/1471-2180-13-118] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/16/2013] [Indexed: 12/27/2022] Open
Abstract
Background Aerobic gammaproteobacteria affiliated to the OM60/NOR5 clade are widespread in saline environments and of ecological importance in several marine ecosystems, especially the euphotic zone of coastal areas. Within this group a close relationship between aerobic anoxygenic photoheterotrophs and non-phototrophic members has been found. Results Several strains of aerobic red-pigmented bacteria affiliated to the OM60/NOR5 clade were obtained from tidal flat sediment samples at the island of Sylt (North Sea, Germany). Two of the novel isolates, Rap1red and Ivo14T, were chosen for an analysis in detail. Strain Rap1red shared a 16S rRNA sequence identity of 99% with the type strain of Congregibacter litoralis and was genome-sequenced to reveal the extent of genetic microheterogeneity among closely related strains within this clade. In addition, a draft genome sequence was obtained from the isolate Ivo14T, which belongs to the environmental important NOR5-1 lineage that contains so far no cultured representative with a comprehensive description. Strain Ivo14T was characterized using a polyphasic approach and compared with other red-pigmented members of the OM60/NOR5 clade, including Congregibacter litoralis DSM 17192T, Haliea rubra DSM 19751T and Chromatocurvus halotolerans DSM 23344T. All analyzed strains contained bacteriochlorophyll a and spirilloxanthin as photosynthetic pigments. Besides a detailed phenotypic characterization including physiological and chemotaxonomic traits, sequence information based on protein-coding genes and a comparison of draft genome data sets were used to identify possible features characteristic for distinct taxa within this clade. Conclusions Comparative sequence analyses of the pufLM genes of genome-sequenced representatives of the OM60/NOR5 clade indicated that the photosynthetic apparatus of these species was derived from a common ancestor and not acquired by multiple horizontal gene transfer from phylogenetically distant species. An affiliation of the characterized bacteriochlorophyll a-containing strains to different genera was indicated by significant phenotypic differences and pufLM nucleotide sequence identity values below 82%. The revealed high genotypic and phenotypic diversity of closely related strains within this phylogenetic group reflects a rapid evolution and frequent niche separation in the OM60/NOR5 clade, which is possibly driven by the necessities of an adaptation to oligotrophic marine habitats.
Collapse
Affiliation(s)
- Stefan Spring
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstr 7B, Braunschweig 38124, Germany.
| | | | | | | | | | | |
Collapse
|