1
|
Rathi M, Nandabalan YK. Copper-tolerant rhizosphere bacteria-characterization and assessment of plant growth promoting factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9723-9733. [PMID: 28251535 DOI: 10.1007/s11356-017-8624-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
Remediation of heavy metal contaminated soil is a major problem or concern worldwide. Heavy metal accumulation in the soil is increasing day by day by industries, mines, agriculture, fuel combustion and municipal waste discharge. Such contaminated soils harbour a large number of resistant microbial populations. Screening and isolation of such microbes would be utilized for natural remediation of metal contaminated soils. Therefore, in the present study, highly copper-tolerant bacteria from rhizosphere soil of Cynodon dactylon grown in brass effluent contaminated soil were isolated and assessed for plant growth promoting factors. A total of 61 isolates were isolated from the rhizosphere of three contaminated sites. Six highly copper-tolerant isolates named as MYS1, MYS2, MYS3, MYS4, MYS5 and MYS6 were isolated through enrichment in copper containing nutrient broth. 16S rRNA analysis revealed that the isolates were from genera Stenotrophomonas and Brevundimonas and belong to classes Alpha Proteobacteriacea and Gamma Proteobacteriacea, respectively. Strain MYS1, MYS2 and MYS4 showed 95-99% similarity with Stenotrophomonas acidaminiphila, strain MYS3 and MYS5 showed 99 and 97% similarity with Stenotrophomonas maltophilia and Stenotrophomonas sp. Strain MYS6 showed 94% similarity with Brevundimonas diminuta. All the rhizobacteria showed plant growth promoting traits such as production of siderophores, indole acetic acid (IAA), phosphate solubilization and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. From this study, we can conclude that all the isolates possess copper resistance and potential for phytoremediation of copper polluted soils.
Collapse
Affiliation(s)
- Manohari Rathi
- Centre for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Yogalakshmi Kadapakkam Nandabalan
- Centre for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
2
|
Cornall A, Rose A, Streten C, McGuinness K, Parry D, Gibb K. Molecular screening of microbial communities for candidate indicators of multiple metal impacts in marine sediments from northern Australia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:468-484. [PMID: 26274631 DOI: 10.1002/etc.3205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
Coastal sediments accumulate metals from anthropogenic sources and as a consequence industry is required to monitor sediment health. The total concentration of a metal does not necessarily reflect its potential toxicity or biological impact, so biological assessment tools are useful for monitoring. Rapid biological assessment tools sensitive enough to detect relatively small increases in metal concentrations would provide early warning of future ecosystem impact. The authors investigated in situ populations of Archaea and Bacteria as potential tools for rapid biological assessment in sediment at 4 northern Australian coastal locations over 2 yr, in both wet and dry seasons. The 1 M HCl-extractable concentrations of metals in sediment were measured, and Archaeal and Bacterial community profiles were obtained by next-generation sequencing of sediment deoxyribonucleic acid (DNA). Species response curves were used to identify several taxonomic groups with potential as biological indicators of metal impact. Spatial variation, sediment grain size, water depth, and dissolved oxygen also correlated with microbial population shifts. Seasonal variation was less important than geographic location. Metal-challenge culture trials supported the identification of metal-resistant and -sensitive taxa. In situ Archaea and Bacteria are potentially sensitive indicators for changes in bioavailable concentrations of metals; however, the complexity of the system suggests it is important to identify metal-specific functional genes that may be informed by these sequencing surveys, and thus provide a useful addition to identity-based assays.
Collapse
Affiliation(s)
- Alyssa Cornall
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - Alea Rose
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - Claire Streten
- Charles Darwin University, Darwin, Northern Territory, Australia
- Australian Institute of Marine Science, Darwin, Northern Territory, Australia
| | - Keith McGuinness
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - David Parry
- Charles Darwin University, Darwin, Northern Territory, Australia
- Australian Institute of Marine Science, Darwin, Northern Territory, Australia
| | - Karen Gibb
- Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
3
|
Lira-Silva E, Santiago-Martínez MG, Hernández-Juárez V, García-Contreras R, Moreno-Sánchez R, Jasso-Chávez R. Activation of methanogenesis by cadmium in the marine archaeon Methanosarcina acetivorans. PLoS One 2012; 7:e48779. [PMID: 23152802 PMCID: PMC3495967 DOI: 10.1371/journal.pone.0048779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/01/2012] [Indexed: 12/01/2022] Open
Abstract
Methanosarcina acetivorans was cultured in the presence of CdCl2 to determine the metal effect on cell growth and biogas production. With methanol as substrate, cell growth and methane synthesis were not altered by cadmium, whereas with acetate, cadmium slightly increased both, growth and methane rate synthesis. In cultures metabolically active, incubations for short-term (minutes) with 10 µM total cadmium increased the methanogenesis rate by 6 and 9 folds in methanol- and acetate-grown cells, respectively. Cobalt and zinc but not copper or iron also activated the methane production rate. Methanogenic carbonic anhydrase and acetate kinase were directly activated by cadmium. Indeed, cells cultured in 100 µM total cadmium removed 41–69% of the heavy metal from the culture and accumulated 231–539 nmol Cd/mg cell protein. This is the first report showing that (i) Cd2+ has an activating effect on methanogenesis, a biotechnological relevant process in the bio-fuels field; and (ii) a methanogenic archaea is able to remove a heavy metal from aquatic environments.
Collapse
Affiliation(s)
- Elizabeth Lira-Silva
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Tlalpan, México D.F., México
| | | | | | | | | | | |
Collapse
|
4
|
Survival of the fittest: overcoming oxidative stress at the extremes of Acid, heat and metal. Life (Basel) 2012; 2:229-42. [PMID: 25371104 PMCID: PMC4187130 DOI: 10.3390/life2030229] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/14/2012] [Accepted: 08/17/2012] [Indexed: 11/29/2022] Open
Abstract
The habitat of metal respiring acidothermophilic lithoautotrophs is perhaps the most oxidizing environment yet identified. Geothermal heat, sulfuric acid and transition metals contribute both individually and synergistically under aerobic conditions to create this niche. Sulfuric acid and metals originating from sulfidic ores catalyze oxidative reactions attacking microbial cell surfaces including lipids, proteins and glycosyl groups. Sulfuric acid also promotes hydrocarbon dehydration contributing to the formation of black “burnt” carbon. Oxidative reactions leading to abstraction of electrons is further impacted by heat through an increase in the proportion of reactant molecules with sufficient energy to react. Collectively these factors and particularly those related to metals must be overcome by thermoacidophilic lithoautotrophs in order for them to survive and proliferate. The necessary mechanisms to achieve this goal are largely unknown however mechanistics insights have been gained through genomic studies. This review focuses on the specific role of metals in this extreme environment with an emphasis on resistance mechanisms in Archaea.
Collapse
|
5
|
Rastogi G, Barua S, Sani RK, Peyton BM. Investigation of microbial populations in the extremely metal-contaminated Coeur d'Alene River sediments. MICROBIAL ECOLOGY 2011; 62:1-13. [PMID: 21331609 DOI: 10.1007/s00248-011-9810-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 01/17/2011] [Indexed: 05/30/2023]
Abstract
The deposition of mine tailings generated from 125 years of sulfidic ore mining resulted in the enrichment of Coeur d'Alene River (CdAR) sediments with significant amounts of toxic heavy metals. A review of literature suggests that microbial populations play a pivotal role in the biogeochemical cycling of elements in such mining-impacted sedimentary environments. To assess the indigenous microbial communities associated with metal-enriched sediments of the CdAR, high-density 16S microarray (PhyloChip) and clone libraries specific to bacteria (16S rRNA), ammonia oxidizers (amoA), and methanogens (mcrA) were analyzed. PhyloChip analysis provided a comprehensive assessment of bacterial populations and detected the largest number of phylotypes in Proteobacteria followed by Firmicutes and Actinobacteria. Furthermore, PhyloChip and clone libraries displayed considerable metabolic diversity in indigenous microbial populations by capturing several chemolithotrophic groups such as ammonia oxidizers, iron-reducers and -oxidizers, methanogens, and sulfate-reducers in the CdAR sediments. Twenty-two phylotypes detected on PhyloChip could not be classified even at phylum level thus suggesting the presence of novel microbial populations in the CdAR sediments. Clone libraries demonstrated very limited diversity of ammonia oxidizers and methanogens in the CdAR sediments as evidenced by the fact that only Nitrosospira- and Methanosarcina-related phylotypes were retrieved in amoA and mcrA clone libraries, respectively.
Collapse
Affiliation(s)
- Gurdeep Rastogi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | | | | | | |
Collapse
|
6
|
PARK S, WOODWARD C, BIRKHOLD S, KUBENA L, NISBET D, RICKE S. INFLUENCE OF OXIDATION-REDUCTION REDUCTANTS ON SALMONELLA TYPHIMURIUM GROWTH RATES AFTER INITIAL pH ADJUSTMENT AND ZINC COMPOUND ADDITION. ACTA ACUST UNITED AC 2004. [DOI: 10.1111/j.1745-4581.2004.tb00062.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
PARK S, WOODWARD C, BIRKHOLD S, KUBENA L, NISBET D, RICKE S. IN VITRO COMPARISON OF ANAEROBIC AND AEROBIC GROWTH RESPONSE OF SALMONELLA TYPHIMURIUM TO ZINC ADDITION. J Food Saf 2002. [DOI: 10.1111/j.1745-4565.2002.tb00343.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Shakoori AR, Muneer B. Copper-resistant bacteria from industrial effluents and their role in remediation of heavy metals in wastewater. Folia Microbiol (Praha) 2002; 47:43-50. [PMID: 11980269 DOI: 10.1007/bf02818564] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Six copper-resistant bacterial strains were isolated from wastewater of tanneries of Kasur and Rohi Nala. Two strains tolerated copper at 380 mg/L, four up to 400 mg/L. Three strains were identified as members of the genus Salmonella; one strain was identified as Streptococcus pyrogenes, one as Vagococcus fluvialis and the last was identified as Escherichia coli. The pH and temperature optimum for two of them were 7.0 and 30 degrees C, respectively; four strains had corresponding optima at 7.5 and 37 degrees C, respectively. All bacterial isola-tes showed resistance against Ag+ (280-350 mg/L), Co2+ (200-420), CrVI (280-400), Cd2+ (250-350), Hg2+ (110-200), Mn2+ (300-380), Pb2+ (300-400), Sn2+ (480-520) and Zn2+ (300-450). Large-sized plasmids (> 20 kb), were detected in all of the strains. After the isolates were cured of plasmids with ethidium bromide, the efficiency of curing was estimated in the range of 60-90%. Reference strain of E. coli was transformed with the plasmids of the bacterial isolates which grew in Luria-Bertani medium containing 100 mg/L Cu2+. The capability to adsorb and afterwards accumulate Cu2+ inside their cells was assayed by atomic absorption spectrophotometer; all bacterial cells had the ability to adsorb 50-80% of the Cu2+ and accumulate 30-45% Cu2+ inside them after 1 d of incubation.
Collapse
Affiliation(s)
- A R Shakoori
- Cell and Molecular Biology Laboratory, Department of Zoology, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | | |
Collapse
|
9
|
Simon HM, Smith KP, Dodsworth JA, Guenthner B, Handelsman J, Goodman RM. Influence of tomato genotype on growth of inoculated and indigenous bacteria in the spermosphere. Appl Environ Microbiol 2001; 67:514-20. [PMID: 11157211 PMCID: PMC92615 DOI: 10.1128/aem.67.2.514-520.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2000] [Accepted: 11/03/2000] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated a genetic basis in tomato for support of the growth of a biological control agent, Bacillus cereus UW85, in the spermosphere after seed inoculation (K. P. Smith, J. Handelsman, and R. M. Goodman, Proc. Natl. Acad. Sci. USA 96:4786-4790, 1999). Here we report results of studies examining the host effect on the support of growth of Bacillus and Pseudomonas strains, both inoculated on seeds and recruited from soil, using selected inbred tomato lines from the recombinant inbred line (RIL) population used in our previous study. Two tomato lines, one previously found to support high and the other low growth of B. cereus UW85 in the spermosphere, had similar effects on growth of each of a diverse, worldwide collection of 24 B. cereus strains that were inoculated on seeds and planted in sterilized vermiculite. In contrast, among RILs that differed for support of B. cereus UW85 growth in the spermosphere, we found no difference for support of growth of the biocontrol strains Pseudomonas fluorescens 2-79 or Pseudomonas aureofaciens AB254. Thus, while the host effect on growth extended to all strains of B. cereus examined, it was not exerted on other bacterial species tested. When seeds were inoculated with a marked mutant of B. cereus UW85 and planted in soil, RIL-dependent high and low support of bacterial growth was observed that was similar to results from experiments conducted in sterilized vermiculite. When uninoculated seeds from two of these RILs were planted in soil, changes in population levels of indigenous Bacillus and fluorescent Pseudomonas bacteria differed, as measured over time by culturing and direct microscopy, from growth patterns observed in the inoculation experiments. Neither RIL supported detectable levels of growth of indigenous Bacillus soil bacteria, while the line that supported growth of inoculated B. cereus UW85 supported higher growth of indigenous fluorescent pseudomonads and total bacteria. The vermiculite system used in these experiments was predictive for growth of B. cereus UW85 inoculated on seeds and grown in soil, but the patterns of growth of inoculated strains-both Bacillus and Pseudomonas spp.-did not reflect host genotype effects on indigenous microflora recruited from soil to the spermosphere.
Collapse
Affiliation(s)
- H M Simon
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Microorganisms that colonize plant roots are recruited from, and in turn contribute substantially to, the vast and virtually uncharacterized phylogenetic diversity of soil microbiota. The diverse, but poorly understood, microorganisms that colonize plant roots mediate mineral transformations and nutrient cycles that are central to biosphere functioning. Here, we report the results of epifluorescence microscopy and culture-independent recovery of small subunit (SSU) ribosomal RNA (rRNA) gene sequences showing that members of a previously reported clade of soil Crenarchaeota colonize both young and senescent plant roots at an unexpectedly high frequency, and are particularly abundant on the latter. Our results indicate that non-thermophilic members of the Archaea inhabit an important terrestrial niche on earth and direct attention to the need for studies that will determine their possible roles in mediating root biology.
Collapse
Affiliation(s)
- H M Simon
- Department of Plant Pathology, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
11
|
Canganella F, Kato C, Horikoshi K. Effects of micronutrients on growth and starch hydrolysis of Thermococcus guaymasensis and Thermococcus aggregans. Microbiol Res 2000; 154:307-12. [PMID: 10772152 DOI: 10.1016/s0944-5013(00)80004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of micronutrients on growth of Thermococcus guaymasensis and Thenrmococcus aggregans in a starch-containing medium were investigated. A trace minerals solution, a vitamins solution and calcium chloride were omitted from the medium or added in different amounts. The growth rates of both species were not affected over a significant range of concentrations of these compounds, but appreciable inhibition of growth was observed after the addition of elemental sulfur to the medium. T. guaymasensis exhibited a significant tolerance to high amounts of trace element and vitamin solutions but growth was inhibited by the omission of these compounds from the medium. Moreover, both amylolytic and pullulytic activities increased in the presence of 6-fold higher amounts of trace element and vitamin solutions, compared to the concentrations used in the usual medium. In T. aggregans, both enzymatic activities were enhanced in the presence of either increased (4-fold) amounts of trace element and vitamin solutions, or after the addition of elemental sulfur to the medium. Furthermore, larger activities of starch-hydrolysing enzymes were detected with a 10-fold higher concentration of calcium chloride, compared to the usual medium, in the absence of trace element and vitamin solutions. When both Thermococcus species were tested for the tolerance to specific cations and oxyanions, T. guaymasensis exhibited higher tolerance compared to T. aggregans, the former strain being capable to grow in the presence of 6 mM Ni2+, 4mM Cu2+, 1.5 mM SeO4(2-), and 1.5 mM MoO4(2-). The content of total cell proteins followed the pattern of starch-hydrolysing enzymes and an over-expression of proteins in the range of 35, 50 and 70 kDa was observed.
Collapse
Affiliation(s)
- F Canganella
- Department of Agrobiology and Agrochemistry, University of Tuscia, Viterbo, Italy.
| | | | | |
Collapse
|
12
|
Mori K, Hatsu M, Kimura R, Takamizawa K. Effect of heavy metals on the growth of a methanogen in pure culture and coculture with a sulfate-reducing bacterium. J Biosci Bioeng 2000; 90:260-5. [PMID: 16232854 DOI: 10.1016/s1389-1723(00)80079-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2000] [Accepted: 06/06/2000] [Indexed: 11/19/2022]
Abstract
The sensitivity of a methanogen and sulfate-reducing bacterium isolated from a sea-based landfill site to Cd2+ and Cu2+ was studied. Methanogens and sulfate-reducing bacteria in leachates of the waste disposal site were enumerated using the MPN method. Methanobacterium thermoautotrophicum KHT-2, isolated from the leachate, could not grow at 0.5 mM Cd2+ or 1.0 mM Cu2+. Desulfotomaculum sp. RHT-3, isolated from the same leachate, was able to insolubilize 3.0 mM Cd2+ or 2.0 mM Cu2+ by production of hydrogen sulfide. When strains KHT-2 and RHT-3 were cultured together in the presence of the heavy metals, strain KHT-2 could grow at high heavy metal concentrations after insolubilization of the metals by strain RHT-3.
Collapse
Affiliation(s)
- K Mori
- Department of Bioprocessing, Faculty of Agriculture, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | |
Collapse
|
13
|
Bahl H, Scholz H, Bayan N, Chami M, Leblon G, Gulik-Krzywicki T, Shechter E, Fouet A, Mesnage S, Tosi-Couture E, Gounon P, Mock M, Conway de Macario E, Macario AJ, Fernández-Herrero LA, Olabarría G, Berenguer J, Blaser MJ, Kuen B, Lubitz W, Sára M, Pouwels PH, Kolen CP, Boot HJ, Resch S. Molecular biology of S-layers. FEMS Microbiol Rev 1997; 20:47-98. [PMID: 9276928 DOI: 10.1111/j.1574-6976.1997.tb00304.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this chapter we report on the molecular biology of crystalline surface layers of different bacterial groups. The limited information indicates that there are many variations on a common theme. Sequence variety, antigenic diversity, gene expression, rearrangements, influence of environmental factors and applied aspects are addressed. There is considerable variety in the S-layer composition, which was elucidated by sequence analysis of the corresponding genes. In Corynebacterium glutamicum one major cell wall protein is responsible for the formation of a highly ordered, hexagonal array. In contrast, two abundant surface proteins from the S-layer of Bacillus anthracis. Each protein possesses three S-layer homology motifs and one protein could be a virulence factor. The antigenic diversity and ABC transporters are important features, which have been studied in methanogenic archaea. The expression of the S-layer components is controlled by three genes in the case of Thermus thermophilus. One has repressor activity on the S-layer gene promoter, the second codes for the S-layer protein. The rearrangement by reciprocal recombination was investigated in Campylobacter fetus. 7-8 S-layer proteins with a high degree of homology at the 5' and 3' ends were found. Environmental changes influence the surface properties of Bacillus stearothermophilus. Depending on oxygen supply, this species produces different S-layer proteins. Finally, the molecular bases for some applications are discussed. Recombinant S-layer fusion proteins have been designed for biotechnology.
Collapse
Affiliation(s)
- H Bahl
- Universität Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|