1
|
Hwangbo M, Rezes R, Chu KH, Hatzinger PB. Evaluation of microbial community dynamics and chlorinated solvent biodegradation in methane-amended microcosms from an acidic aquifer. Biodegradation 2024; 36:8. [PMID: 39565393 DOI: 10.1007/s10532-024-10103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
Anaerobic bioremediation is rarely an effective strategy to treat chlorinated ethenes such as trichloroethene (TCE) in acidic aquifers because partial dechlorination typically results in accumulation of daughter products. Methanotrophs have the capability of oxidizing TCE and other chlorinated volatile organic compounds (CVOCs) to non-toxic products, but their occurrence, diversity, and biodegradation capabilities in acidic environments are largely unknown. This study investigated the impacts of different methane (CH4) concentrations and the presence of CVOCs on the community of acidophilic methanotrophs in microcosms prepared from acidic aquifer samples collected upgradient and downgradient of a mulch barrier installed to promote in-situ anaerobic CVOC biodegradation in Maryland, USA. The ability of indigenous methanotrophs to biodegrade CVOCs was also evaluated. Results of stable isotope probing (SIP) and Next Generation Sequencing (NGS) showed that the microbial communities in the microcosms varied by location and were affected by both CH4 concentration and the presence of different CVOCs, many of which were biodegraded by the indigenous methanotrophs. Data indicate the likelihood of aerobic cometabolic degradation of CVOCs downgradient of the mulch barrier designed for anaerobic treatment. The study extends the overall knowledge of acidophilic methanotrophs in groundwater and shows that these bacteria have significant potential for degrading CVOCs even at low CH4 concentrations.
Collapse
Affiliation(s)
- Myung Hwangbo
- School of Earth, Environmental and Marine Sciences, University of Texas - Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Rachael Rezes
- Biotechnology Development and Applications Group, APTIM, 17 Princess Road, Lawrenceville, NJ, 08648, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Paul B Hatzinger
- Biotechnology Development and Applications Group, APTIM, 17 Princess Road, Lawrenceville, NJ, 08648, USA.
| |
Collapse
|
2
|
Asif A, Koner S, Chen JS, Hussain A, Huang SW, Hussain B, Hsu BM. Uncovering the microbial community structure and physiological profiles of terrestrial mud volcanoes: A comprehensive metagenomic insight towards their trichloroethylene biodegradation potentiality. ENVIRONMENTAL RESEARCH 2024; 258:119457. [PMID: 38906444 DOI: 10.1016/j.envres.2024.119457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Mud volcanoes are dynamic geological features releasing methane (CH4), carbon dioxide (CO2), and hydrocarbons, harboring diverse methane and hydrocarbon-degrading microbes. However, the potential application of these microbial communities in chlorinated hydrocarbons bioremediation purposes such as trichloroethylene (TCE) has not yet been explored. Hence, this study investigated the mud volcano's microbial diversity functional potentiality in TCE degradation as well as their eco-physiological profiling using metabolic activity. Geochemical analysis of the mud volcano samples revealed variations in pH, temperature, and oxidation-reduction potential, indicating diverse environmental conditions. The Biolog Ecoplate™ carbon substrates utilization pattern showed that the Tween 80 was highly consumed by mud volcanic microbial community. Similarly, MicroResp® analysis results demonstrated that presence of additive C-substrates condition might enhanced the cellular respiration process within mud-volcanic microbial community. Full-length 16 S rRNA sequencing identified Proteobacteria as the dominant phylum, with genera like Pseudomonas and Hydrogenophaga associated with chloroalkane degradation, and methanotrophic bacteria such as Methylomicrobium and Methylophaga linked to methane oxidation. Functional analysis uncovered diverse metabolic functions, including sulfur and methane metabolism and hydrocarbon degradation, with specific genes involved in methane oxidation and sulfur metabolism. These findings provide insights into the microbial diversity and metabolic capabilities of mud volcano ecosystems, which could facilitate their effective application in the bioremediation of chlorinated compounds.
Collapse
Affiliation(s)
- Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ashiq Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, Taiwan; Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
3
|
Skinner J, Delgado AG, Hyman M, Chu MYJ. Implementation of in situ aerobic cometabolism for groundwater treatment: State of the knowledge and important factors for field operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171667. [PMID: 38485017 DOI: 10.1016/j.scitotenv.2024.171667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
In situ aerobic cometabolism of groundwater contaminants has been demonstrated to be a valuable bioremediation technology to treat many legacy and emerging contaminants in dilute plumes. Several well-designed and documented field studies have shown that this technology can concurrently treat multiple contaminants and reach very low cleanup goals. Fundamentally different from metabolism-based biodegradation of contaminants, microorganisms that cometabolically degrade contaminants do not obtain sufficient carbon and energy from the degradation process to support their growth and require an exogenous growth supporting primary substrate. Successful applications of aerobic cometabolic treatment therefore require special considerations beyond conventional in situ bioremediation, such as competitive inhibition between growth-supporting primary substrate(s) and contaminant non-growth substrates, toxic effects resulting from contaminant degradation, and differences in microbial population dynamics exhibited by biostimulated indigenous consortia versus bioaugmentation cultures. This article first provides a general review of microbiological factors that are likely to affect the rate of aerobic cometabolic biodegradation. We subsequently review fourteen well documented field-scale aerobic cometabolic bioremediation studies and summarize the underlying microbiological factors that may affect the performance observed in these field studies. The combination of microbiological and engineering principles gained from field testing leads to insights and recommendations on planning, design, and operation of an in situ aerobic cometabolic treatment system. With a vision of more aerobic cometabolic treatments being considered to tackle large, dilute plumes, we present several novel topics and future research directions that can potentially enhance technology development and foster success in implementing this technology for environmental restoration.
Collapse
Affiliation(s)
- Justin Skinner
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA; Andrews Engineering, Inc., 3300 Ginger Creek Drive, Springfield, IL 62711, USA
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA
| | - Michael Hyman
- Department of Plant and Microbial Biology, North Carolina State University, Thomas Hall 4545, 112 Derieux Place, Raleigh, NC 27607, USA
| | - Min-Ying Jacob Chu
- Haley & Aldrich Inc., 400 E Van Buren St, Ste 545, Phoenix, AZ 85004, USA.
| |
Collapse
|
4
|
Tucci FJ, Rosenzweig AC. Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases. Chem Rev 2024; 124:1288-1320. [PMID: 38305159 PMCID: PMC10923174 DOI: 10.1021/acs.chemrev.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Methane is a potent greenhouse gas that contributes significantly to climate change and is primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of methane to methanol is a chemically difficult transformation, accomplished in methanotrophs by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or copper metallocofactors and have been the subject of detailed investigation. While the structure, function, and active site architecture of the copper-dependent particulate methane monooxygenase (pMMO) have been investigated extensively, its putative quaternary interactions, regulation, requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, and, for the most part, mechanistically. Here, we review the history of MMO research, focusing on recent developments and providing an outlook for future directions of the field. Engineered biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, inorganic chemistry, microbiology, computational biology, and engineering.
Collapse
Affiliation(s)
- Frank J Tucci
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Abstract
Wetlands are the major natural source of methane, an important greenhouse gas. The sulfur and methane cycles in wetlands are linked—e.g., a strong sulfur cycle can inhibit methanogenesis. Although there has historically been a clear distinction drawn between methane and sulfur oxidizers, here, we isolated a methanotroph that also performed respiratory oxidization of sulfur compounds. We experimentally demonstrated that thiotrophy and methanotrophy are metabolically compatible, and both metabolisms could be expressed simultaneously in a single microorganism. These findings suggest that mixotrophic methane/sulfur-oxidizing bacteria are a previously overlooked component of environmental methane and sulfur cycles. This creates a framework for a better understanding of these redox cycles in natural and engineered wetlands. Natural and anthropogenic wetlands are major sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic bacteria at the oxic–anoxic interface, a zone of intense redox cycling of carbon, sulfur, and nitrogen compounds. Here, we report on the isolation of an aerobic methanotrophic bacterium, ‘Methylovirgula thiovorans' strain HY1, which possesses metabolic capabilities never before found in any methanotroph. Most notably, strain HY1 is the first bacterium shown to aerobically oxidize both methane and reduced sulfur compounds for growth. Genomic and proteomic analyses showed that soluble methane monooxygenase and XoxF-type alcohol dehydrogenases are responsible for methane and methanol oxidation, respectively. Various pathways for respiratory sulfur oxidation were present, including the Sox–rDsr pathway and the S4I system. Strain HY1 employed the Calvin–Benson–Bassham cycle for CO2 fixation during chemolithoautotrophic growth on reduced sulfur compounds. Proteomic and microrespirometry analyses showed that the metabolic pathways for methane and thiosulfate oxidation were induced in the presence of the respective substrates. Methane and thiosulfate could therefore be independently or simultaneously oxidized. The discovery of this versatile bacterium demonstrates that methanotrophy and thiotrophy are compatible in a single microorganism and underpins the intimate interactions of methane and sulfur cycles in oxic–anoxic interface environments.
Collapse
|
6
|
Tentori EF, Fang S, Richardson RE. RNA Biomarker Trends across Type I and Type II Aerobic Methanotrophs in Response to Methane Oxidation Rates and Transcriptome Response to Short-Term Methane and Oxygen Limitation in Methylomicrobium album BG8. Microbiol Spectr 2022; 10:e0000322. [PMID: 35678574 PMCID: PMC9241951 DOI: 10.1128/spectrum.00003-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022] Open
Abstract
Methanotrophs, which help regulate atmospheric levels of methane, are active in diverse natural and man-made environments. This range of habitats and the feast-famine cycles seen by many environmental methanotrophs suggest that methanotrophs dynamically mediate rates of methane oxidation. Global methane budgets require ways to account for this variability in time and space. Functional gene biomarker transcripts are increasingly studied to inform the dynamics of diverse biogeochemical cycles. Previously, per-cell transcript levels of the methane oxidation biomarker pmoA were found to vary quantitatively with respect to methane oxidation rates in the model aerobic methanotroph Methylosinus trichosporium OB3b. In the present study, these trends were explored for two additional aerobic methanotroph pure cultures grown in membrane bioreactors, Methylocystis parvus OBBP and Methylomicrobium album BG8. At steady-state conditions, per-cell pmoA mRNA transcript levels strongly correlated with per-cell methane oxidation across the three methanotrophs across many orders of magnitude of activity (R2 = 0.91). The inclusion of both type I and type II aerobic methanotrophs suggests a universal trend between in situ activity level and pmoA RNA biomarker levels which can aid in improving estimates of both subsurface and atmospheric methane. Additionally, genome-wide expression data (obtained by transcriptome sequencing [RNA-seq]) were used to explore transcriptomic responses of steady-state M. album BG8 cultures to short-term CH4 and O2 limitation. These limitations induced regulation of genes involved in central carbon metabolism (including carbon storage), cell motility, and stress response. IMPORTANCE Methanotrophs are naturally occurring microorganisms capable of oxidizing methane, having an impact on global net methane emissions. Additionally, they have also gained interest for their biotechnological applications in single-cell protein production, biofuels, and bioplastics. Having better ways of measuring methanotroph activity and understanding how methanotrophs respond to changing conditions is imperative for both optimization in controlled-growth applications and understanding in situ methane oxidation rates. In this study, we explored the applicability of methane oxidation biomarkers as a universal indicator of methanotrophic activity and explored methanotroph transcriptomic response to short-term changes in substrate availability. Our results contribute to better understanding the activity of aerobic methanotrophs, their core metabolic pathways, and their stress responses.
Collapse
Affiliation(s)
- Egidio F. Tentori
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Shania Fang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Ruth E. Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
7
|
An Overview on Methanotrophs and the Role of Methylosinus trichosporium OB3b for Biotechnological Applications. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Analysis of column reactor results with organic decay by native organic microbiota and varying permeability. Sci Rep 2021; 11:5069. [PMID: 33658586 PMCID: PMC7930145 DOI: 10.1038/s41598-021-84530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022] Open
Abstract
Field bio-remediation techniques (FBRT) can be a low cost method to avoid the removal of top layers of soil which are rich in organic matter and bio diversity. The use of native microorganisms in FBRT is preferable because non-indigenous species can transfer their genetic material to the environment with negative impacts on the local ecological equilibrium. Petroleum Produced Water (PPW) is an important pollutant source in onshore production areas. However, due to high sodium concentrations in PPW and the occurrence of organic matter in dissolved and dispersed forms, obtaining pollutant transport parameters may be a difficult task. Results of column tests performed using a natural soil permeated by PPW are presented. All the samples presented a permeability decrease over time and the total hydrocarbon petroleum (TPH) breakthrough curves presented evidence of biological decay. Soil samples underwent biological characterization after tests (Metagenomic analyses and cultural media tests). Curves were modelled in an incremental way using a non-constant decay rate to better simulate the growing process of the microorganisms and consider the occurrence of varying velocity/permeability. Biological characterization results indicate the native organisms that are potentially more able to degrade PPW, including four bacteria (Bacillus and Lysinibacillus genus) and two fungi species (Malassezia and Talaromyces genus) that have not previously been mentioned in the consulted literature. The obtained results contribute to the development of more sustainable FBRTs focusing on native microorganisms, already adapted to the local environmental conditions.
Collapse
|
9
|
Ding C, Rogers MJ, He J. Dehalococcoides mccartyi Strain GEO12 Has a Natural Tolerance to Chloroform Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8750-8759. [PMID: 32551613 DOI: 10.1021/acs.est.0c00993] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cocontamination by chloroform and chloroethenes often confounds bioremediation efforts. Here, we describe Dehalococcoides mccartyi strain GEO12 that dechlorinates trichloroethene to ethene in 14 μM (1.6 mg·L-1) chloroform. The same chloroform concentration effectively inhibited dechlorination in Dehalococcoides strains ANAS2, 11a, and BAV1. Successive transfers of strain GEO12 in increasing concentrations of chloroform led to culture GEO12CF that tolerated 83 μM (10 mg·L-1) chloroform. The genome of strain GEO12 revealed seven reductive dehalogenase homologous (rdh) genes, including tceA and vcrA. Transcriptional analyses showed that chloroform (45 μM; 5.3 mg·L-1) in culture GEO12CF enhanced the transcription of tceA to a statistically significant degree (the median increase was 55.4 transcripts per 104 16S rRNA, CI95% = [12.9, 125]). The increase of vcrA transcripts in the presence of chloroform (45 μM; 5.3 mg·L-1) in culture GEO12CF was not statistically significant because the CI95% range spanned 0 (the median increase was 109 transcripts per 104 16S rRNA, CI95% = [-13.6, 246]). Inhibition of dehalogenation by chloroform is often seen in Dehalococcoides, but the mechanism remains unknown. Our results suggest that culture GEO12CF may overcome chloroform inhibition by rdh upregulation. The chloroform-adapted culture GEO12CF provides insights into the metabolic flexibility of Dehalococcoides and could be used to fight chloroethene contamination where chloroform is a cocontaminant.
Collapse
Affiliation(s)
- Chang Ding
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| |
Collapse
|
10
|
Shao Y, Hatzinger PB, Streger SH, Rezes RT, Chu KH. Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers. Biodegradation 2019; 30:173-190. [DOI: 10.1007/s10532-019-09875-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
|
11
|
El Abbadi SH, Criddle CS. Engineering the Dark Food Chain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2273-2287. [PMID: 30640466 DOI: 10.1021/acs.est.8b04038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Meeting global food needs in the face of climate change and resource limitation requires innovative approaches to food production. Here, we explore incorporation of new dark food chains into human food systems, drawing inspiration from natural ecosystems, the history of single cell protein, and opportunities for new food production through wastewater treatment, microbial protein production, and aquaculture. The envisioned dark food chains rely upon chemoautotrophy in lieu of photosynthesis, with primary production based upon assimilation of CH4 and CO2 by methane- and hydrogen-oxidizing bacteria. The stoichiometry, kinetics, and thermodynamics of these bacteria are evaluated, and opportunities for recycling of carbon, nitrogen, and water are explored. Because these processes do not require light delivery, high volumetric productivities are possible; because they are exothermic, heat is available for downstream protein processing; because the feedstock gases are cheap, existing pipeline infrastructure could facilitate low-cost energy-efficient delivery in urban environments. Potential life-cycle benefits include: a protein alternative to fishmeal; partial decoupling of animal feed from human food; climate change mitigation due to decreased land use for agriculture; efficient local cycling of carbon and nutrients that offsets the need for energy-intensive fertilizers; and production of high value products, such as the prebiotic polyhydroxybutyrate.
Collapse
Affiliation(s)
- Sahar H El Abbadi
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305-4020 , United States
| | - Craig S Criddle
- Department of Civil and Environmental Engineering , Stanford University , Stanford , California 94305-4020 , United States
- William and Cloy Codiga Resource Recovery Center , Stanford University , Stanford , California 94305-4020 , United States
| |
Collapse
|
12
|
McCarl V, Somerville MV, Ly MA, Henry R, Liew EF, Wilson NL, Holmes AJ, Coleman NV. Heterologous Expression of Mycobacterium Alkene Monooxygenases in Gram-Positive and Gram-Negative Bacterial Hosts. Appl Environ Microbiol 2018; 84:e00397-18. [PMID: 29802186 PMCID: PMC6052275 DOI: 10.1128/aem.00397-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/15/2018] [Indexed: 01/01/2023] Open
Abstract
Alkene monooxygenases (MOs) are soluble di-iron-containing enzymes found in bacteria that grow on alkenes. Here, we report improved heterologous expression systems for the propene MO (PmoABCD) and ethene MO (EtnABCD) from Mycobacterium chubuense strain NBB4. Strong functional expression of PmoABCD and EtnABCD was achieved in Mycobacterium smegmatis mc2155, yielding epoxidation activities (62 and 27 nmol/min/mg protein, respectively) higher than any reported to date for heterologous expression of a di-iron MO system. Both PmoABCD and EtnABCD were specialized for the oxidation of gaseous alkenes (C2 to C4), and their activity was much lower on liquid alkenes (C5 to C8). Despite intensive efforts to express the complete EtnABCD enzyme in Escherichia coli, this was not achieved, although recombinant EtnB and EtnD proteins could be purified individually in soluble form. The biochemical function of EtnD as an oxidoreductase was confirmed (1.36 μmol cytochrome c reduced/min/mg protein). Cloning the EtnABCD gene cluster into Pseudomonas putida KT2440 yielded detectable epoxidation of ethene (0.5 nmol/min/mg protein), and this could be stimulated (up to 1.1 nmol/min/mg protein) by the coexpression of cpn60 chaperonins from either Mycobacterium spp. or E. coli Successful expression of the ethene MO in a Gram-negative host was validated by both whole-cell activity assays and peptide mass spectrometry of induced proteins seen on SDS-PAGE gels.IMPORTANCE Alkene MOs are of interest for their potential roles in industrial biocatalysis, most notably for the stereoselective synthesis of epoxides. Wild-type bacteria that grow on alkenes have high activities for alkene oxidation but are problematic for biocatalysis, since they tend to consume the epoxide products. Using recombinant biocatalysts is the obvious alternative, but a major bottleneck is the low activities of recombinant alkene MOs. Here, we provide new high-activity recombinant biocatalysts for alkene oxidation, and we provide insights into how to further improve these systems.
Collapse
Affiliation(s)
- Victoria McCarl
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Mark V Somerville
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Mai-Anh Ly
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Rebecca Henry
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Elissa F Liew
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Neil L Wilson
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Andrew J Holmes
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Nicholas V Coleman
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| |
Collapse
|
13
|
Taylor A, Molzahn P, Bushnell T, Cheney C, LaJeunesse M, Azizian M, Semprini L. Immobilization of Methylosinus trichosporium OB3b for methanol production. ACTA ACUST UNITED AC 2018; 45:201-211. [DOI: 10.1007/s10295-018-2010-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/10/2018] [Indexed: 11/29/2022]
Abstract
Abstract
Due to the natural gas boom in North America, there is renewed interest in the production of other chemical products from methane. We investigated the feasibility of immobilizing the obligate methanotrophic bacterium Methylosinus trichosporium OB3b in alginate beads, and selectively inactivating methanol dehydrogenase (MDH) with cyclopropane to produce methanol. In batch cultures and in semi-continuous flow columns, the exposure of alginate-immobilized cells to cyclopropane or cyclopropanol resulted in the loss of the majority of MDH activity (> 80%), allowing methanol to accumulate to significant concentrations while retaining all of M. trichosporium OB3b’s methane monooxygenase capacity. Thereafter, the efficiency of methanol production fell due to recovery of most of the MDH activity; however, subsequent inhibition periods resulted in renewed methanol production efficiency, and immobilized cells retained methane-oxidizing activity for at least 14 days.
Collapse
Affiliation(s)
- Anne Taylor
- 0000 0001 2112 1969 grid.4391.f Department of Crop and Soil Science Oregon State University 3017 Agricultural Life Science Building 97331 Corvallis OR USA
| | - Paige Molzahn
- 0000 0001 2112 1969 grid.4391.f Department of Chemical Biological and Environmental Engineering Oregon State University Corvallis OR USA
| | - Tanner Bushnell
- 0000 0001 2112 1969 grid.4391.f Department of Chemical Biological and Environmental Engineering Oregon State University Corvallis OR USA
| | - Clint Cheney
- 0000 0001 2112 1969 grid.4391.f Department of Chemical Biological and Environmental Engineering Oregon State University Corvallis OR USA
| | - Monique LaJeunesse
- 0000 0001 2112 1969 grid.4391.f Department of Chemical Biological and Environmental Engineering Oregon State University Corvallis OR USA
| | - Mohamad Azizian
- 0000 0001 2112 1969 grid.4391.f Department of Chemical Biological and Environmental Engineering Oregon State University Corvallis OR USA
| | - Lewis Semprini
- 0000 0001 2112 1969 grid.4391.f Department of Chemical Biological and Environmental Engineering Oregon State University Corvallis OR USA
| |
Collapse
|
14
|
Weatherill JJ, Atashgahi S, Schneidewind U, Krause S, Ullah S, Cassidy N, Rivett MO. Natural attenuation of chlorinated ethenes in hyporheic zones: A review of key biogeochemical processes and in-situ transformation potential. WATER RESEARCH 2018; 128:362-382. [PMID: 29126033 DOI: 10.1016/j.watres.2017.10.059] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/12/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
Chlorinated ethenes (CEs) are legacy contaminants whose chemical footprint is expected to persist in aquifers around the world for many decades to come. These organohalides have been reported in river systems with concerning prevalence and are thought to be significant chemical stressors in urban water ecosystems. The aquifer-river interface (known as the hyporheic zone) is a critical pathway for CE discharge to surface water bodies in groundwater baseflow. This pore water system may represent a natural bioreactor where anoxic and oxic biotransformation process act in synergy to reduce or even eliminate contaminant fluxes to surface water. Here, we critically review current process understanding of anaerobic CE respiration in the competitive framework of hyporheic zone biogeochemical cycling fuelled by in-situ fermentation of natural organic matter. We conceptualise anoxic-oxic interface development for metabolic and co-metabolic mineralisation by a range of aerobic bacteria with a focus on vinyl chloride degradation pathways. The superimposition of microbial metabolic processes occurring in sediment biofilms and bulk solute transport delivering reactants produces a scale dependence in contaminant transformation rates. Process interpretation is often confounded by the natural geological heterogeneity typical of most riverbed environments. We discuss insights from recent field experience of CE plumes discharging to surface water and present a range of practical monitoring technologies which address this inherent complexity at different spatial scales. Future research must address key dynamics which link supply of limiting reactants, residence times and microbial ecophysiology to better understand the natural attenuation capacity of hyporheic systems.
Collapse
Affiliation(s)
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Uwe Schneidewind
- Department of Engineering Geology and Hydrogeology, RWTH Aachen University, Aachen, Germany
| | - Stefan Krause
- School of Geography, Earth and Environmental Science, University of Birmingham, UK
| | - Sami Ullah
- School of Geography, Earth and Environmental Science, University of Birmingham, UK
| | | | - Michael O Rivett
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK; GroundH(2)O Plus Ltd., Quinton, Birmingham, UK
| |
Collapse
|
15
|
Peng L, Kassotaki E, Liu Y, Sun J, Dai X, Pijuan M, Rodriguez-Roda I, Buttiglieri G, Ni BJ. Modelling cometabolic biotransformation of sulfamethoxazole by an enriched ammonia oxidizing bacteria culture. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
A novel methanotroph in the genus Methylomonas that contains a distinct clade of soluble methane monooxygenase. J Microbiol 2017; 55:775-782. [DOI: 10.1007/s12275-017-7317-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
|
17
|
Dolinová I, Štrojsová M, Černík M, Němeček J, Macháčková J, Ševců A. Microbial degradation of chloroethenes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13262-13283. [PMID: 28378313 DOI: 10.1007/s11356-017-8867-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/17/2017] [Indexed: 05/28/2023]
Abstract
Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.
Collapse
Affiliation(s)
- Iva Dolinová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Martina Štrojsová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Jan Němeček
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Jiřina Macháčková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
| |
Collapse
|
18
|
Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture. Appl Microbiol Biotechnol 2017; 101:5481-5492. [DOI: 10.1007/s00253-017-8236-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
|
19
|
Drewniak L, Krawczyk PS, Mielnicki S, Adamska D, Sobczak A, Lipinski L, Burec-Drewniak W, Sklodowska A. Physiological and Metagenomic Analyses of Microbial Mats Involved in Self-Purification of Mine Waters Contaminated with Heavy Metals. Front Microbiol 2016; 7:1252. [PMID: 27559332 PMCID: PMC4978725 DOI: 10.3389/fmicb.2016.01252] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/28/2016] [Indexed: 11/16/2022] Open
Abstract
Two microbial mats found inside two old (gold and uranium) mines in Zloty Stok and Kowary located in SW Poland seem to form a natural barrier that traps heavy metals leaking from dewatering systems. We performed complex physiological and metagenomic analyses to determine which microorganisms are the main driving agents responsible for self-purification of the mine waters and identify metabolic processes responsible for the observed features. SEM and energy dispersive X-ray microanalysis showed accumulation of heavy metals on the mat surface, whereas, sorption experiments showed that neither microbial mats were completely saturated with heavy metals present in the mine waters, indicating that they have a large potential to absorb significant quantities of metal. The metagenomic analysis revealed that Methylococcaceae and Methylophilaceae families were the most abundant in both communities, moreover, it strongly suggest that backbones of both mats were formed by filamentous bacteria, such as Leptothrix, Thiothrix, and Beggiatoa. The Kowary bacterial community was enriched with the Helicobacteraceae family, whereas the Zloty Stok community consist mainly of Sphingomonadaceae, Rhodobacteraceae, and Caulobacteraceae families. Functional (culture-based) and metagenome (sequence-based) analyses showed that bacteria involved in immobilization of heavy metals, rather than those engaged in mobilization, were the main driving force within the analyzed communities. In turn, a comparison of functional genes revealed that the biofilm formation and heavy metal resistance (HMR) functions are more desirable in microorganisms engaged in water purification than the ability to utilize heavy metals in the respiratory process (oxidation-reduction). These findings provide insight on the activity of bacteria leading, from biofilm formation to self-purification, of mine waters contaminated with heavy metals.
Collapse
Affiliation(s)
- Lukasz Drewniak
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Pawel S Krawczyk
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy Sciences Warsaw, Poland
| | - Sebastian Mielnicki
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Dorota Adamska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy Sciences Warsaw, Poland
| | - Adam Sobczak
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy Sciences Warsaw, Poland
| | - Leszek Lipinski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy Sciences Warsaw, Poland
| | | | - Aleksandra Sklodowska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw Warsaw, Poland
| |
Collapse
|
20
|
Lawton TJ, Rosenzweig AC. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion. J Am Chem Soc 2016; 138:9327-40. [PMID: 27366961 PMCID: PMC5242187 DOI: 10.1021/jacs.6b04568] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16-13 s(-1), these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock.
Collapse
Affiliation(s)
- Thomas J Lawton
- Departments of Molecular Biosciences and of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Abstract
Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, protein-protein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.
Collapse
Affiliation(s)
- Sarah Sirajuddin
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C. Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
Zhang Y, Tay J. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:204-210. [PMID: 25577321 DOI: 10.1016/j.jhazmat.2015.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/10/2014] [Accepted: 01/01/2015] [Indexed: 06/04/2023]
Abstract
Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai,200433, China.
| | - JooHwa Tay
- Department of Civil Engineering, University of Calgary, AB T2 N 1N4, Calgary, Canada
| |
Collapse
|
23
|
Lee EH, Choi SA, Yi T, Kim TG, Lee SD, Cho KS. Effects of granular activated carbon on methane removal performance and methanotrophic community of a lab-scale bioreactor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:193-200. [PMID: 25560265 DOI: 10.1080/10934529.2014.975541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.
Collapse
Affiliation(s)
- Eun-Hee Lee
- a Department of Environmental Science and Engineering , Ewha Womans University , Seoul , Republic of Korea
| | | | | | | | | | | |
Collapse
|
24
|
Daelman MRJ, Van Eynde T, van Loosdrecht MCM, Volcke EIP. Effect of process design and operating parameters on aerobic methane oxidation in municipal WWTPs. WATER RESEARCH 2014; 66:308-319. [PMID: 25225767 DOI: 10.1016/j.watres.2014.07.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/09/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
Methane is a potent greenhouse gas and its emission from municipal wastewater treatment plants (WWTPs) should be prevented. One way to do this is to promote the biological conversion of dissolved methane over stripping in aeration tanks. In this study, the well-established Activated Sludge Model n°1 (ASM1) and Benchmark Simulation Model n°1 (BSM1) were extended to study the influence of process design and operating parameters on biological methane oxidation. The aeration function used in BSM 1 was upgraded to more accurately describe gas-liquid transfer of oxygen and methane in aeration tanks equipped with subsurface aeration. Dissolved methane could be effectively removed in an aeration tank at an aeration rate that is in agreement with optimal effluent quality. Subsurface bubble aeration proved to be better than surface aeration, while a CSTR configuration was superior to plug flow conditions in avoiding methane emissions. The conversion of methane in the activated sludge tank benefits from higher methane concentrations in the WWTP's influent. Finally, if an activated sludge tank is aerated with methane containing off-gas, a limited amount of methane is absorbed and converted in the mixed liquor. This knowledge helps to stimulate the methane oxidizing capacity of activated sludge in order to abate methane emissions from wastewater treatment to the atmosphere.
Collapse
Affiliation(s)
- Matthijs R J Daelman
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628BC Delft, Netherlands; Department of Biosystems Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium.
| | - Tamara Van Eynde
- Department of Biosystems Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628BC Delft, Netherlands
| | - Eveline I P Volcke
- Department of Biosystems Engineering, Ghent University, Coupure links 653, 9000 Gent, Belgium
| |
Collapse
|
25
|
Powell CL, Goltz MN, Agrawal A. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots. JOURNAL OF CONTAMINANT HYDROLOGY 2014; 170:68-75. [PMID: 25444117 DOI: 10.1016/j.jconhyd.2014.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~1.9mgL(-1), and initial aqueous [CAH] ~150μgL(-1); cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12±0.01 and 0.59±0.07d(-1), respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.
Collapse
Affiliation(s)
- C L Powell
- Environmental Science Program, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States
| | - M N Goltz
- Department of Systems Engineering and Management, Air Force Institute of Technology, WPAFB, 2950 Hobson Way, OH 45433, United States
| | - A Agrawal
- Environmental Science Program, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States; Department of Earth & Environmental Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States.
| |
Collapse
|
26
|
Kinetics of the aerobic co-metabolism of 1,1-dichloroethylene by Achromobacter sp.: a novel benzene-grown culture. Biotechnol Lett 2014; 36:1271-8. [PMID: 24652543 DOI: 10.1007/s10529-014-1490-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Batch experiments were performed for the aerobic co-metabolism of 1,1-dichloroethylene (1,1-DCE) by Achromobacter sp., identified by gene sequencing of 16S rRNA and grown on benzene. Kinetic models were employed to simulate the co-metabolic degradation of 1,1-DCE, and relevant parameters were obtained by non-linear least squares regression. Benzene at 90 mg L(-1) non-competitively inhibited degradation of 1,1-DCE (from 125 to 1,200 μg L(-1)). The maximum specific utilization (kc) rate and the half-saturation constant (Kc) for 1,1-DCE were 54 ± 0.85 μg h(-1) and 220 ± 6.8 μg L(-1), respectively; the kb and Kb for benzene were 13 ± 0.18 mg h(-1) and 28 ± 0.42 mg L(-1), respectively. This study provides a theoretical basis to predict the natural attenuation when benzene and 1,1-DCE occur as co-contaminants.
Collapse
|
27
|
Nzila A. Update on the cometabolism of organic pollutants by bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:474-82. [PMID: 23570949 DOI: 10.1016/j.envpol.2013.03.042] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 05/20/2023]
Abstract
Each year, tons of various types of molecules pollute our environment, and their elimination is one of the major challenges human kind is facing. Among the strategies to eliminate these pollutants is their biodegradation by microorganisms. However, many pollutants cannot be used efficiently as growth substrates by microorganisms. Biodegradation of such molecules by cometabolism has been reported, which is the ability of a microorganism to biodegrade a pollutant without using it as a growth-substrate (non-growth-substrate), while sustaining its own growth by assimilating a different substrate (growth-substrate). This approach has been used in the field of bioremediation, however, its potential has not been fully exploited yet. This review summarises the work carried out on the cometabolism of important recalcitrant pollutants, and presents strategies that can be used to improve ways of identifying microorganisms that can cometabolise such recalcitrant pollutants.
Collapse
Affiliation(s)
- Alexis Nzila
- King Fahd University of Petroleum and Minerals, Department of Biology, PO Box 468, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
28
|
Matsen JB, Yang S, Stein LY, Beck D, Kalyuzhnaya MG. Global Molecular Analyses of Methane Metabolism in Methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: Transcriptomic Study. Front Microbiol 2013; 4:40. [PMID: 23565111 PMCID: PMC3615186 DOI: 10.3389/fmicb.2013.00040] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/17/2013] [Indexed: 11/20/2022] Open
Abstract
Methane utilizing bacteria (methanotrophs) are important in both environmental and biotechnological applications, due to their ability to convert methane to multicarbon compounds. However, systems-level studies of methane metabolism have not been carried out in methanotrophs. In this work we have integrated genomic and transcriptomic information to provide an overview of central metabolic pathways for methane utilization in Methylosinus trichosporium OB3b, a model alphaproteobacterial methanotroph. Particulate methane monooxygenase, PQQ-dependent methanol dehydrogenase, the H4MPT-pathway, and NAD-dependent formate dehydrogenase are involved in methane oxidation to CO2. All genes essential for operation of the serine cycle, the ethylmalonyl-CoA (EMC) pathway, and the citric acid (TCA) cycle were expressed. PEP-pyruvate-oxaloacetate interconversions may have a function in regulation and balancing carbon between the serine cycle and the EMC pathway. A set of transaminases may contribute to carbon partitioning between the pathways. Metabolic pathways for acquisition and/or assimilation of nitrogen and iron are discussed.
Collapse
Affiliation(s)
- Janet B Matsen
- Department of Chemical Engineering, University of Washington Seattle, WA, USA
| | | | | | | | | |
Collapse
|
29
|
Choi SA, Lee EH, Cho KS. Effect of trichloroethylene and tetrachloroethylene on methane oxidation and community structure of methanotrophic consortium. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1723-1731. [PMID: 23947712 DOI: 10.1080/10934529.2013.815559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The methane oxidation rate and community structure of a methanotrophic consortium were analyzed to determine the effects of trichloroethylene (TCE) and tetrachloroethylene (PCE) on methane oxidation. The maximum methane oxidation rate (Vmax ) of the consortium was 326.8 μmol·g-dry biomass(-1)·h(-1), and it had a half-saturation constant (Km ) of 143.8 μM. The addition of TCE or PCE resulted in decreased methane oxidation rates, which were decreased from 101.73 to 5.47-24.64 μmol·g-dry biomass(-1)·h(-1) with an increase in the TCE-to-methane ratio, and to 61.95-67.43 μmol·g-dry biomass(-1)·h(-1) with an increase in the PCE-to-methane ratio. TCE and PCE were non-competitive inhibitors for methane oxidation, and their inhibition constants (Ki ) were 33.4 and 132.0 μM, respectively. When the methanotrophic community was analyzed based on pmoA using quantitative real-time PCR (qRT-PCR), the pmoA gene copy numbers were shown to decrease from 7.3 ± 0.7 × 10(8) to 2.1-5.0 × 10(7) pmoA gene copy number · g-dry biomass(-1) with an increase in the TCE-to-methane ratio and to 2.5-7.0 × 10(7) pmoA gene copy number · g-dry biomass(-1) with an increase in the PCE-to-methane ratio. Community analysis by microarray demonstrated that Methylocystis (type II methanotrophs) were the most abundant in the methanotrophic community composition in the presence of TCE. These results suggest that toxic effects caused by TCE and PCE change not only methane oxidation rates but also the community structure of the methanotrophic consortium.
Collapse
Affiliation(s)
- Sun-Ah Choi
- Global Top5 Research Program, Department of Environmental Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Korea
| | | | | |
Collapse
|
30
|
Shukla AK, Upadhyay SN, Dubey SK. Current trends in trichloroethylene biodegradation: a review. Crit Rev Biotechnol 2012; 34:101-14. [PMID: 23057686 DOI: 10.3109/07388551.2012.727080] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Over the past few years biodegradation of trichloroethylene (TCE) using different microorganisms has been investigated by several researchers. In this review article, an attempt has been made to present a critical summary of the recent results related to two major processes--reductive dechlorination and aerobic co-metabolism used for TCE biodegradation. It has been shown that mainly Clostridium sp. DC-1, KYT-1, Dehalobacter, Dehalococcoides, Desulfuromonas, Desulfitobacterium, Propionibacterium sp. HK-1, and Sulfurospirillum bacterial communities are responsible for the reductive dechlorination of TCE. Efficacy of bacterial communities like Nitrosomonas, Pseudomonas, Rhodococcus, and Xanthobacter sp. etc. for TCE biodegradation under aerobic conditions has also been examined. Mixed cultures of diazotrophs and methanotrophs have been used for TCE degradation in batch and continuous cultures (biofilter) under aerobic conditions. In addition, some fungi (Trametes versicolor, Phanerochaete chrysosporium ME-446) and Actinomycetes have also been used for aerobic biodegradation of TCE. The available information on kinetics of biofiltration of TCE and its degradation end-products such as CO2 are discussed along with the available results on the diversity of bacterial community obtained using molecular biological approaches. It has emerged that there is a need to use metabolic engineering and molecular biological tools more intensively to improve the robustness of TCE degrading microbial species and assess their diversity.
Collapse
Affiliation(s)
- Awadhesh Kumar Shukla
- Department of Botany, Faculty of Science, Banaras Hindu University , Varanasi , India and
| | | | | |
Collapse
|
31
|
Ely RL, Williamson KJ, Guenther RB, Hyman MR, Arp DJ. A cometabilic kinetics model incorporating enzyme inhbition, inactivation, and recovery: I. Model development, analysis, and testing. Biotechnol Bioeng 2012; 46:218-31. [PMID: 18623306 DOI: 10.1002/bit.260460305] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cometabolic biodegradation prcesses are important for bioremediation of hazardous waste sites. However, these proceeses are not well understood and have not been modeled thoroughly. Traditional Michaelis-Menten kinetics models often are used, but toxic effects and bacterial responses to toxicity may cause changes in enzyme levels, rendering such models inappropriate. In this article, a conceptual and mathematical model of cometabolic enzyme kinetics i described. Model derivation is based on enzyme/growth-substrate/nongrowth-substrate interaction and incorporates enzyme inhibition (caused by the presence of a cometabolic compound), inactivation (resulting from toxicity of a cometabolic product), and recovery (associated with bacterial synthesis of new enbzyme in response to inactivation). The mathematical model consists of a system of two, nonlinear ordinary differential equations that can be solved implicitly using numerical methods, providing estimates of model parameters. Model analysis shows that growth substraate adn nongrowth substrate oxidation rates are related by a dimensionless constant. Reliability of tehy model solution prcedure is verifiedl by abnalyzing data ses, containing random error, from simulated experimentss with trichhloroethyylene (TCE) degradation by ammonia-oxidizing bacterialunder various conditions. Estimation of the recovery rate contant is deterimined to be sensitive to intial TCE concentration. Model assumptions are evaluated in a companion article using data from TCE degradation experiments with amoniaoxidizing bacteria. (c) 1995 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- R L Ely
- Department of Civil Engineering, Oregon State University, Corvallis, Oregon 97331
| | | | | | | | | |
Collapse
|
32
|
Sun AK, Wood TK. Trichloroethylene mineralization in a fixed-film bioreactor using a pure culture expressing constitutively toluene ortho -monooxygenase. Biotechnol Bioeng 2012; 55:674-85. [PMID: 18636577 DOI: 10.1002/(sici)1097-0290(19970820)55:4<674::aid-bit9>3.0.co;2-e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An aerobic, single-pass, fixed-film bioreactor was designed for the continuous degradation and mineralization of gas-phase trichloroethylene (TCE). A pure culture of Burkholderia cepacia PR1(23)(TOM(23C)), a Tn5transposon mutant of B. cepacia G4 that constitutively expresses the TCE-degrading enzyme, toluene ortho-monooxygenase (TOM), was immobilized on sintered glass (SIRANtrade mark carriers) and activated carbon. The inert open-pore structures of the sintered glass and the strongly, TCE-absorbing activated carbon provide a large surface area for biofilm development (2-8 mg total cellular protein/mL carrier with glucose minimal medium that lacks chloride ions). At gas-phase TCE concentrations ranging from 0.04 to 2.42 mg/L of air and 0.1 L/min of air flow, initial maximum TCE degradation rates of 0.007-0.715 nmol/(min mg protein) (equivalent to 8.6-392.3 mg TCE/L of reactor/day) were obtained. Using chloride ion generation as the indicator of TCE mineralization, the bioreactor with activated carbon mineralized an average of 6.9-10.3 mg TCE/L of reactor/day at 0.242 mg/L TCE concentration with 0.1 L/min of air flow for 38-40 days. Although these rates of TCE degradation and mineralization are two- to 200-fold higher than reported values, TOM was inactivated in the sintered-glass bioreactor at a rate that increased with increasing TCE concentration (e.g., in approximately 2 days at 0.242 mg/L and <1 day at 2.42 mg/L), although the biofilter could be operated for longer periods at lower TCE concentrations. Using an oxygen probe and phenol as the substrate, the activity of TOM in the effluent cells of the bioreactor was monitored; the loss of TOM activity of the effluent cells corroborated the decrease in the TCE degradation and mineralization rates in the bioreactor. Repeated starving of the cells was found to restore TOM activity in the bioreactor with activated carbon and extended TCE mineralization by approximately 34%. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 674-685, 1997.
Collapse
Affiliation(s)
- A K Sun
- Department of Chemical and Biochemical Engineering, University of California, Irvine, Irvine, California 92697-2575; telephone: 714-824-3147; fax: 714-824-2541
| | | |
Collapse
|
33
|
Biodegradation of vinyl chloride, cis-dichloroethene and 1,2-dichloroethane in the alkene/alkane-oxidising Mycobacterium strain NBB4. Biodegradation 2011; 22:1095-108. [DOI: 10.1007/s10532-011-9466-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
|
34
|
Degradation of chloroform by immobilized cells of Bacillus sp. in calcium alginate beads. Biotechnol Lett 2011; 33:1101-5. [DOI: 10.1007/s10529-011-0553-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
|
35
|
Liu JB, Amemiya T, Chang Q, Xu X, Itoh K. Real-time reverse transcription PCR analysis of trichloroethylene-regulated toluene dioxygenase expression in Pseudomonas putida F1. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2011; 46:294-300. [PMID: 21500075 DOI: 10.1080/03601234.2011.559877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Toluene dioxygenase (tod) is a multicomponent enzyme system in Pseudomonas putida F1. Tod can mediate the degradation of Trichloroethylene (TCE), a widespread pollutant. In this study, we try to explore the TCE-regulated tod expression by using real-time qRT-PCR. The minimal culture media were supplemented with glucose, toluene, or a mixture of glucose/toluene respectively as carbon and energy sources. The TCE was injected into each medium after a 12-hour incubation period. The TCE injection severely affected bacterial growth when cultured with toluene or toluene/glucose mixtures. The cell density dropped 61 % for bacteria growing in toluene and 36 % for bacteria in the glucose/toluene mixture after TCE injection, but the TCE treatment had little effect on bacteria supplied with glucose alone. The decrease in cell number was caused by the cytotoxicity of the TCE metabolized by tod. The results from the real-time qRT-PCR revealed that TCE was capable of inducing tod expression in a toluene-dependent manner and that the tod expression level increased 50 times in toluene and 3 times in the toluene/glucose mixture after 6 hours of TCE treatment. Furthermore, validation of the rpoD gene as a reference gene for P. putida F1 was performed in this study, providing a valuable foundation for future studies to use real-time qRT-PCR in the analysis of the P. putida F1 strain.
Collapse
Affiliation(s)
- Jian B Liu
- Graduate School of Environment and Information Science, Yokohama National University, Yokohama, Japan.
| | | | | | | | | |
Collapse
|
36
|
Frascari D, Cappelletti M, Fedi S, Zannoni D, Nocentini M, Pinelli D. 1,1,2,2-Tetrachloroethane aerobic cometabolic biodegradation in slurry and soil-free bioreactors: A kinetic study. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Balasubramanian P, Philip L, Bhallamudi SM. Biodegradation of Chlorinated and Non-chlorinated VOCs from Pharmaceutical Industries. Appl Biochem Biotechnol 2010; 163:497-518. [DOI: 10.1007/s12010-010-9057-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/09/2010] [Indexed: 11/24/2022]
|
38
|
Van Hylckama VJ, De Koning W, Janssen DB. Effect of Chlorinated Ethene Conversion on Viability and Activity of Methylosinus trichosporium OB3b. Appl Environ Microbiol 2010; 63:4961-4. [PMID: 16535757 PMCID: PMC1389313 DOI: 10.1128/aem.63.12.4961-4964.1997] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of transformation of chlorinated ethenes on the cell viability of Methylosinus trichosporium OB3b was investigated. A comparison of the loss of viability with the decrease in transformation rates showed that for the monooxygenase-mediated transformation of all chlorinated ethenes except vinyl chloride the decrease in cell viability was the predominant toxic effect.
Collapse
|
39
|
Koh SC, Bowman JP, Sayler GS. Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol 2010; 59:960-7. [PMID: 16348920 PMCID: PMC202223 DOI: 10.1128/aem.59.4.960-967.1993] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A methanotroph (strain 68-1), originally isolated from a trichloroethylene (TCE)-contaminated aquifer, was identified as the type I methanotroph Methylomonas methanica on the basis of intracytoplasmic membrane ultrastructure, phospholipid fatty acid profile, and 16S rRNA signature probe hybridization. Strain 68-1 was found to oxidize naphthalene and TCE via a soluble methane monooxygenase (sMMO) and thus becomes the first type I methanotroph known to be able to produce this enzyme. The specific whole-cell sMMO activity of 68-1, as measured by the naphthalene oxidation assay and by TCE biodegradation, was comparatively higher than sMMO activity levels in Methylosinus trichosporium OB3b grown in the same copper-free conditions. The maximal naphthalene oxidation rates of Methylomonas methanica 68-1 and Methylosinus trichosporium OB3b were 551 +/- 27 and 321 +/- 16 nmol h mg of protein , respectively. The maximal TCE degradation rates of Methylomonas methanica 68-1 and Methylosinus trichosporium OB3b were 2,325 +/- 260 and 995 +/- 160 nmol h mg of protein, respectively. The substrate affinity of 68-1 sMMO to naphthalene (K(m), 70 +/- 4 muM) and TCE (K(m), 225 +/- 13 muM), however, was comparatively lower than that of the sMMO of OB3b, which had affinities of 40 +/- 3 and 126 +/- 8 muM, respectively. Genomic DNA slot and Southern blot analyses with an sMMO gene probe from Methylosinus trichosporium OB3b showed that the sMMO genes of 68-1 have little genetic homology to those of OB3b. This result may indicate the evolutionary diversification of the sMMOs.
Collapse
Affiliation(s)
- S C Koh
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Tennessee 37932-2567
| | | | | |
Collapse
|
40
|
Hamamura N, Page C, Long T, Semprini L, Arp DJ. Chloroform Cometabolism by Butane-Grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and Methane-Grown Methylosinus trichosporium OB3b. Appl Environ Microbiol 2010; 63:3607-13. [PMID: 16535693 PMCID: PMC1389249 DOI: 10.1128/aem.63.9.3607-3613.1997] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloroform (CF) degradation by a butane-grown enrichment culture, CF8, was compared to that by butane-grown Pseudomonas butanovora and Mycobacterium vaccae JOB5 and to that by a known CF degrader, Methylosinus trichosporium OB3b. All three butane-grown bacteria were able to degrade CF at rates comparable to that of M. trichosporium. CF degradation by all four bacteria required O(inf2). Butane inhibited CF degradation by the butane-grown bacteria, suggesting that butane monooxygenase is responsible for CF degradation. P. butanovora required exogenous reductant to degrade CF, while CF8 and M. vaccae utilized endogenous reductants. Prolonged incubation with CF resulted in decreased CF degradation. CF8 and P. butanovora were more sensitive to CF than either M. trichosporium or M. vaccae. CF degradation by all three butane-grown bacteria was inactivated by acetylene, which is a mechanism-based inhibitor for several monooxygenases. Butane protected all three butane-grown bacteria from inactivation by acetylene, which indicates that the same monooxygenase is responsible for both CF and butane oxidation. CF8 and P. butanovora were able to degrade other chlorinated hydrocarbons, including trichloroethylene, 1,2-cis-dichloroethylene, and vinyl chloride. In addition, CF8 degraded 1,1,2-trichloroethane. The results indicate the potential of butane-grown bacteria for chlorinated hydrocarbon transformation.
Collapse
|
41
|
Conrad ME, Brodie EL, Radtke CW, Bill M, Delwiche ME, Lee MH, Swift DL, Colwell FS. Field evidence for co-metabolism of trichloroethene stimulated by addition of electron donor to groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:4697-4704. [PMID: 20476753 DOI: 10.1021/es903535j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
For more than 10 years, electron donor has been injected into the Snake River aquifer beneath the Test Area North site of the Idaho National Laboratory for the purpose of stimulating microbial reductive dechlorination of trichloroethene (TCE) in groundwater. This has resulted in significant TCE removal from the source area of the contaminant plume and elevated dissolved CH(4) in the groundwater extending 250 m from the injection well. The delta(13)C of the CH(4) increases from -56 per thousand in the source area to -13 per thousand with distance from the injection well, whereas the delta(13)C of dissolved inorganic carbon decreases from 8 per thousand to -13 per thousand, indicating a shift from methanogenesis to methane oxidation. This change in microbial activity along the plume axis is confirmed by PhyloChip microarray analyses of 16S rRNA genes obtained from groundwater microbial communities, which indicate decreasing abundances of reductive dechlorinating microorganisms (e.g., Dehalococcoides ethenogenes) and increasing CH(4)-oxidizing microorganisms capable of aerobic co-metabolism of TCE (e.g., Methylosinus trichosporium). Incubation experiments with (13)C-labeled TCE introduced into microcosms containing basalt and groundwater from the aquifer confirm that TCE co-metabolism is possible. The results of these studies indicate that electron donor amendment designed to stimulate reductive dechlorination of TCE may also stimulate co-metabolism of TCE.
Collapse
Affiliation(s)
- Mark E Conrad
- E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ely RL, Williamson KJ, Hyman MR, Arp DJ. Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial response. Biotechnol Bioeng 2010; 54:520-34. [PMID: 18636408 DOI: 10.1002/(sici)1097-0290(19970620)54:6<520::aid-bit3>3.0.co;2-l] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pure cultures of ammonia-oxidizing bacteria, Nitrosomonas europaea, were exposed to trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), chloroform (CF), 1,2-dichloroethane (1,2-DCA), or carbon tetrachloride (CT), in the presence of ammonia, in a quasi-steady-state bioreactor. Estimates of enzyme kinetics constants, solvent inactivation constants, and culture recovery constants were obtained by simultaneously fitting three model curves to experimental data using nonlinear optimization techniques and an enzyme kinetics model, referred to as the inhibition, inactivation, and recovery (IIR) model, that accounts for inhibition of ammonia oxidation by the solvent, enzyme inactivation by solvent product toxicity, and respondent synthesis of new enzyme (recovery). Results showed relative enzyme affinities for ammonia monooxygenase (AMO) of 1,1-DCE approximately TCE > CT > NH(3) > CF > 1,2-DCA. Relative maximum specific substrate transformation rates were NH(3) > 1,2-DCA > CF > TCE approximately 1,1-DCE > CT (=0). The TCE, CF, and 1,1-DCE inactivated the cells, with 1,1-DCE being about three times more potent than TCE or CF. Under the conditions of these experiments, inactivating injuries caused by TCE and 1,1-DCE appeared limited primarily to the AMO enzyme, but injuries caused by CF appeared to be more generalized. The CT was not oxidized by N. europaea while 1,2-DCA was oxidized quite readily and showed no inactivation effects. Recovery capabilities were demonstrated with all solvents except CF. A method for estimating protein yield, the relationship between the transformation capacity model and the IIR model, and a condition necessary for sustainable cometabolic treatment of inactivating substrates are presented. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 520-534, 1997.
Collapse
Affiliation(s)
- R L Ely
- Department of Civil Engineering, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
43
|
Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing XH. Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.01.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Wendlandt KD, Stottmeister U, Helm J, Soltmann B, Jechorek M, Beck M. The potential of methane-oxidizing bacteria for applications in environmental biotechnology. Eng Life Sci 2010. [DOI: 10.1002/elsc.200900093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
45
|
Albanna M, Warith M, Fernandes L. Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers. WASTE MANAGEMENT (NEW YORK, N.Y.) 2010; 30:219-227. [PMID: 19896356 DOI: 10.1016/j.wasman.2009.09.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 09/19/2009] [Accepted: 09/24/2009] [Indexed: 05/28/2023]
Abstract
In this experimental program, the effects of non-methane organic compounds (NMOCs) on the biological methane (CH4) oxidation process were examined. The investigation was performed on compost experiments incubated with CH4 and selected NMOCs under different environmental conditions. The selected NMOCs had different concentrations and their effects were tested as single compounds and mixtures of compounds. The results from all experimental sets showed a decrease in CH4 oxidation capacity of the landfill bio-cover with the increase in NMOCs concentrations. For example, in the experiment using compost with 100% moisture content at 35 degrees C without any NMOCs the V(max) value was 35.0 microg CH4 h(-1)gwet wt(-1). This value was reduced to 19.1 microg CH4 h(-1) gwet wt(-1) when mixed NMOCs were present in the batch reactors under the same environmental conditions. The experimental oxidation rates of CH4 in the presence of single and mixed NMOCs were modeled using the uncompetitive inhibition model and kinetic parameters, including the dissociation constants, were obtained. Additionally, the degradation rates of the NMOCs and co-metabolic abilities of methanotrophic bacteria were estimated.
Collapse
Affiliation(s)
- Muna Albanna
- Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., Ottawa, Ontario, Canada K1N 6N5.
| | | | | |
Collapse
|
46
|
Abstract
Methanotrophs, cells that consume methane (CH(4)) as their sole source of carbon and energy, play key roles in the global carbon cycle, including controlling anthropogenic and natural emissions of CH(4), the second-most important greenhouse gas after carbon dioxide. These cells have also been widely used for bioremediation of chlorinated solvents, and help sustain diverse microbial communities as well as higher organisms through the conversion of CH(4) to complex organic compounds (e.g. in deep ocean and subterranean environments with substantial CH(4) fluxes). It has been well-known for over 30 years that copper (Cu) plays a key role in the physiology and activity of methanotrophs, but it is only recently that we have begun to understand how these cells collect Cu, the role Cu plays in CH(4) oxidation by the particulate CH(4) monooxygenase, the effect of Cu on the proteome, and how Cu affects the ability of methanotrophs to oxidize different substrates. Here we summarize the current state of knowledge of the phylogeny, environmental distribution, and potential applications of methanotrophs for regional and global issues, as well as the role of Cu in regulating gene expression and proteome in these cells, its effects on enzymatic and whole-cell activity, and the novel Cu uptake system used by methanotrophs.
Collapse
Affiliation(s)
- Jeremy D Semrau
- Department of Civil and Environmental Engineering, The University of Michigan, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
47
|
Jahng D, Kim CS, Hanson RS, Wood TK. Optimization of trichloroethylene degradation using soluble methane monooxygenase of Methylosinus trichosporium OB3b expressed in recombinant bacteria. Biotechnol Bioeng 2009; 51:349-59. [PMID: 18624367 DOI: 10.1002/(sici)1097-0290(19960805)51:3<349::aid-bit10>3.0.co;2-h] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
By complementing cell-free extracts of Pseudomonas putida F1/pSMMO20 with purified soluble methane monooxygenase (sMMO) components of Methylosinus trichosporium OB3b, the low cloned-gene sMMO activity in the recombinant strain was found to be due to incomplete activity of the hydroxylase component. To address this incomplete activity, additional sMMO-expressing strains were formed by transferring mmo-containing pSMMO20 and pSMMO50 into various bacterial species including pseudomonads and alpha-2 subdivision strains such as methanotrophs, methylotrophs, Agrobacterium tumefaciens A114, and Rhizobium meliloti 102F34 (11 new strains screened); sMMO activity was detected in the last two strains. To increase plasmid segregational stability, the hok/sok locus originally from Escherichia coli plasmid R1 was inserted downstream of the mmo locus of pSMMO20 (resulting in pSMMO40) and found to enhance plasmid stability in P. putida F1 and R. meliloti 102F34 (first report of hok/sok in Rhizobium). To further increase sMMO activity, a modified Whittenbury minimal medium was selected from various minimal and complex media based on trichloroethylene (TCE) degradation and growth rates and was improved by removing the sMMO-inhibiting metal ions [Cu(II), Ni(II), and Zn(II)] and chloramphenicol from the medium and by supplementing with an iron source (3.6 microM of ferrous ammonium sulfate). Using chemostat-grown P. putida F1/pSMMO40, it was found that sMMO activity was higher for cells grown at higher dilution rates. These optimization efforts resulted in a twofold increase in the extent of TCE degradation and more consistent sMMO activity.
Collapse
Affiliation(s)
- D Jahng
- Department of Chemical Engineering, Myongji University, Kyungki-Do, Yongin-Si, Nam-Dong 449-728, Korea
| | | | | | | |
Collapse
|
48
|
Lee J, Hiibel SR, Reardon KF, Wood TK. Identification of stress-related proteins in Escherichia coli using the pollutant cis-dichloroethylene. J Appl Microbiol 2009; 108:2088-102. [PMID: 19919618 DOI: 10.1111/j.1365-2672.2009.04611.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS To complement our proteome study, whole-transcriptome analyses were utilized here to identify proteins related to degrading cis-1,2-dichloroethylene (cis-DCE). METHODS AND RESULTS Metabolically engineered Escherichia coli strains were utilized expressing an evolved toluene ortho-monooxygenase along with either (i) glutathione S-transferase and altered gamma-glutamylcysteine synthetase or (ii) a rationally engineered epoxide hydrolase. cis-DCE degradation induced 30 known stress genes and 32 uncharacterized genes. Because of the reactive cis-DCE epoxides formed, we hypothesized that some of these uncharacterized genes may be related to a variety of stresses. Using isogenic mutants, IbpB, YchH, YdeI, YeaR, YgiW, YoaG and YodD were related to hydrogen peroxide, cadmium and acid stress. Additional whole-transcriptome studies with hydrogen peroxide stress using the most hydrogen peroxide-sensitive mutants, ygiW and ychH, identified that FliS, GalS, HcaR, MglA, SufE, SufS, Tap, TnaB, YhcN and YjaA are also involved in the stress response of E. coli to hydrogen peroxide, cadmium and acid, as well as are involved in biofilm formation. CONCLUSION Seventeen proteins are involved in the stress network for this organism, and YhcN and YchH were shown to be important for the degradation of cis-DCE. SIGNIFICANCE AND IMPACT OF THE STUDY Six previously uncharacterized proteins (YchH, YdeI, YgiW, YhcN, YjaA and YodD) were shown to be stress proteins.
Collapse
Affiliation(s)
- J Lee
- Artie McFerrin Department of Chemical Engineering, Texas A & M University, College Station, TX 77843-3122, USA
| | | | | | | |
Collapse
|
49
|
Dey K, Roy P. Degradation of Trichloroethylene by Bacillus sp.: Isolation Strategy, Strain Characteristics, and Cell Immobilization. Curr Microbiol 2009; 59:256-60. [DOI: 10.1007/s00284-009-9427-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/24/2009] [Accepted: 05/07/2009] [Indexed: 11/28/2022]
|
50
|
Owens CR, Karceski JK, Mattes TE. Gaseous alkene biotransformation and enantioselective epoxyalkane formation by Nocardioides sp. strain JS614. Appl Microbiol Biotechnol 2009; 84:685-92. [DOI: 10.1007/s00253-009-2019-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Revised: 04/20/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
|