1
|
Portaccio L, Vergine M, De Pascali M, De Bellis L, Luvisi A. Diffusible Signal Factors and Xylella fastidiosa: A Crucial Mechanism Yet to Be Revealed. BIOLOGY 2025; 14:303. [PMID: 40136559 PMCID: PMC11939919 DOI: 10.3390/biology14030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Xylella fastidiosa (Xf) is a xylem-limited Gram-negative phytopathogen responsible for severe plant diseases globally. Colonization and dissemination on host plants are regulated primarily by diffusible signal factors (DSFs) and quorum sensing (QS) molecules regulating biofilm formation, motility, and virulence factor synthesis. DSFs play a critical role in the transition of bacteria from adhesion to dispersal phases, influencing plant infection and transmission by vector. Because of Xf's host range (over 550 plant species), effective containment strategies are highly demanded. In this review, we discuss the molecular mechanism of DSF-mediated signalling in Xf, especially concerning its role in pathogenicity and adaptation. Moreover, we shed light on innovative approaches to manage Xf, including quorum-quenching (QQ) strategies and transgenic plants targeted to disrupt QS pathways. Improved knowledge of DSF interactions with host plants and bacterial communities could provide an entry point for novel, sustainable disease control strategies to decrease Xf's agricultural and ecological impact.
Collapse
Affiliation(s)
- Letizia Portaccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
| | - Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (L.P.); (M.D.P.); (L.D.B.); (A.L.)
| |
Collapse
|
2
|
Zhang XF, Li Z, Qiu J, Zhang R, Jiang Z, Wang T, Chen H, Wei T. A phytoplasma effector suppresses insect melanization immune response to promote pathogen persistent transmission. SCIENCE ADVANCES 2025; 11:eads9781. [PMID: 39879313 PMCID: PMC11777251 DOI: 10.1126/sciadv.ads9781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Insect melanization triggered by the conversion of prophenoloxidase to active phenoloxidase via serine proteases (SPs) is an important immediate immune response. However, how phytoplasmas evade this immune response to promote their propagation in insect vectors remains unknown. Here, we demonstrate that infection of leafhopper vectors with rice orange leaf phytoplasma (ROLP) activates the mild melanization response in hemolymph. ROLP-encoded effector protein SRP1 is highly expressed in leafhopper hemolymph, where it competitively binds to SP2, thereby inhibiting SP2-mediated cleavage of prophenoloxidase into active phenoloxidase. Consequently, microinjection of SRP1 effectively suppresses the melanization response and enhances ROLP propagation. The histidine residue at position 23 of SRP1 is essential for SRP1-SP2 interaction, and the mutation of this position abolishes its ability to inhibit such SP2-meidated cleavage, ultimately promoting melanization response and inhibiting ROLP propagation. Our findings provide insights into how phytoplasmas antagonize insect melanization response to facilitate their persistent transmission.
Collapse
Affiliation(s)
| | | | - Jiaxin Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruonan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhoumian Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tengfei Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Sarkar P, Lin CY, Buritica JR, Killiny N, Levy A. Crossing the Gateless Barriers: Factors Involved in the Movement of Circulative Bacteria Within Their Insect Vectors. PHYTOPATHOLOGY 2023; 113:1805-1816. [PMID: 37160668 DOI: 10.1094/phyto-07-22-0249-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant bacterial pathogens transmitted by hemipteran vectors pose a large threat to the agricultural industry worldwide. Although virus-vector relationships have been widely investigated, a significant gap exists in our understanding of the molecular interactions between circulative bacteria and their insect vectors, mainly leafhoppers and psyllids. In this review, we will describe how these bacterial pathogens adhere, invade, and proliferate inside their insect vectors. We will also highlight the different transmission routes and molecular factors of phloem-limited bacteria that maintain an effective relationship with the insect host. Understanding the pathogen-vector relationship at the molecular level will help in the management of vector-borne bacterial diseases.
Collapse
Affiliation(s)
- Poulami Sarkar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - Jacobo Robledo Buritica
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Nabil Killiny
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
4
|
Bodino N, Cavalieri V, Dongiovanni C, Saponari M, Bosco D. Bioecological Traits of Spittlebugs and Their Implications for the Epidemiology and Control of the Xylella fastidiosa Epidemic in Apulia (Southern Italy). PHYTOPATHOLOGY 2023; 113:1647-1660. [PMID: 36945728 DOI: 10.1094/phyto-12-22-0460-ia] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spatial-temporal dynamics of spittlebug populations, together with transmission biology, are of major importance to outline the disease epidemiology of Xylella fastidiosa subsp. pauca in Apulian olive groves. The spread rate of X. fastidiosa is mainly influenced by (i) the pathogen colonization of the host plant; (ii) the acquisition of the pathogen by the vector from an infected plant, and its inoculation to healthy plants; (iii) the vector population dynamics and abundance at different spatial scales; and (iv) the dispersal of the vector. In this contribution we summarize the recent advances in research on insect vectors' traits-points ii, iii, and iv-focusing on those most relevant to X. fastidiosa epidemic in Apulia. Among the vectors' bioecological traits influencing the X. fastidiosa epidemic in olive trees, we emphasize the following: natural infectivity and transmission efficiency, phenological timing of both nymphal and adult stage, the role of seminatural vegetation as a vector reservoir in the agroecosystem and landscape, and preferential and directional dispersal capabilities. Despite the research on X. fastidiosa vectors carried out in Europe in the last decade, key uncertainties on insect vectors remain, hampering a thorough understanding of pathogen epidemiology and the development of effective and targeted management strategies. Our goal is to provide a structured and contextualized review of knowledge on X. fastidiosa vectors' key traits in the Apulian epidemic, highlighting information gaps and stimulating novel research pathways on X. fastidiosa pathosystems in Europe. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Nicola Bodino
- CNR-Istituto per la Protezione Sostenibile delle Piante, 10135 Torino, Italy
| | - Vincenzo Cavalieri
- CNR-Istituto per la Protezione Sostenibile delle Piante, SS Bari, 70126 Bari, Italy
| | - Crescenza Dongiovanni
- CRSFA-Centro di Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, 70010 Locorotondo (BA), Italy
| | - Maria Saponari
- CNR-Istituto per la Protezione Sostenibile delle Piante, SS Bari, 70126 Bari, Italy
| | - Domenico Bosco
- CNR-Istituto per la Protezione Sostenibile delle Piante, 10135 Torino, Italy
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco (TO), Italy
| |
Collapse
|
5
|
He R, Fisher TW, Saha S, Peiz-Stelinski K, Willis MA, Gang DR, Brown JK. Differential gene expression of Asian citrus psyllids infected with ' Ca. Liberibacter asiaticus' reveals hyper-susceptibility to invasion by instar fourth-fifth and teneral adult stages. FRONTIERS IN PLANT SCIENCE 2023; 14:1229620. [PMID: 37662178 PMCID: PMC10470031 DOI: 10.3389/fpls.2023.1229620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023]
Abstract
The bacterial pathogen Candidatus Liberibacter asiaticus (CLas) is the causal agent of citrus greening disease. This unusual plant pathogenic bacterium also infects its psyllid host, the Asian citrus psyllid (ACP). To investigate gene expression profiles with a focus on genes involved in infection and circulation within the psyllid host of CLas, RNA-seq libraries were constructed from CLas-infected and CLas-free ACP representing the five different developmental stages, namely, nymphal instars 1-2, 3, and 4-5, and teneral and mature adults. The Gbp paired-end reads (296) representing the transcriptional landscape of ACP across all life stages and the official gene set (OGSv3) were annotated based on the chromosomal-length v3 reference genome and used for de novo transcript discovery resulting in 25,410 genes with 124,177 isoforms. Differential expression analysis across all ACP developmental stages revealed instar-specific responses to CLas infection, with greater overall responses by nymphal instars, compared to mature adults. More genes were over-or under-expressed in the 4-5th nymphal instars and young (teneral) adults than in instars 1-3, or mature adults, indicating that late immature instars and young maturing adults were highly responsive to CLas infection. Genes identified with potential for direct or indirect involvement in the ACP-CLas circulative, propagative transmission pathway were predominantly responsive during early invasion and infection processes and included canonical cytoskeletal remodeling and endo-exocytosis pathway genes. Genes with predicted functions in defense, development, and immunity exhibited the greatest responsiveness to CLas infection. These results shed new light on ACP-CLas interactions essential for pathogenesis of the psyllid host, some that share striking similarities with effector protein-animal host mechanisms reported for other culturable and/or fastidious bacterial- or viral- host pathosystems.
Collapse
Affiliation(s)
- Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture (USDA)-Agricultural Research Service (ARS), Beltsville, MD, United States
| | - Tonja W. Fisher
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Surya Saha
- Sol Genomics Network, Boyce Thompson Institute, Ithaca, NY, United States
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Kirsten Peiz-Stelinski
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida, Lake Alfred, FL, United States
| | - Mark A. Willis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - David R. Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Judith K. Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
6
|
Bodino N, Cavalieri V, Saponari M, Dongiovanni C, Altamura G, Bosco D. Transmission of Xylella fastidiosa subsp. pauca ST53 by the Sharpshooter Cicadella viridis From Different Source Plants and Artificial Diets. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1852-1858. [PMID: 36356033 DOI: 10.1093/jee/toac172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 06/16/2023]
Abstract
The sharpshooter Cicadella viridis L. (Hemiptera: Cicadellidae) is the most common sharpshooter in Europe and, given its xylem feeding behavior, is considered a potential vector of the plant pathogenic bacterium Xylella fastidiosa Wells et al. (Xanthomonadales: Xanthomonadaceae). We tested X. fastidiosa subsp. pauca ST53 (Xfp) transmission capabilities of C. viridis adults, namely 1) acquisition efficiency from four host plant species-periwinkle, milkwort, lavender, alfalfa-and from two artificial diets (PD3 and Xfm), 2) inoculation efficiency to periwinkle at different times post acquisition from different plant and artificial diet sources. The main European vector species-Philaenus spumarius L. (Hemiptera: Aphrophoridae)-was used as a control. C. viridis was able to acquire Xfp from periwinkle, milkwort, and lavender, although with low efficiency (3-16%) and from artificial diets (23-25%). Successful inoculation on periwinkle was extremely rare, being observed only three times, following feeding on milkwort plant and PD3 artificial diet sources. Our study shows that C. viridis is not a relevant vector of Xfp, given the very low transmission rate in controlled conditions, and the inability to feed on olive. The low efficiency reported here correlates with ecological constraints of the vector (mainly monocots host plants, humid environments) that make it difficult to forecast a relevant role in dispersing X. fastidiosa, at least within the present distribution of the exotic bacterium in Europe. However, a possible role of this species in spreading Xf in other agroecosystems, e.g., vineyard and stone fruits grown in humid areas, cannot be excluded.
Collapse
Affiliation(s)
- Nicola Bodino
- CNR-Istituto per la Protezione Sostenibile delle Piante, Torino (TO), Italy
| | - Vincenzo Cavalieri
- CNR-Istituto per la Protezione Sostenibile delle Piante, SS Bari, Bari (BA), Italy
| | - Maria Saponari
- CNR-Istituto per la Protezione Sostenibile delle Piante, SS Bari, Bari (BA), Italy
| | - Crescenza Dongiovanni
- CRSFA-Centro di Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, Locorotondo (BA), Italy
| | - Giuseppe Altamura
- CRSFA-Centro di Ricerca, Sperimentazione e Formazione in Agricoltura Basile Caramia, Locorotondo (BA), Italy
| | - Domenico Bosco
- CNR-Istituto per la Protezione Sostenibile delle Piante, Torino (TO), Italy
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Grugliasco (TO), Italy
| |
Collapse
|
7
|
Feitosa-Junior OR, Souza APS, Zaini PA, Baccari C, Ionescu M, Pierry PM, Uceda-Campos G, Labroussaa F, Almeida RPP, Lindow SE, da Silva AM. The XadA Trimeric Autotransporter Adhesins in Xylella fastidiosa Differentially Contribute to Cell Aggregation, Biofilm Formation, Insect Transmission and Virulence to Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:857-866. [PMID: 35704683 DOI: 10.1094/mpmi-05-22-0108-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface adhesion strategies are widely employed by bacterial pathogens during establishment and systemic spread in their host. A variety of cell-surface appendages such as pili, fimbriae, and afimbrial adhesins are involved in these processes. The phytopathogen Xylella fastidiosa employs several of these structures for efficient colonization of its insect and plant hosts. Among the adhesins encoded in the X. fastidiosa genome, three afimbrial adhesins, XadA1, Hsf/XadA2, and XadA3, are predicted to be trimeric autotransporters with a C-terminal YadA-anchor membrane domain. We analyzed the individual contributions of XadA1, XadA2, and XadA3 to various cellular behaviors both in vitro and in vivo. Using isogenic X. fastidiosa mutants, we found that cell-cell aggregation and biofilm formation were severely impaired in the absence of XadA3. No significant reduction of cell-surface attachment was found with any mutant under flow conditions. Acquisition by insect vectors and transmission to grapevines were reduced in the XadA3 deletion mutant. While the XadA3 mutant was hypervirulent in grapevines, XadA1 or XadA2 deletion mutants conferred lower disease severity than the wild-type strain. This insight of the importance of these adhesive proteins and their individual contributions to different aspects of X. fastidiosa biology should guide new approaches to reduce pathogen transmission and disease development. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula S Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo A Zaini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Department of Plant Sciences, University of California, Davis, CA, U.S.A
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Michael Ionescu
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Paulo M Pierry
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Guillermo Uceda-Campos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fabien Labroussaa
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, U.S.A
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, U.S.A
| | - Aline M da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Merfa MV, Fischer ER, de Souza E Silva M, Francisco CS, Della Coletta-Filho H, de Souza AA. Probing the Application of OmpA-Derived Peptides to Disrupt the Acquisition of ' Candidatus Liberibacter asiaticus' by Diaphorina citri. PHYTOPATHOLOGY 2022; 112:163-172. [PMID: 34818904 DOI: 10.1094/phyto-06-21-0252-fi] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Huanglongbing (HLB) is currently the most devastating disease of citrus worldwide. Both bacteria 'Candidatus Liberibacter asiaticus' (CLas) and 'Candidatus Liberibacter americanus' (CLam) are associated with HLB in Brazil but with a strong prevalence of CLas over CLam. Conventionally, HLB management focuses on controlling the insect vector population (Diaphorina citri; also known as Asian citrus psyllid [ACP]) by spraying insecticides, an approach demonstrated to be mostly ineffective. Thus, development of novel, more efficient HLB control strategies is required. The multifunctional bacterial outer membrane protein OmpA is involved in several molecular processes between bacteria and their hosts and has been suggested as a target for bacterial control. Curiously, OmpA is absent in CLam in comparison with CLas, suggesting a possible role in host interaction. Therefore, in the current study, we have treated ACPs with different OmpA-derived peptides, aiming to evaluate acquisition of CLas by the insect vector. Treatment of psyllids with 5 µM of Pep1, Pep3, Pep5, and Pep6 in artificial diet significantly reduced the acquisition of CLas, whereas increasing the concentration of Pep5 and Pep6 to 50 µM abolished this process. In addition, in planta treatment with 50 µM of Pep6 also significantly decreased the acquisition of CLas, and sweet orange plants stably absorbed and maintained this peptide for as long as 3 months post the final application. Together, our results demonstrate the promising use of OmpA-derived peptides as a novel biotechnological tool to control CLas.
Collapse
Affiliation(s)
- Marcus Vinícius Merfa
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| | - Eduarda Regina Fischer
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| | - Mariana de Souza E Silva
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| | | | | | - Alessandra Alves de Souza
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico-IAC, Cordeirópolis, SP 13490-970, Brazil
| |
Collapse
|
9
|
Interactions between the flavescence dorée phytoplasma and its insect vector indicate lectin-type adhesion mediated by the adhesin VmpA. Sci Rep 2021; 11:11222. [PMID: 34045641 PMCID: PMC8160148 DOI: 10.1038/s41598-021-90809-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
The flavescence dorée phytoplasma undergoes a propagative cycle in its insect vectors by first interacting with the insect cell surfaces, primarily in the midgut lumen and subsequently in the salivary glands. Adhesion of flavescence dorée phytoplasma to insect cells is mediated by the adhesin VmpA. We hypothesize that VmpA may have lectin-like activity, similar to several adhesins of bacteria that invade the insect gut. We first demonstrated that the luminal surface of the midgut and the basal surface of the salivary gland cells of the natural vector Scaphoideus titanus and those of the experimental vector Euscelidius variegatus were differentially glycosylated. Using ELISA, inhibition and competitive adhesion assays, and protein overlay assays in the Euva-6 insect cell line, we showed that the protein VmpA binds insect proteins in a lectin-like manner. In conclusion, the results of this study indicate that N-acetylglucosamine and mannose present on the surfaces of the midgut and salivary glands serve as recognition sites for the phytoplasma adhesin VmpA.
Collapse
|
10
|
A Lectin Disrupts Vector Transmission of a Grapevine Ampelovirus. Viruses 2020; 12:v12080843. [PMID: 32752299 PMCID: PMC7472352 DOI: 10.3390/v12080843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Grapevine leafroll disease is one of the most important virus diseases of grapevines and occurs in every major grape-growing region of the world. The vector-transmission mechanisms of the causative agent, Grapevine leafroll-associated virus 3 (GLRaV-3), remain poorly understood. We show that the vine mealybug, Planococcus ficus, feeds through a membrane feeding system on GLRaV-3 viral purifications from both V. vinifera and N. benthamiana and transmits the virus to test plants from plants from both species. Building on this strategy, we used an immunofluorescence approach to localize virions to two retention sites in P. ficus mouthparts. Assays testing molecules capable of blocking virus transmission demonstrated that GLRaV-3-transmission by P. ficus could be disrupted. Our results indicate that our membrane feeding system and transmission-blocking assays are a valid approach and can be used to screen other candidate blocking molecules.
Collapse
|
11
|
Bossi Esteves M, Lopes Nalin J, Kudlawiec K, Caserta Salviatto R, de Melo Sales T, Sicard A, Piacentini Paes de Almeida R, Alves de Souza A, Roberto Spotti Lopes J. XadA2 Adhesin Decreases Biofilm Formation and Transmission of Xylella fastidiosa subsp. pauca. INSECTS 2020; 11:insects11080473. [PMID: 32722654 PMCID: PMC7469142 DOI: 10.3390/insects11080473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022]
Abstract
Xylella fastidiosa is a vector-borne bacterium that causes diseases in many plants of economic interest. The bacterium-vector initial interactions involve bacterial membrane-bound adhesins that mediate cell attachment to the foregut of insect vectors. We investigated the role of the afimbrial adhesin XadA2 in the binding and biofilm formation of X. fastidiosa subsp. pauca to vector surfaces in vitro, as well as its potential to disrupt pathogen transmission. We showed that XadA2 has binding affinity for polysaccharides on sharpshooter hindwings, used as a proxy for the interactions between X. fastidiosa and vectors. When in a medium without carbon sources, the bacterium used wing components, likely chitin, as a source of nutrients and formed a biofilm on the wing surface. There was a significant reduction in X. fastidiosa biofilm formation and cell aggregation on vector wings in competition assays with XadA2 or its specific antibody (anti-XadA2). Finally, pathogen acquisition and transmission to plant were significantly reduced when the vectors acquired X. fastidiosa from an artificial diet supplemented with anti-XadA2. These results show that XadA2 is important in mediating bacterial colonization in the insect and that it could be used as a target for blocking X. fastidiosa transmission.
Collapse
Affiliation(s)
- Mariana Bossi Esteves
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP 13418-900, Brazil; (J.L.N.); (K.K.); (J.R.S.L.)
- Correspondence: ; Tel.: +55-19-9910-22563
| | - Julia Lopes Nalin
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP 13418-900, Brazil; (J.L.N.); (K.K.); (J.R.S.L.)
| | - Karla Kudlawiec
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP 13418-900, Brazil; (J.L.N.); (K.K.); (J.R.S.L.)
| | - Raquel Caserta Salviatto
- Centro de Citricultura “Sylvio Moreira”, Instituto Agronômico, Cordeirópolis, SP 13490-970, Brazil; (R.C.S.); (A.A.d.S.)
| | | | - Anne Sicard
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114, USA; (A.S.); (R.P.P.d.A.)
| | - Rodrigo Piacentini Paes de Almeida
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114, USA; (A.S.); (R.P.P.d.A.)
| | - Alessandra Alves de Souza
- Centro de Citricultura “Sylvio Moreira”, Instituto Agronômico, Cordeirópolis, SP 13490-970, Brazil; (R.C.S.); (A.A.d.S.)
| | - João Roberto Spotti Lopes
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP), Piracicaba, SP 13418-900, Brazil; (J.L.N.); (K.K.); (J.R.S.L.)
| |
Collapse
|
12
|
Ribosome Display Technology: Applications in Disease Diagnosis and Control. Antibodies (Basel) 2020; 9:antib9030028. [PMID: 32605027 PMCID: PMC7551589 DOI: 10.3390/antib9030028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Antibody ribosome display remains one of the most successful in vitro selection technologies for antibodies fifteen years after it was developed. The unique possibility of direct generation of whole proteins, particularly single-chain antibody fragments (scFvs), has facilitated the establishment of this technology as one of the foremost antibody production methods. Ribosome display has become a vital tool for efficient and low-cost production of antibodies for diagnostics due to its advantageous ability to screen large libraries and generate binders of high affinity. The remarkable flexibility of this method enables its applicability to various platforms. This review focuses on the applications of ribosome display technology in biomedical and agricultural fields in the generation of recombinant scFvs for disease diagnostics and control.
Collapse
|
13
|
Nehela Y, Killiny N. Infection with phytopathogenic bacterium inhibits melatonin biosynthesis, decreases longevity of its vector, and suppresses the free radical-defense. J Pineal Res 2018; 65:e12511. [PMID: 29786865 DOI: 10.1111/jpi.12511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023]
Abstract
Vector-borne phytopathogenic bacteria may alter the reproductive fitness, survival, behavior, and metabolism of their vectors. Candidatus Liberibacter asiaticus (CLas) is associated with the Huanglongbing (also known as citrus greening disease), one of the most destructive citrus diseases worldwide, and transmitted by Asian citrus psyllid, Diaphorina citri (Insecta, Hemiptera, Liviidae). The genome sequencing of CLas revealed that it does not have the ability to synthesize tryptophan, the precursor of melatonin, and it must acquire it from its host plant or insect vector to achieve its biologic processes, such as growth and multiplication. Herein, we aimed to develop a GC-MS-SIM-based method to detect the endogenous melatonin from small insects such as D. citri, and to explore the hidden relationship between melatonin content and D. citri-adult survival. Then, we studied the ability of exogenous melatonin supplementation to reverse the negative effects of CLas-infection. Our findings showed that CLas-infection reduced the levels of melatonin and its biosynthetic genes (DcTPHs, DcAAAD, DcSNAT, and DcASMT) of D. citri compared to uninfected insects. In addition, CLas decreased the longevity of its vector, D. citri via the suppression of the free radical-defense associated genes (SODs, GSTs, PODs, and PHGPXs). On the other hand, melatonin supplementation could reverse the negative effects of CLas-infection. Melatonin supplementation enhanced the endogenous melatonin content, melatonin biosynthetic genes, free radical-defense associated genes, and the longevity of both healthy and CLas-infected D. citri. Furthermore, melatonin supplementation decreased the CLas bacterial population within the D. citri psyllids. Based on these findings, we hypothesize that melatonin plays multi-layered defensive roles in D. citri. These roles include acting as a natural antioxidant or as an antibacterial compound.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
14
|
Labroussaa F, Ionescu M, Zeilinger AR, Lindow SE, Almeida RPP. A chitinase is required for Xylella fastidiosa colonization of its insect and plant hosts. MICROBIOLOGY-SGM 2017; 163:502-509. [PMID: 28141489 DOI: 10.1099/mic.0.000438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xylella fastidiosa colonizes the xylem network of host plant species as well as the foregut of its required insect vectors to ensure efficient propagation. Disease management strategies remain inefficient due to a limited comprehension of the mechanisms governing both insect and plant colonization. It was previously shown that X. fastidiosa has a functional chitinase (ChiA), and that chitin likely serves as a carbon source for this bacterium. We expand on that research, showing that a chiA mutant strain is unable to grow on chitin as the sole carbon source. Quantitative PCR assays allowed us to detect bacterial cells in the foregut of vectors after pathogen acquisition; populations of the wild-type and complemented mutant strain were both significantly larger than the chiA mutant strain 10 days, but not 3 days, post acquisition. These results indicate that adhesion of the chiA mutant strain to vectors may not be impaired, but that cell multiplication is limited. The mutant was also affected in its transmission by vectors to plants. In addition, the chiA mutant strain was unable to colonize host plants, suggesting that the enzyme has other substrates associated with plant colonization. Lastly, ChiA requires other X. fastidiosa protein(s) for its in vitro chitinolytic activity. The observation that the chiA mutant strain is not able to colonize plants warrants future attention to be paid to the substrates for this enzyme.
Collapse
Affiliation(s)
- Fabien Labroussaa
- Departments of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, USA.,Present address: INRA and University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Michael Ionescu
- Plant and Microbial Biology, University of California, Berkeley, CA 94720-3114, USA
| | - Adam R Zeilinger
- Departments of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, USA
| | - Steven E Lindow
- Plant and Microbial Biology, University of California, Berkeley, CA 94720-3114, USA
| | - Rodrigo P P Almeida
- Departments of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, USA
| |
Collapse
|
15
|
Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA. PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. ANNALS OF BOTANY 2017; 119:749-774. [PMID: 28065920 PMCID: PMC5571375 DOI: 10.1093/aob/mcw238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/08/2016] [Accepted: 10/22/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Recent application of molecular-based technologies has considerably advanced our understanding of complex processes in plant-pathogen interactions and their key components such as PAMPs, PRRs, effectors and R-genes. To develop novel control strategies for disease prevention in citrus, it is essential to expand and consolidate our knowledge of the molecular interaction of citrus plants with their pathogens. SCOPE This review provides an overview of our understanding of citrus plant immunity, focusing on the molecular mechanisms involved in the interactions with viruses, bacteria, fungi, oomycetes and vectors related to the following diseases: tristeza, psorosis, citrus variegated chlorosis, citrus canker, huanglongbing, brown spot, post-bloom, anthracnose, gummosis and citrus root rot.
Collapse
Affiliation(s)
- Ronaldo J. D. Dalio
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Diogo M. Magalhães
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Carolina M. Rodrigues
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Gabriella D. Arena
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Tiago S. Oliveira
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Reinaldo R. Souza-Neto
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Simone C. Picchi
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Paula M. M. Martins
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Paulo J. C. Santos
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Heros J. Maximo
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Inaiara S. Pacheco
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Alessandra A. De Souza
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Marcos A. Machado
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| |
Collapse
|
16
|
Perilla-Henao LM, Casteel CL. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1163. [PMID: 27555855 PMCID: PMC4977473 DOI: 10.3389/fpls.2016.01163] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant-virus-vector interactions has flourished in recent years, plant-bacteria-vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant-bacteria-vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and 'Candidatus Phytoplasma spp.'. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector-plant-bacteria interactions.
Collapse
Affiliation(s)
| | - Clare L. Casteel
- Department of Plant Pathology, University of California at Davis, Davis, CAUSA
| |
Collapse
|
17
|
Labroussaa F, Zeilinger AR, Almeida RPP. Blocking the Transmission of a Noncirculative Vector-Borne Plant Pathogenic Bacterium. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:535-544. [PMID: 27049684 DOI: 10.1094/mpmi-02-16-0032-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The successful control of insect-borne plant pathogens is often difficult to achieve due to the ecologically complex interactions among pathogens, vectors, and host plants. Disease management often relies on pesticides and other approaches that have limited long-term sustainability. To add a new tool to control vector-borne diseases, we attempted to block the transmission of a bacterial insect-transmitted pathogen, the bacterium Xylella fastidiosa, by disrupting bacteria-insect vector interactions. X. fastidiosa is known to attach to and colonize the cuticular surface of the mouthparts of vectors; a set of recombinant peptides was generated and the chemical affinities of these peptides to chitin and related carbohydrates was assayed in vitro. Two candidates, the X. fastidiosa hypothetical protein PD1764 and an N-terminal region of the hemagglutinin-like protein B (HxfB) showed affinity for these substrates. These proteins were provided to vectors via an artificial diet system in which insects acquire X. fastidiosa, followed by an inoculation access period on plants under greenhouse conditions. Both PD1764 and HxfAD1-3 significantly blocked transmission. Furthermore, bacterial populations within insects over a 10-day period demonstrated that these peptides inhibited cell adhesion to vectors but not bacterial multiplication, indicating that the mode of action of these peptides is restricted to limiting cell adhesion to insects, likely via competition for adhesion sites. These results open a new venue in the search for sustainable disease-control strategies that are pathogen specific and may have limited nontarget effects.
Collapse
Affiliation(s)
- Fabien Labroussaa
- Department of Environmental Science, Policy and Management, 130 Mulford Hall, University of California, Berkeley, CA 94720, U.S.A
| | - Adam R Zeilinger
- Department of Environmental Science, Policy and Management, 130 Mulford Hall, University of California, Berkeley, CA 94720, U.S.A
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, 130 Mulford Hall, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
18
|
Role of the major antigenic membrane protein in phytoplasma transmission by two insect vector species. BMC Microbiol 2015; 15:193. [PMID: 26424332 PMCID: PMC4589916 DOI: 10.1186/s12866-015-0522-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/18/2015] [Indexed: 11/17/2022] Open
Abstract
Background Phytoplasmas are bacterial plant pathogens (class Mollicutes), transmitted by phloem feeding leafhoppers, planthoppers and psyllids in a persistent/propagative manner. Transmission of phytoplasmas is under the control of behavioral, environmental and geographical factors, but molecular interactions between membrane proteins of phytoplasma and vectors may also be involved. The aim of the work was to provide experimental evidence that in vivo interaction between phytoplasma antigenic membrane protein (Amp) and vector proteins has a role in the transmission process. In doing so, we also investigated the topology of the interaction at the gut epithelium and at the salivary glands, the two barriers encountered by the phytoplasma during vector colonization. Methods Experiments were performed on the ‘Candidatus Phytoplasma asteris’ chrysanthemum yellows strain (CYP), and the two leafhopper vectors Macrosteles quadripunctulatus Kirschbaum and Euscelidius variegatus Kirschbaum. To specifically address the interaction of CYP Amp at the gut epithelium barrier, insects were artificially fed with media containing either the recombinant phytoplasma protein Amp, or the antibody (A416) or both, and transmission, acquisition and inoculation efficiencies were measured. An abdominal microinjection protocol was employed to specifically address the interaction of CYP Amp at the salivary gland barrier. Phytoplasma suspension was added with Amp or A416 or both, injected into healthy E. variegatus adults and then infection and inoculation efficiencies were measured. An internalization assay was developed, consisting of dissected salivary glands from healthy E. variegatus exposed to phytoplasma suspension alone or together with A416 antibody. The organs were then either observed in confocal microscopy or subjected to DNA extraction and phytoplasma quantification by qPCR, to visualize and quantify possible differences among treatments in localization/presence/number of CYP cells. Results Artificial feeding and abdominal microinjection protocols were developed to address the two barriers separately. The in vivo interactions between Amp of ‘Candidatus Phytoplasma asteris’ Chrysanthemum yellows strain (CYP) and vector proteins were studied by evaluating their effects on phytoplasma transmission by Euscelidius variegatus and Macrosteles quadripunctulatus leafhoppers. An internalization assay was developed, consisting of dissected salivary glands from healthy E. variegatus exposed to phytoplasma suspension alone or together with anti-Amp antibody. To visualize possible differences among treatments in localization/presence of CYP cells, the organs were observed in confocal microscopy. Pre-feeding of E. variegatus and M. quadripunctulatus on anti-Amp antibody resulted in a significant decrease of acquisition efficiencies in both species. Inoculation efficiency of microinjected E. variegatus with CYP suspension and anti-Amp antibody was significantly reduced compared to that of the control with phytoplasma suspension only. The possibility that this was due to reduced infection efficiency or antibody-mediated inhibition of phytoplasma multiplication was ruled out. These results provided the first indirect proof of the role of Amp in the transmission process. Conclusion Protocols were developed to assess the in vivo role of the phytoplasma native major antigenic membrane protein in two phases of the vector transmission process: movement through the midgut epithelium and colonization of the salivary glands. These methods will be useful also to characterize other phytoplasma-vector combinations. Results indicated for the first time that native CYP Amp is involved in vivo in specific crossing of the gut epithelium and salivary gland colonization during early phases of vector infection. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0522-5) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Whitfield AE, Rotenberg D. Disruption of insect transmission of plant viruses. CURRENT OPINION IN INSECT SCIENCE 2015; 8:79-87. [PMID: 32846687 DOI: 10.1016/j.cois.2015.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 06/11/2023]
Abstract
Plant-infecting viruses are transmitted by a diverse array of organisms including insects, mites, nematodes, fungi, and plasmodiophorids. Virus interactions with these vectors are diverse, but there are some commonalities. Generally the infection cycle begins with the vector encountering the virus in the plant and the virus is acquired by the vector. The virus must then persist in or on the vector long enough for the virus to be transported to a new host and delivered into the plant cell. Plant viruses rely on their vectors for breaching the plant cell wall to be delivered directly into the cytosol. In most cases, viral capsid or membrane glycoproteins are the specific viral proteins that are required for transmission and determinants of vector specificity. Specific molecules in vectors also interact with the virus and while there are few-identified to no-identified receptors, candidate recognition molecules are being further explored in these systems. Due to the specificity of virus transmission by vectors, there are defined steps that represent good targets for interdiction strategies to disrupt the disease cycle. This review focuses on new technologies that aim to disrupt the virus-vector interaction and focuses on a few of the well-characterized virus-vector interactions in the field. In closing, we discuss the importance of integration of these technologies with current methods for plant virus disease control.
Collapse
Affiliation(s)
- Anna E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66502, USA.
| | - Dorith Rotenberg
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66502, USA
| |
Collapse
|
20
|
Scientific Opinion on the risks to plant health posed byXylella fastidiosain the EU territory, with the identification and evaluation of risk reduction options. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.3989] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
21
|
Soto-Arias JP, Groves RL, Barak JD. Transmission and retention of Salmonella enterica by phytophagous hemipteran insects. Appl Environ Microbiol 2014; 80:5447-56. [PMID: 24973069 PMCID: PMC4136094 DOI: 10.1128/aem.01444-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 11/20/2022] Open
Abstract
Several pest insects of human and livestock habitations are known as vectors of Salmonella enterica; however, the role of plant-feeding insects as vectors of S. enterica to agricultural crops remains unexamined. Using a hemipteran insect pest-lettuce system, we investigated the potential for transmission and retention of S. enterica. Specifically, Macrosteles quadrilineatus and Myzus persicae insects were fed S. enterica-inoculated lettuce leaf discs or artificial liquid diets confined in Parafilm sachets to allow physical contact or exclusively oral ingestion of the pathogen, respectively. After a 24-h acquisition access period, insects were moved onto two consecutive noninoculated leaf discs or liquid diets and allowed a 24-h inoculation access period on each of the two discs or sachets. Similar proportions of individuals from both species ingested S. enterica after a 24-h acquisition access period from inoculated leaf discs, but a significantly higher proportion of M. quadrilineatus retained the pathogen internally after a 48-h inoculation access period. S. enterica was also recovered from the honeydew of both species. After a 48-h inoculation access period, bacteria were recovered from a significantly higher proportion of honeydew samples from M. quadrilineatus than from M. persicae insects. The recovery of S. enterica from leaf discs and liquid diets postfeeding demonstrated that both species of insects were capable of transmitting the bacteria in ways that are not limited to mechanical transmission. Overall, these results suggest that phytophagous insects may serve as potential vectors of S. enterica in association with plants.
Collapse
Affiliation(s)
- José Pablo Soto-Arias
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Russell L Groves
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeri D Barak
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
22
|
Syller J. Biological and molecular events associated with simultaneous transmission of plant viruses by invertebrate and fungal vectors. MOLECULAR PLANT PATHOLOGY 2014; 15:417-26. [PMID: 24341556 PMCID: PMC6638794 DOI: 10.1111/mpp.12101] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Viruses are likely to be the most dangerous parasites of living organisms because of their widespread occurrence, possible deleterious effects on their hosts and high rates of evolution. Virus host-to-host transmission is a critical step in the virus life cycle, because it enables survival in a given environment and efficient dissemination. As hosts of plant viruses are not mobile, these pathogens have adopted diverse transmission strategies involving various vector organisms, mainly arthropods, nematodes, fungi and protists. In nature, plants are often infected with more than one virus at a time, thereby creating potential sources for vectors to acquire and transmit simultaneously two or more viruses. Simultaneous transmission can result in multiple infections of new host plants, which become subsequent potential sources of the viruses, thus enhancing the spread of the diseases caused by these pathogens. Moreover, it can contribute to the maintenance of viral genetic diversity in the host communities. However, despite its possible significance, the problem of the simultaneous transmission of plant viruses by vectors has not been investigated in detail. In this review, the current knowledge on multiple viral transmissions by aphids, whiteflies, leafhoppers, planthoppers, nematodes and fungi is outlined.
Collapse
Affiliation(s)
- Jerzy Syller
- Plant Breeding and Acclimatization Institute-National Research Institute, Centre Młochów, 05-831, Młochów, Poland
| |
Collapse
|
23
|
Duret S, Batailler B, Dubrana MP, Saillard C, Renaudin J, Béven L, Arricau-Bouvery N. Invasion of insect cells by Spiroplasma citri involves spiralin relocalization and lectin/glycoconjugate-type interactions. Cell Microbiol 2014; 16:1119-32. [PMID: 24438161 DOI: 10.1111/cmi.12265] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
Abstract
Spiroplamas are helical, cell wall-less bacteria belonging to the Class Mollicutes, a group of microorganisms phylogenetically related to low G+C, Gram-positive bacteria. Spiroplasma species are all found associated with arthropods and a few, including Spiroplasma citri are pathogenic to plant. Thus S. citri has the ability to colonize cells of two very distinct hosts, the plant and the insect vector. While spiroplasmal factors involved in transmission by the leafhopper Circulifer haematoceps have been identified, their specific contribution to invasion of insect cells is poorly understood. In this study we provide evidence that the lipoprotein spiralin plays a major role in the very early step of cell invasion. Confocal laser scanning immunomicroscopy revealed a relocalization of spiralin at the contact zone of adhering spiroplasmas. The implication of a role for spiralin in adhesion to insect cells was further supported by adhesion assays showing that a spiralin-less mutant was impaired in adhesion and that recombinant spiralin triggered adhesion of latex beads. We also showed that cytochalasin D induced changes in the surface-exposed glycoconjugates, as inferred from the lectin binding patterns, and specifically improved adhesion of S. citri wild-type but not of the spiralin-less mutant. These results indicate that cytochalasin D exposes insect cell receptors of spiralin that are masked in untreated cells. In addition, competitive adhesion assays with lectins strongly suggest spiralin to exhibit glycoconjugate binding properties similar to that of the Vicia villosa agglutinin (VVA) lectin.
Collapse
Affiliation(s)
- Sybille Duret
- INRA, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France; Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Killiny N, Almeida RPP. Factors affecting the initial adhesion and retention of the plant pathogen Xylella fastidiosa in the foregut of an insect vector. Appl Environ Microbiol 2014; 80:420-6. [PMID: 24185853 PMCID: PMC3910991 DOI: 10.1128/aem.03156-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/29/2013] [Indexed: 11/20/2022] Open
Abstract
Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida, IFAS, Lake Alfred, Florida, USA
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
25
|
Abstract
The mechanisms and impacts of the transmission of plant viruses by insect vectors have been studied for more than a century. The virus route within the insect vector is amply documented in many cases, but the identity, the biochemical properties, and the structure of the actual molecules (or molecule domains) ensuring compatibility between them remain obscure. Increased efforts are required both to identify receptors of plant viruses at various sites in the vector body and to design competing compounds capable of hindering transmission. Recent trends in the field are opening questions on the diversity and sophistication of viral adaptations that optimize transmission, from the manipulation of plants and vectors ultimately increasing the chances of acquisition and inoculation, to specific "sensing" of the vector by the virus while still in the host plant and the subsequent transition to a transmission-enhanced state.
Collapse
Affiliation(s)
- Stéphane Blanc
- INRA, UMR BGPI, CIRAD-INRA-SupAgro, CIRAD TA-A54K, Campus International de Baillarguet, 34398 Montpellier Cedex 05, France; , ,
| | | | | |
Collapse
|
26
|
Statement of EFSA on host plants, entry and spread pathways and risk reduction options for Xylella fastidiosa Wells et al. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3468] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Killiny N, Martinez RH, Dumenyo CK, Cooksey DA, Almeida RPP. The exopolysaccharide of Xylella fastidiosa is essential for biofilm formation, plant virulence, and vector transmission. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1044-1053. [PMID: 23678891 DOI: 10.1094/mpmi-09-12-0211-r] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Exopolysaccharides (EPS) synthesized by plant-pathogenic bacteria are generally essential for virulence. The role of EPS produced by the vector-transmitted bacterium Xylella fastidiosa was investigated by knocking out two genes implicated in the EPS biosynthesis, gumD and gumH. Mutant strains were affected in growth characteristics in vitro, including adhesion to surfaces and biofilm formation. In addition, different assays were used to demonstrate that the mutant strains produced significantly less EPS compared with the wild type. Furthermore, gas chromatography-mass spectrometry showed that both mutant strains did not produce oligosaccharides. Biologically, the mutants were deficient in movement within plants, resulting in an avirulent phenotype. Additionally, mutant strains were affected in transmission by insects: they were very poorly transmitted by and retained within vectors. The gene expression profile indicated upregulation of genes implicated in cell-to-cell signaling and adhesins while downregulation in genes was required for within-plant movement in EPS-deficient strains. These results suggest an essential role for EPS in X. fastidiosa interactions with both plants and insects.
Collapse
Affiliation(s)
- N Killiny
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA.
| | | | | | | | | |
Collapse
|
28
|
Matsumoto A, Huston SL, Killiny N, Igo MM. XatA, an AT-1 autotransporter important for the virulence of Xylella fastidiosa Temecula1. Microbiologyopen 2012; 1:33-45. [PMID: 22950010 PMCID: PMC3426408 DOI: 10.1002/mbo3.6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 11/07/2022] Open
Abstract
Xylella fastidiosa Temecula1 is the causative agent of Pierce's disease of grapevine, which is spread by xylem-feeding insects. An important feature of the infection cycle is the ability of X. fastidiosa to colonize and interact with two distinct environments, the xylem of susceptible plants and the insect foregut. Here, we describe our characterization of XatA, the X. fastidiosa autotransporter protein encoded by PD0528. XatA, which is classified as an AT-1 (classical) autotransporter, has a C-terminal β-barrel domain and a passenger domain composed of six tandem repeats of approximately 50 amino acids. Localization studies indicate that XatA is present in both the outer membrane and membrane vesicles and its passenger domain can be found in the supernatant. Moreover, XatA is important for X. fastidiosa autoaggregation and biofilm formation based on mutational analysis and the discovery that Escherichia coli expressing XatA acquire these traits. The xatA mutant also shows a significant decrease in Pierce's disease symptoms when inoculated into grapevines. Finally, X. fastidiosa homologs to XatA, which can be divided into three distinct groups based on synteny, form a single, well-supported clade, suggesting that they arose from a common ancestor.
Collapse
|
29
|
Ribosome display of combinatorial antibody libraries derived from mice immunized with heat-killed Xylella fastidiosa and the selection of MopB-specific single-chain antibodies. Appl Environ Microbiol 2012; 78:2638-47. [PMID: 22327580 DOI: 10.1128/aem.07807-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pierce's disease is a devastating lethal disease of Vitus vinifera grapevines caused by the bacterium Xylella fastidiosa. There is no cure for Pierce's disease, and control is achieved predominantly by suppressing transmission of the glassy-winged sharpshooter insect vector. We present a simple robust approach for the generation of panels of recombinant single-chain antibodies against the surface-exposed elements of X. fastidiosa that may have potential use in diagnosis and/or disease transmission blocking studies. In vitro combinatorial antibody ribosome display libraries were assembled from immunoglobulin transcripts rescued from the spleens of mice immunized with heat-killed X. fastidiosa. The libraries were used in a single round of selection against an outer membrane protein, MopB, resulting in the isolation of a panel of recombinant antibodies. The potential use of selected anti-MopB antibodies was demonstrated by the successful application of the 4XfMopB3 antibody in an enzyme-linked immunosorbent assay (ELISA), a Western blot assay, and an immunofluorescence assay (IFA). These immortalized in vitro recombinant single-chain antibody libraries generated against heat-killed X. fastidiosa are a resource for the Pierce's disease research community that may be readily accessed for the isolation of antibodies against a plethora of X. fastidiosa surface-exposed antigenic molecules.
Collapse
|