1
|
Li C, Yu H, Chen S, Song L, Yuan A, Wei F, Sun D, Wang M, Xu L, He D, Liu J, Li H, Zhao J, Shen Y, Bao X. Quantification and Molecular Analysis of Antagonism between Xylose Utilization and Acetic Acid Tolerance in Glucose/Xylose Cofermentation Saccharomyces cerevisiae Strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6758-6771. [PMID: 40048248 DOI: 10.1021/acs.jafc.4c12275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
For bioethanol production from lignocellulosic materials, an ideal microorganism must possess both excellent xylose utilization and a high tolerance to inhibitory compounds. However, these two traits often exhibit antagonism in recombinant xylose-utilizing Saccharomyces cerevisiae strains. In this study, we developed a quantitative metric using an aggregated parameter to evaluate the degree of this antagonism and applied it to evaluate the antagonism of three strains (LF1, LF1-6M, and 6M-15), which had been iteratively evolved in xylose and hydrolyzate environments. Transcriptomic analysis revealed that the yeast strain elevates the alert level to stresses related to DNA replication, unfolded protein, starvation, and hyperosmosis, and reduces the uptake of unimportant nutrients to have a higher acetic acid tolerance during adaptive evolution in hydrolyzate. Additionally, the Snf1p-Mig1p signaling pathway was reprogrammed, enabling the strain to utilize xylose more efficiently during adaptive evolution in xylose. We also confirmed that disruption of the glyceraldehyde-3-phosphate dehydrogenase gene TDH1 significantly shortened the time required for glucose and/or xylose cofermentation under acetic acid stress by reducing reactive oxygen species accumulation and increasing ATP production. This study offers valuable insights for developing robust and efficient S. cerevisiae strains capable of glucose/xylose cofermentation.
Collapse
Affiliation(s)
- Chenhao Li
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Hengsong Yu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Shichao Chen
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Liyun Song
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Ai Yuan
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Fangqing Wei
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Dongming Sun
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Ming Wang
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Lili Xu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Deyun He
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Jiao Liu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Hongxing Li
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Jianzhi Zhao
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaoming Bao
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China
| |
Collapse
|
2
|
Atasoy M, Bartkova S, Çetecioğlu-Gürol Z, P Mira N, O'Byrne C, Pérez-Rodríguez F, Possas A, Scheler O, Sedláková-Kaduková J, Sinčák M, Steiger M, Ziv C, Lund PA. Methods for studying microbial acid stress responses: from molecules to populations. FEMS Microbiol Rev 2024; 48:fuae015. [PMID: 38760882 PMCID: PMC11418653 DOI: 10.1093/femsre/fuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia. Much is to be gained from an increased general awareness of these methods, and so the present review looks at examples of the different methods that have been used to study acid resistance, acid tolerance, and acid stress responses, and the insights they can lead to, as well as some of the problems involved in using them. We hope this will be of interest both within and well beyond the acid stress research community.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University and Research, PO Box 9101, 6700 HB, the Netherlands
| | - Simona Bartkova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Zeynep Çetecioğlu-Gürol
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21 106 91 Stockholm, Stockholm, Sweden
| | - Nuno P Mira
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Conor O'Byrne
- Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Aricia Possas
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jana Sedláková-Kaduková
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Mirka Sinčák
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Matthias Steiger
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, 7505101 Rishon LeZion, Israel
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology of Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Choi B, Tafur Rangel A, Kerkhoven EJ, Nygård Y. Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass. Metab Eng 2024; 84:23-33. [PMID: 38788894 DOI: 10.1016/j.ymben.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting Saccharomyces cerevisiae strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting ERF2, GPD1, and CYB2. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, PHO13 and ALD6 were also deleted from the strain. Finally, CDC19 encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid/g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of S. cerevisiae for industrial production of lactic acid from lignocellulosic biomass.
Collapse
Affiliation(s)
- Bohyun Choi
- Department of Life Sciences, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Albert Tafur Rangel
- Department of Life Sciences, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Eduard J Kerkhoven
- Department of Life Sciences, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Life Sciences, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden; VTT Technical Research Centre of Finland Ltd, Espoo, Finland.
| |
Collapse
|
4
|
Mota MN, Matos M, Bahri N, Sá-Correia I. Shared and more specific genetic determinants and pathways underlying yeast tolerance to acetic, butyric, and octanoic acids. Microb Cell Fact 2024; 23:71. [PMID: 38419072 PMCID: PMC10903034 DOI: 10.1186/s12934-024-02309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The improvement of yeast tolerance to acetic, butyric, and octanoic acids is an important step for the implementation of economically and technologically sustainable bioprocesses for the bioconversion of renewable biomass resources and wastes. To guide genome engineering of promising yeast cell factories toward highly robust superior strains, it is instrumental to identify molecular targets and understand the mechanisms underlying tolerance to those monocarboxylic fatty acids. A chemogenomic analysis was performed, complemented with physiological studies, to unveil genetic tolerance determinants in the model yeast and cell factory Saccharomyces cerevisiae exposed to equivalent moderate inhibitory concentrations of acetic, butyric, or octanoic acids. RESULTS Results indicate the existence of multiple shared genetic determinants and pathways underlying tolerance to these short- and medium-chain fatty acids, such as vacuolar acidification, intracellular trafficking, autophagy, and protein synthesis. The number of tolerance genes identified increased with the linear chain length and the datasets for butyric and octanoic acids include the highest number of genes in common suggesting the existence of more similar toxicity and tolerance mechanisms. Results of this analysis, at the systems level, point to a more marked deleterious effect of an equivalent inhibitory concentration of the more lipophilic octanoic acid, followed by butyric acid, on the cell envelope and on cellular membranes function and lipid remodeling. The importance of mitochondrial genome maintenance and functional mitochondria to obtain ATP for energy-dependent detoxification processes also emerged from this chemogenomic analysis, especially for octanoic acid. CONCLUSIONS This study provides new biological knowledge of interest to gain further mechanistic insights into toxicity and tolerance to linear-chain monocarboxylic acids of increasing liposolubility and reports the first lists of tolerance genes, at the genome scale, for butyric and octanoic acids. These genes and biological functions are potential targets for synthetic biology approaches applied to promising yeast cell factories, toward more robust superior strains, a highly desirable phenotype to increase the economic viability of bioprocesses based on mixtures of volatiles/medium-chain fatty acids derived from low-cost biodegradable substrates or lignocellulose hydrolysates.
Collapse
Affiliation(s)
- Marta N Mota
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
| | - Madalena Matos
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
| | - Nada Bahri
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal.
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal.
| |
Collapse
|
5
|
Antunes M, Kale D, Sychrová H, Sá-Correia I. The Hrk1 kinase is a determinant of acetic acid tolerance in yeast by modulating H + and K + homeostasis. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:261-276. [PMID: 38053573 PMCID: PMC10695635 DOI: 10.15698/mic2023.12.809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
Acetic acid-induced stress is a common challenge in natural environments and industrial bioprocesses, significantly affecting the growth and metabolic performance of Saccharomyces cerevisiae. The adaptive response and tolerance to this stress involves the activation of a complex network of molecular pathways. This study aims to delve deeper into these mechanisms in S. cerevisiae, particularly focusing on the role of the Hrk1 kinase. Hrk1 is a key determinant of acetic acid tolerance, belonging to the NPR/Hal family, whose members are implicated in the modulation of the activity of plasma membrane transporters that orchestrate nutrient uptake and ion homeostasis. The influence of Hrk1 on S. cerevisiae adaptation to acetic acid-induced stress was explored by employing a physiological approach based on previous phosphoproteomics analyses. The results from this study reflect the multifunctional roles of Hrk1 in maintaining proton and potassium homeostasis during different phases of acetic acid-stressed cultivation. Hrk1 is shown to play a role in the activation of plasma membrane H+-ATPase, maintaining pH homeostasis, and in the modulation of plasma membrane potential under acetic acid stressed cultivation. Potassium (K+) supplementation of the growth medium, particularly when provided at limiting concentrations, led to a notable improvement in acetic acid stress tolerance of the hrk1Δ strain. Moreover, abrogation of this kinase expression is shown to confer a physiological advantage to growth under K+ limitation also in the absence of acetic acid stress. The involvement of the alkali metal cation/H+ exchanger Nha1, another proposed molecular target of Hrk1, in improving yeast growth under K+ limitation or acetic acid stress, is proposed.
Collapse
Affiliation(s)
- Miguel Antunes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Deepika Kale
- Laboratory of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4, Czech Republic
| | - Hana Sychrová
- Laboratory of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4, Czech Republic
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
6
|
Observation of Residues Content after Application of a Medium-Chain Fatty Acids Mixture at the End of Alcoholic Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study focused on applying a patented medium-chain fatty acids (MCFAs) mixture at the end of alcoholic fermentation and monitoring its residues. MCFAs are a promising agent that has the potential to increase the efficiency of sulfur dioxide and ultimately minimize its doses, which is one of the important goals of wine research today. Detailed octanoic, decanoic, and dodecanoic acid contents were observed during the experiment. The MCFA mixture was applied at doses of 0, 10, 20, and 60 mg/L. GC–MS determined the content of individual fatty acids. The results showed that the use of the investigated mixture of fatty acids at doses of 10 and 20 mg/L did not cause an increase in the content of individual fatty acids residues. The octanoic acid content after application of the 20 mg/L MCFA mixture was 8.24 mg/L after 744 h, while the untreated control variant showed a value of 7.71 mg/L. The performed sensory analysis also did not show a negative effect of MCFA application on the sensory properties of wine. Therefore, applying an MCFA mixture at 10 and 20 mg/L can be recommended as a safe alternative following alcoholic fermentation. However, the results obtained can also serve as a valuable basis for permitting the use of MCFA in the proceeding OIV approval process. The research thus opens the possibility of expanding a new oenological agent capable of reducing SO2 doses.
Collapse
|
7
|
Shi C, Knøchel S. Inhibitory effects of binary combinations of microbial metabolites on the growth of tolerant Penicillium roqueforti and Mucor circinelloides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Peetermans A, Foulquié-Moreno MR, Thevelein JM. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. MICROBIAL CELL 2021; 8:111-130. [PMID: 34055965 PMCID: PMC8144909 DOI: 10.15698/mic2021.06.751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the major bottlenecks in lactic acid production using microbial fermentation is the detrimental influence lactic acid accumulation poses on the lactic acid producing cells. The accumulation of lactic acid results in many negative effects on the cell such as intracellular acidification, anion accumulation, membrane perturbation, disturbed amino acid trafficking, increased turgor pressure, ATP depletion, ROS accumulation, metabolic dysregulation and metal chelation. In this review, the manner in which Saccharomyces cerevisiae deals with these issues will be discussed extensively not only for lactic acid as a singular stress factor but also in combination with other stresses. In addition, different methods to improve lactic acid tolerance in S. cerevisiae using targeted and non-targeted engineering methods will be discussed.
Collapse
Affiliation(s)
- Arne Peetermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium.,NovelYeast bv, Open Bio-Incubator, Erasmus High School, Laarbeeklaan 121, 1090 Brussels (Jette), Belgium
| |
Collapse
|
9
|
Comparison of MCFA and Other Methods of Terminating Alcohol Fermentation and Their Influence on the Content of Carbonyl Compounds in Wine. Molecules 2020; 25:molecules25235737. [PMID: 33291809 PMCID: PMC7729861 DOI: 10.3390/molecules25235737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022] Open
Abstract
This study deals with the effects of the use of a mixture of medium-chain fatty acids (MCFA) at the end of the alcohol fermentation process on the content of carbonyl compounds in wine. During the experiment, the effects of the addition of MCFA at doses of 10 and 20 mg/L were compared to the termination of alcohol fermentation using cross-flow filtration and chilling treatments. Individual carbonyl compounds were determined by HPLC analysis. The experiment showed that the addition of MCFA caused a reduction of the acetaldehyde content compared to the chilling process, and a reduction of the diacetyl content compared to cross-flow filtration. Throughout the experiment, a lower level of total carbonyl compounds was observed after the addition of MCFA.
Collapse
|
10
|
Zhang H, Dolan HL, Ding Q, Wang S, Tikekar RV. Antimicrobial action of octanoic acid against Escherichia coli O157:H7 during washing of baby spinach and grape tomatoes. Food Res Int 2019; 125:108523. [PMID: 31554067 DOI: 10.1016/j.foodres.2019.108523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/04/2023]
Abstract
We investigated the antimicrobial efficacy of octanoic acid (OA) against Escherichia coli O157:H7 inoculated on the surface of baby spinach and grape tomatoes during simulated washing processes. 3 mM OA at 45 °C achieved >6 log CFU/g reduction from the surface of tomatoes within 2 min. However, washing baby spinach with 6 mM OA at 5 °C resulted in <1 log CFU/g reduction, highlighting the role of surface properties in inactivation efficacy. OA significantly (p < 0.05) reduced the risk of cross-contamination during washing of spinach as well as tomatoes. Also, total mold and yeast population on surface of spinach was significantly reduced immediately after OA wash and inhibited during following 14 days. Baby spinach and grape tomatoes washed with OA did not cause significant (p > 0.05) difference in color compared to the control and no residual OA was detected in most cases following rinsing of produce in water. OA at the concentrations above 2 mM and temperature higher than 25 °C induced severe membrane damage along with release of ATP and other intracellular constituents resulting in bacterial death. OA can be an attractive natural decontamination agent for washing fresh produce.
Collapse
Affiliation(s)
- Hongchao Zhang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States
| | - Heather Leigh Dolan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States
| | - Qiao Ding
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States
| | - Siyuan Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States.
| |
Collapse
|
11
|
Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid. ACTA ACUST UNITED AC 2018; 45:735-751. [DOI: 10.1007/s10295-018-2053-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
Abstract
Toxic concentrations of monocarboxylic weak acids present in lignocellulosic hydrolyzates affect cell integrity and fermentative performance of Saccharomyces cerevisiae. In this work, we report the deletion of the general catabolite repressor Mig1p as a strategy to improve the tolerance of S. cerevisiae towards inhibitory concentrations of acetic, formic or levulinic acid. In contrast with the wt yeast, where the growth and ethanol production were ceased in presence of acetic acid 5 g/L or formic acid 1.75 g/L (initial pH not adjusted), the m9 strain (Δmig1::kan) produced 4.06 ± 0.14 and 3.87 ± 0.06 g/L of ethanol, respectively. Also, m9 strain tolerated a higher concentration of 12.5 g/L acetic acid (initial pH adjusted to 4.5) without affecting its fermentative performance. Moreover, m9 strain produced 33% less acetic acid and 50–70% less glycerol in presence of weak acids, and consumed acetate and formate as carbon sources under aerobic conditions. Our results show that the deletion of Mig1p provides a single gene deletion target for improving the acid tolerance of yeast strains significantly.
Collapse
|
12
|
Nionelli L, Pontonio E, Gobbetti M, Rizzello CG. Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation. Int J Food Microbiol 2018; 266:173-182. [DOI: 10.1016/j.ijfoodmicro.2017.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/20/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
|
13
|
Kuttiraja M, Dhouha A, Tyagi RD. Harnessing the Effect of pH on Lipid Production in Batch Cultures of Yarrowia lipolytica SKY7. Appl Biochem Biotechnol 2017; 184:1332-1346. [DOI: 10.1007/s12010-017-2617-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/25/2017] [Indexed: 01/29/2023]
|
14
|
Baroň M, Kumšta M, Prokeš K, Tomášková L, Tomková M. The inhibition ofSaccharomyces cerevisiaepopulation during alcoholic fermentation of grape must by octanoic, decanoic and dodecanoic acid mixture. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170902025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Beato FB, Bergdahl B, Rosa CA, Forster J, Gombert AK. Physiology of Saccharomyces cerevisiae strains isolated from Brazilian biomes: new insights into biodiversity and industrial applications. FEMS Yeast Res 2016; 16:fow076. [PMID: 27609600 DOI: 10.1093/femsyr/fow076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 01/21/2023] Open
Abstract
Fourteen indigenous Saccharomyces cerevisiae strains isolated from the barks of three tree species located in the Atlantic Rain Forest and Cerrado biomes in Brazil were genetically and physiologically compared to laboratory strains and to strains from the Brazilian fuel ethanol industry. Although no clear correlation could be found either between phenotype and isolation spot or between phenotype and genomic lineage, a set of indigenous strains with superior industrially relevant traits over commonly known industrial and laboratory strains was identified: strain UFMG-CM-Y257 has a very high specific growth rate on sucrose (0.57 ± 0.02 h-1), high ethanol yield (1.65 ± 0.02 mol ethanol mol hexose equivalent-1), high ethanol productivity (0.19 ± 0.00 mol L-1 h-1), high tolerance to acetic acid (10 g L-1) and to high temperature (40°C). Strain UFMG-CM-Y260 displayed high ethanol yield (1.67 ± 0.13 mol ethanol mol hexose equivalent-1), high tolerance to ethanol and to low pH, a trait which is important for non-aseptic industrial processes. Strain UFMG-CM-Y267 showed high tolerance to acetic acid and to high temperature (40°C), which is of particular interest to second generation industrial processes.
Collapse
Affiliation(s)
- Felipe B Beato
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo 13083862, Brazil The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm 2970, Denmark Department of Chemical Engineering, University of São Paulo, São Paulo 05434070, Brazil
| | - Basti Bergdahl
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm 2970, Denmark
| | - Carlos A Rosa
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm 2970, Denmark
| | - Andreas K Gombert
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, São Paulo 13083862, Brazil Department of Chemical Engineering, University of São Paulo, São Paulo 05434070, Brazil
| |
Collapse
|
16
|
Martynova J, Kokina A, Kibilds J, Liepins J, Scerbaka R, Vigants A. Effects of acetate on Kluyveromyces marxianus DSM 5422 growth and metabolism. Appl Microbiol Biotechnol 2016; 100:4585-94. [DOI: 10.1007/s00253-016-7392-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
|
17
|
Azevedo MM, Guimarães-Soares L, Pascoal C, Cássio F. Copper and zinc affect the activity of plasma membrane H+-ATPase and thiol content in aquatic fungi. MICROBIOLOGY-SGM 2016; 162:740-747. [PMID: 26916755 DOI: 10.1099/mic.0.000262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aquatic hyphomycetes are the major microbial decomposers of plant litter in streams. We selected three aquatic hyphomycete species with different abilities to tolerate, adsorb and accumulate copper and zinc, and we investigated the effects of these metals on H+-ATPase activity as well as on the levels of thiol (SH)-containing compounds. Before metal exposure, the species isolated from a metal-polluted stream (Heliscus submersus and Flagellospora curta) had higher levels of thiol compounds than the species isolated from a clean stream (Varicosporium elodeae). However, V. elodeae rapidly increased the levels of thiols after metal exposure, emphasizing the importance of these compounds in fungal survival under metal stress. The highest amounts of metals adsorbed to fungal mycelia were found in the most tolerant species to each metal, i.e. in H. submersus exposed to copper and in V. elodeae exposed to zinc. Short-term (10 min) exposure to copper completely inhibited the activity of H+-ATPase of H. submersus and V. elodeae, whilst zinc only led to a similar effect on H. submersus. However, at longer exposure times (8 days) the most metal-tolerant species exhibited increased H+-ATPase activities, suggesting that the plasma membrane proton pump may be involved in the acclimation of aquatic hyphomycetes to metals.
Collapse
Affiliation(s)
- M M Azevedo
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho,Campus of Gualtar, 4710-057 Braga,Portugal.,Department of Microbiology, Faculty of Medicine, University of Porto,4200-319 Porto,Portugal.,Center for Research in Health Technologies and Information Systems, Faculty of Medicine, University of Porto,4200-319 Porto,Portugal
| | - L Guimarães-Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho,Campus of Gualtar, 4710-057 Braga,Portugal
| | - C Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho,Campus of Gualtar, 4710-057 Braga,Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho,Campus of Gualtar, 4710-057 Braga,Portugal
| | - F Cássio
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho,Campus of Gualtar, 4710-057 Braga,Portugal.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho,Campus of Gualtar, 4710-057 Braga,Portugal
| |
Collapse
|
18
|
González-Ramos D, Gorter de Vries AR, Grijseels SS, van Berkum MC, Swinnen S, van den Broek M, Nevoigt E, Daran JMG, Pronk JT, van Maris AJA. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:173. [PMID: 27525042 PMCID: PMC4983051 DOI: 10.1186/s13068-016-0583-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/27/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Acetic acid, released during hydrolysis of lignocellulosic feedstocks for second generation bioethanol production, inhibits yeast growth and alcoholic fermentation. Yeast biomass generated in a propagation step that precedes ethanol production should therefore express a high and constitutive level of acetic acid tolerance before introduction into lignocellulosic hydrolysates. However, earlier laboratory evolution strategies for increasing acetic acid tolerance of Saccharomyces cerevisiae, based on prolonged cultivation in the presence of acetic acid, selected for inducible rather than constitutive tolerance to this inhibitor. RESULTS Preadaptation in the presence of acetic acid was shown to strongly increase the fraction of yeast cells that could initiate growth in the presence of this inhibitor. Serial microaerobic batch cultivation, with alternating transfers to fresh medium with and without acetic acid, yielded evolved S. cerevisiae cultures with constitutive acetic acid tolerance. Single-cell lines isolated from five such evolution experiments after 50-55 transfers were selected for further study. An additional constitutively acetic acid tolerant mutant was selected after UV-mutagenesis. All six mutants showed an increased fraction of growing cells upon a transfer from a non-stressed condition to a medium containing acetic acid. Whole-genome sequencing identified six genes that contained (different) mutations in multiple acetic acid-tolerant mutants. Haploid segregation studies and expression of the mutant alleles in the unevolved ancestor strain identified causal mutations for the acquired acetic acid tolerance in four genes (ASG1, ADH3, SKS1 and GIS4). Effects of the mutations in ASG1, ADH3 and SKS1 on acetic acid tolerance were additive. CONCLUSIONS A novel laboratory evolution strategy based on alternating cultivation cycles in the presence and absence of acetic acid conferred a selective advantage to constitutively acetic acid-tolerant mutants and may be applicable for selection of constitutive tolerance to other stressors. Mutations in four genes (ASG1, ADH3, SKS1 and GIS4) were identified as causative for acetic acid tolerance. The laboratory evolution strategy as well as the identified mutations can contribute to improving acetic acid tolerance in industrial yeast strains.
Collapse
Affiliation(s)
- Daniel González-Ramos
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Arthur R. Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Sietske S. Grijseels
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Margo C. van Berkum
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Steve Swinnen
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Jean-Marc G. Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Antonius J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
19
|
Fletcher E, Feizi A, Kim S, Siewers V, Nielsen J. RNA-seq analysis of Pichia anomala reveals important mechanisms required for survival at low pH. Microb Cell Fact 2015; 14:143. [PMID: 26376644 PMCID: PMC4574170 DOI: 10.1186/s12934-015-0331-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/31/2015] [Indexed: 02/08/2023] Open
Abstract
Background The product yield and titers of biological processes involving the conversion of biomass to desirable chemicals can be limited by environmental stresses encountered by the microbial hosts used for the bioconversion. One of these main stresses is growth inhibition due to exposure to low pH conditions. In order to circumvent this problem, understanding the biological mechanisms involved in acid stress response and tolerance is essential. Characterisation of wild yeasts that have a natural ability to resist such harsh conditions will pave the way to understand the biological basis underlying acid stress resistance. Pichia anomala possesses a unique ability to adapt to and tolerate a number of environmental stresses particularly low pH stress giving it the advantage to outcompete other microorganisms under such conditions. However, the genetic basis of this resistance has not been previously studied. Results To this end, we isolated an acid resistant strain of P. anomala, performed a gross phenotypic characterisation at low pH and also performed a whole genome and total RNA sequencing. By integrating the RNA-seq data with the genome sequencing data, we found that several genes associated with different biological processes including proton efflux, the electron transfer chain and oxidative phosphorylation were highly expressed in P. anomala cells grown in low pH media. We therefore present data supporting the notion that a high expression of proton pumps in the plasma membrane coupled with an increase in mitochondrial ATP production enables the high level of acid stress tolerance of P. anomala. Conclusions Our findings provide insight into the molecular and genetic basis of low pH tolerance in P. anomala which was previously unknown. Ultimately, this is a step towards developing non-conventional yeasts such as P. anomala for the production of industrially relevant chemicals under low pH conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0331-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eugene Fletcher
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| | - Amir Feizi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| | - SungSoo Kim
- Samsung Advanced Institute of Technology, 130 Samsung-Ro YoungTong-Ku, Suwon, Kyunggi-do, South Korea. .,Biotech Research Team, Dongbu Farm Hannong Co., Ltd., Daejeon, 305-708, Republic of Korea.
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark.
| |
Collapse
|
20
|
The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance. Appl Environ Microbiol 2015; 81:7813-21. [PMID: 26341199 DOI: 10.1128/aem.02313-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/27/2015] [Indexed: 11/20/2022] Open
Abstract
It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH.
Collapse
|
21
|
Nugroho RH, Yoshikawa K, Shimizu H. Metabolomic analysis of acid stress response in Saccharomyces cerevisiae. J Biosci Bioeng 2015; 120:396-404. [PMID: 25795572 DOI: 10.1016/j.jbiosc.2015.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 12/24/2022]
Abstract
Acid stress has been reported to inhibit cell growth and decrease productivity during bio-production processes. In this study, a metabolomics approach was conducted to understand the effect of lactic acid induced stress on metabolite pools in Saccharomyces cerevisiae. Cells were cultured with lactic acid as the acidulant, with or without initial pH control, i.e., at pH 6 or pH 2.5, respectively. Under conditions of low pH, lactic acid led to a decrease in the intracellular pH and specific growth rate; however, these parameters remained unaltered in the cultures with pH control. Capillary electrophoresis-mass spectrometry followed by a statistical principal component analysis was used to identify the metabolites and measure the increased concentrations of ATP, glutathione and proline during severe acid stress. Addition of proline to the acidified cultures improved the specific growth rates. We hypothesized that addition of proline protected the cells from acid stress by combating acid-induced oxidative stress. Lactic acid diffusion into the cell resulted in intracellular acidification, which elicited an oxidative stress response and resulted in increased glutathione levels.
Collapse
Affiliation(s)
- Riyanto Heru Nugroho
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Katsunori Yoshikawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
22
|
Zeng SW, Huang QL, Zhao SM. Effects of microwave irradiation dose and time on Yeast ZSM-001 growth and cell membrane permeability. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Swinnen S, Fernández-Niño M, González-Ramos D, van Maris AJA, Nevoigt E. The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in Saccharomyces cerevisiae. FEMS Yeast Res 2014; 14:642-53. [PMID: 24645649 DOI: 10.1111/1567-1364.12151] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 11/28/2022] Open
Abstract
High acetic acid tolerance of Saccharomyces cerevisiae is a relevant phenotype in industrial biotechnology when using lignocellulosic hydrolysates as feedstock. A screening of 38 S. cerevisiae strains for tolerance to acetic acid revealed considerable differences, particularly with regard to the duration of the latency phase. To understand how this phenotype is quantitatively manifested, four strains exhibiting significant differences were studied in more detail. Our data show that the duration of the latency phase is primarily determined by the fraction of cells within the population that resume growth. Only this fraction contributed to the exponential growth observed after the latency phase, while all other cells persisted in a viable but non-proliferating state. A remarkable variation in the size of the fraction was observed among the tested strains differing by several orders of magnitude. In fact, only 11 out of 10(7) cells of the industrial bioethanol production strain Ethanol Red resumed growth after exposure to 157 mM acetic acid at pH 4.5, while this fraction was 3.6 × 10(6) (out of 10(7) cells) in the highly acetic acid tolerant isolate ATCC 96581. These strain-specific differences are genetically determined and represent a valuable starting point to identify genetic targets for future strain improvement.
Collapse
Affiliation(s)
- Steve Swinnen
- School of Engineering and Science, Jacobs University gGmbH, Bremen, Germany
| | | | | | | | | |
Collapse
|
24
|
Jarboe LR, Royce LA, Liu P. Understanding biocatalyst inhibition by carboxylic acids. Front Microbiol 2013; 4:272. [PMID: 24027566 PMCID: PMC3760142 DOI: 10.3389/fmicb.2013.00272] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/20/2013] [Indexed: 11/13/2022] Open
Abstract
Carboxylic acids are an attractive biorenewable chemical in terms of their flexibility and usage as precursors for a variety of industrial chemicals. It has been demonstrated that such carboxylic acids can be fermentatively produced using engineered microbes, such as Escherichia coli and Saccharomyces cerevisiae. However, like many other attractive biorenewable fuels and chemicals, carboxylic acids become inhibitory to these microbes at concentrations below the desired yield and titer. In fact, their potency as microbial inhibitors is highlighted by the fact that many of these carboxylic acids are routinely used as food preservatives. This review highlights the current knowledge regarding the impact that saturated, straight-chain carboxylic acids, such as hexanoic, octanoic, decanoic, and lauric acids can have on E. coli and S. cerevisiae, with the goal of identifying metabolic engineering strategies to increase robustness. Key effects of these carboxylic acids include damage to the cell membrane and a decrease of the microbial internal pH. Certain changes in cell membrane properties, such as composition, fluidity, integrity, and hydrophobicity, and intracellular pH are often associated with increased tolerance. The availability of appropriate exporters, such as Pdr12, can also increase tolerance. The effect on metabolic processes, such as maintaining appropriate respiratory function, regulation of Lrp activity and inhibition of production of key metabolites such as methionine, are also considered. Understanding the mechanisms of biocatalyst inhibition by these desirable products can aid in the engineering of robust strains with improved industrial performance.
Collapse
Affiliation(s)
- Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University Ames, IA, USA ; Department of Microbiology, Iowa State University Ames, IA, USA
| | | | | |
Collapse
|
25
|
Sun J, Lim Y, Liu S. Biosynthesis of flavor esters in coconut cream through coupling fermentation and lipase‐catalyzed biocatalysis. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201300144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jingcan Sun
- Food Science and Technology Programme, Department of ChemistryNational University of SingaporeSingaporeSingapore
| | - Yunwei Lim
- Food Science and Technology Programme, Department of ChemistryNational University of SingaporeSingaporeSingapore
| | - Shao‐Quan Liu
- Food Science and Technology Programme, Department of ChemistryNational University of SingaporeSingaporeSingapore
- Advanced Food Research LaboratoryNational University of Singapore (Suzhou) Research InstituteSuzhouJiangsu, P. R. China
| |
Collapse
|
26
|
Leonard PH, Charlesworth MC, Benson L, Walker DL, Fredrickson JR, Morbeck DE. Variability in protein quality used for embryo culture: embryotoxicity of the stabilizer octanoic acid. Fertil Steril 2013; 100:544-9. [PMID: 23602317 DOI: 10.1016/j.fertnstert.2013.03.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To screen human serum albumin (HSA) preparations for toxicity and investigate causes of variation. DESIGN Experimental laboratory study. SETTING University-based laboratory. ANIMAL(S) FVB and CF1 mice crossed to create embryos used in experiments. INTERVENTION(S) Mouse embryo assay performed with 5% or 15% HSA (100 mg/mL albumin) from three samples from three separate manufacturers (A, B, C). MAIN OUTCOME MEASURE(S) Blastocyst rates calculated at 96 hours of culture (experiments repeated in triplicate). RESULT(S) The HSA preparations were desalted to remove stabilizers added during HSA processing, then mass spectrometry was used to determine the relative variation in stabilizer concentrations; the effect of the stabilizer octanoic acid on embryo development was tested. At 5% HSA, all samples had blastocyst rates ≥ 70%; at 15% HSA, the blastocyst rates for samples B and C were <50%. Desalting did not affect sample B but did improve the blastocyst rates of sample C. Mass spectrometry revealed high levels of octanoic acid in sample C compared with sample A. The addition of octanoic acid to sample A produced toxicity similar to sample C. CONCLUSION(S) The stabilizer octanoic acid varies by lot and inhibits embryo development. Because octanoic acid is known to cause disruptions in mitochondrial bioenergetics, reduce intracellular pH, and induce oxidative damage in peripheral tissues, its use in embryo culture should be monitored and limited.
Collapse
Affiliation(s)
- Phoebe H Leonard
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
27
|
Membrane stress caused by octanoic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2013; 97:3239-51. [DOI: 10.1007/s00253-013-4773-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 02/04/2023]
|
28
|
Liao G, Liu Q, Xie J. Transcriptional analysis of the effect of exogenous decanoic acid stress on Streptomyces roseosporus. Microb Cell Fact 2013; 12:19. [PMID: 23432849 PMCID: PMC3724488 DOI: 10.1186/1475-2859-12-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/19/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Daptomycin is an important antibiotic against infections caused by drug-resistant pathogens. Its production critically depends on the addition of decanoic acid during fermentation. Unfortunately, decanoic acid (>2.5 mM) is toxic to daptomycin producer, Streptomyces roseosporus. RESULTS To understand the mechanism underlying decanoic tolerance or toxicity, the responses of S. roseosporus was determined by a combination of phospholipid fatty acid analysis, reactive oxygen species (ROS) measurement and RNA sequencing. Assays using fluorescent dyes indicated a sharp increase in reactive oxygen species during decanoic acid stress; fatty acid analysis revealed a marked increase in the composition of branched-chain fatty acids by approximately 10%, with a corresponding decrease in straight-chain fatty acids; functional analysis indicated decanoic acid stress has components common to other stress response, including perturbation of respiratory functions (nuo and cyd operons), oxidative stress, and heat shock. Interestingly, our transcriptomic analysis revealed that genes coding for components of proteasome and related to treholase synthesis were up-regulated in the decanoic acid -treated cells. CONCLUSION These findings represent an important first step in understanding mechanism of decanoic acid toxicity and provide a basis for engineering microbial tolerance.
Collapse
Affiliation(s)
- Guojian Liao
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of life sciences, School of Pharmaceutical Sciences Southwest University, Chongqing 400715, China
| | | | | |
Collapse
|
29
|
Stratford M, Nebe-von-Caron G, Steels H, Novodvorska M, Ueckert J, Archer DB. Weak-acid preservatives: pH and proton movements in the yeast Saccharomyces cerevisiae. Int J Food Microbiol 2012; 161:164-71. [PMID: 23334094 DOI: 10.1016/j.ijfoodmicro.2012.12.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/19/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
Weak-acid preservatives commonly used to prevent fungal spoilage of low pH foods include sorbic and acetic acids. The "classical weak-acid theory" proposes that weak acids inhibit spoilage organisms by diffusion of undissociated acids through the membrane, dissociation within the cell to protons and anions, and consequent acidification of the cytoplasm. Results from 25 strains of Saccharomyces cerevisiae confirmed inhibition by acetic acid at a molar concentration 42 times higher than sorbic acid, in contradiction of the weak-acid theory where all acids of equal pK(a) should inhibit at equimolar concentrations. Flow cytometry showed that the intracellular pH fell to pH 4.7 at the growth-inhibitory concentration of acetic acid, whereas at the inhibitory concentration of sorbic acid, the pH only fell to pH 6.3. The plasma membrane H⁺-ATPase proton pump (Pma1p) was strongly inhibited by sorbic acid at the growth-inhibitory concentration, but was stimulated by acetic acid. The H⁺-ATPase was also inhibited by lower sorbic acid concentrations, but later showed recovery and elevated activity if the sorbic acid was removed. Levels of PMA1 transcripts increased briefly following sorbic acid addition, but soon returned to normal levels. It was concluded that acetic acid inhibition of S. cerevisiae was due to intracellular acidification, in accord with the "classical weak-acid theory". Sorbic acid, however, appeared to be a membrane-active antimicrobial compound, with the plasma membrane H⁺-ATPase proton pump being a primary target of inhibition. Understanding the mechanism of action of sorbic acid will hopefully lead to improved methods of food preservation.
Collapse
Affiliation(s)
- Malcolm Stratford
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
30
|
Ullah A, Orij R, Brul S, Smits GJ. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae. Appl Environ Microbiol 2012; 78:8377-87. [PMID: 23001666 PMCID: PMC3497387 DOI: 10.1128/aem.02126-12] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/17/2012] [Indexed: 11/20/2022] Open
Abstract
Weak organic acids are naturally occurring compounds that are commercially used as preservatives in the food and beverage industries. They extend the shelf life of food products by inhibiting microbial growth. There are a number of theories that explain the antifungal properties of these weak acids, but the exact mechanism is still unknown. We set out to quantitatively determine the contributions of various mechanisms of antifungal activity of these weak acids, as well as the mechanisms that yeast uses to counteract their effects. We analyzed the effects of four weak organic acids differing in lipophilicity (sorbic, benzoic, propionic, and acetic acids) on growth and intracellular pH (pH(i)) in Saccharomyces cerevisiae. Although lipophilicity of the acids correlated with the rate of acidification of the cytosol, our data confirmed that not initial acidification, but rather the cell's ability to restore pH(i), was a determinant for growth inhibition. This pH(i) recovery in turn depended on the nature of the organic anion. We identified long-term acidification as the major cause of growth inhibition under acetic acid stress. Restoration of pH(i), and consequently growth rate, in the presence of this weak acid required the full activity of the plasma membrane ATPase Pma1p. Surprisingly, the proposed anion export pump Pdr12p was shown to play an important role in the ability of yeast cells to restore the pH(i) upon lipophilic (sorbic and benzoic) acid stress, probably through a charge interaction of anion and proton transport.
Collapse
Affiliation(s)
- Azmat Ullah
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, Netherlands Institute for Systems Biology, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
31
|
Suzuki K. 125th Anniversary Review: Microbiological Instability of Beer Caused by Spoilage Bacteria. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2011.tb00454.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Suzuki K, Iijima K, Sakamoto K, Sami M, Yamashita H. A Review of Hop Resistance in Beer Spoilage Lactic Acid Bacteria. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2006.tb00247.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Suzuki T, Sugiyama M, Wakazono K, Kaneko Y, Harashima S. Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae. J Biosci Bioeng 2012; 113:421-30. [DOI: 10.1016/j.jbiosc.2011.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/20/2011] [Accepted: 11/09/2011] [Indexed: 11/24/2022]
|
34
|
Mira NP, Becker JD, Sá-Correia I. Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 14:587-601. [PMID: 20955010 DOI: 10.1089/omi.2010.0048] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The alterations occurring in yeast genomic expression during early response to acetic acid and the involvement of the transcription factor Haa1p in this transcriptional reprogramming are described in this study. Haa1p was found to regulate, directly or indirectly, the transcription of approximately 80% of the acetic acid-activated genes, suggesting that Haa1p is the main player in the control of yeast response to this weak acid. The genes identified in this work as being activated in response to acetic acid in a Haa1p-dependent manner include protein kinases, multidrug resistance transporters, proteins involved in lipid metabolism, in nucleic acid processing, and proteins of unknown function. Among these genes, the expression of SAP30 and HRK1 provided the strongest protective effect toward acetic acid. SAP30 encode a subunit of a histone deacetylase complex and HRK1 encode a protein kinase belonging to a family of protein kinases dedicated to the regulation of plasma membrane transporters activity. The deletion of the HRK1 gene was found to lead to the increase of the accumulation of labeled acetic acid into acid-stressed yeast cells, suggesting that the role of both HAA1 and HRK1 in providing protection against acetic acid is, at least partially, related with their involvement in the reduction of intracellular acetate concentration.
Collapse
Affiliation(s)
- Nuno P Mira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | | | | |
Collapse
|
35
|
Mira NP, Teixeira MC, Sá-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 14:525-40. [PMID: 20955006 DOI: 10.1089/omi.2010.0072] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Weak acids are widely used as food preservatives (e.g., acetic, propionic, benzoic, and sorbic acids), herbicides (e.g., 2,4-dichlorophenoxyacetic acid), and as antimalarial (e.g., artesunic and artemisinic acids), anticancer (e.g., artesunic acid), and immunosuppressive (e.g., mycophenolic acid) drugs, among other possible applications. The understanding of the mechanisms underlying the adaptive response and resistance to these weak acids is a prerequisite to develop more effective strategies to control spoilage yeasts, and the emergence of resistant weeds, drug resistant parasites or cancer cells. Furthermore, the identification of toxicity mechanisms and resistance determinants to weak acid-based pharmaceuticals increases current knowledge on their cytotoxic effects and may lead to the identification of new drug targets. This review integrates current knowledge on the mechanisms of toxicity and tolerance to weak acid stress obtained in the model eukaryote Saccharomyces cerevisiae using genome-wide approaches and more detailed gene-by-gene analysis. The major features of the yeast response to weak acids in general, and the more specific responses and resistance mechanisms towards a specific weak acid or a group of weak acids, depending on the chemical nature of the side chain R group (R-COOH), are highlighted. The involvement of several transcriptional regulatory networks in the genomic response to different weak acids is discussed, focusing on the regulatory pathways controlled by the transcription factors Msn2p/Msn4p, War1p, Haa1p, Rim101p, and Pdr1p/Pdr3p, which are known to orchestrate weak acid stress response in yeast. The extrapolation of the knowledge gathered in yeast to other eukaryotes is also attempted.
Collapse
Affiliation(s)
- Nuno P Mira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | | | | |
Collapse
|
36
|
Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 2010; 9:79. [PMID: 20973990 PMCID: PMC2972246 DOI: 10.1186/1475-2859-9-79] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022] Open
Abstract
Background Acetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory. Results The yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5). Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake. Conclusions Approximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to this weak acid. These are novel candidate genes for genetic engineering to obtain more robust yeast strains against acetic acid toxicity. Among these genes there are number of transcription factors that are documented regulators of a large percentage of the genes found to exert protection against acetic acid thus being considered interesting targets for subsequent genetic engineering. The increase of potassium concentration in the growth medium was found to improve the expression of maximal tolerance to acetic acid, consistent with the idea that the adequate manipulation of nutrient concentration of industrial growth medium can be an interesting strategy to surpass the deleterious effects of this weak acid in yeast cells.
Collapse
|
37
|
Zheng DQ, Wu XC, Wang PM, Chi XQ, Tao XL, Li P, Jiang XH, Zhao YH. Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2010; 38:415-22. [PMID: 20652356 DOI: 10.1007/s10295-010-0784-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/07/2010] [Indexed: 11/28/2022]
Abstract
Acetic acid existing in a culture medium is one of the most limiting constraints in yeast growth and viability during ethanol fermentation. To improve acetic acid tolerance in Saccharomyces cerevisiae strains, a drug resistance marker-aided genome shuffling approach with higher screen efficiency of shuffled mutants was developed in this work. Through two rounds of genome shuffling of ultraviolet mutants derived from the original strain 308, we obtained a shuffled strain YZ2, which shows significantly faster growth and higher cell viability under acetic acid stress. Ethanol production of YZ2 (within 60 h) was 21.6% higher than that of 308 when 0.5% (v/v) acetic acid was added to fermentation medium. Membrane integrity, higher in vivo activity of the H+-ATPase, and lower oxidative damage after acetic acid treatment are the possible reasons for the acetic acid-tolerance phenotype of YZ2. These results indicated that this novel genome shuffling approach is powerful to rapidly improve the complex traits of industrial yeast strains.
Collapse
Affiliation(s)
- Dao-Qiong Zheng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dias PJ, Teixeira MC, Telo JP, Sá-Correia I. Insights into the mechanisms of toxicity and tolerance to the agricultural fungicide mancozeb in yeast, as suggested by a chemogenomic approach. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:211-27. [PMID: 20337531 DOI: 10.1089/omi.2009.0134] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract Saccharomyces cerevisiae was used to uncover the mechanisms underlying tolerance and toxicity of the agricultural fungicide mancozeb, linked to cancer and Parkinson's disease development. Chemogenomics screening of a yeast deletion mutant collection revealed 286 genes that provide protection against mancozeb toxicity. The most significant Gene Ontology (GO) terms enriched in this dataset are associated to transcriptional machinery, vacuolar organization and biogenesis, intracellular trafficking, and cellular pH regulation. Clustering based on physical and genetic interactions further highlighted the role of oxidative stress response, protein degradation and carbohydrate/energy metabolism in mancozeb stress tolerance. Mancozeb was found to act in yeast as a thiol-reactive compound, but not as a free radical or reative oxygen species (ROS) inducer, leading to massive oxidation of protein cysteins, consistent with the requirement of genes involved in glutathione biosynthesis and reduction and in protein degradation to provide mancozeb resistance. The identification of Botrytis cinerea homologues of yeast mancozeb tolerance determinants is expected to guide studies on mancozeb mechanisms of action and tolerance in phytopathogenic fungi. The generated networks of protein-protein associations of yeast mancozeb tolerance determinants and their human orthologues share a high degree of similarity. This toxicogenomics analysis may, thus, increase the understanding of mancozeb toxicity and adaptation mechanisms in humans.
Collapse
Affiliation(s)
- Paulo J Dias
- IBB-Institute for Biotechnology and BioEngineering, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Lisboa, Portugal
| | | | | | | |
Collapse
|
39
|
Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 2009; 75:5761-72. [PMID: 19633105 DOI: 10.1128/aem.00845-09] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The understanding of the molecular basis of yeast resistance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. In this study, the yeast disruptome was screened for mutants with differential susceptibility to stress induced by high ethanol concentrations in minimal growth medium. Over 250 determinants of resistance to ethanol were identified. The most significant gene ontology terms enriched in this data set are those associated with intracellular organization, biogenesis, and transport, in particular, regarding the vacuole, the peroxisome, the endosome, and the cytoskeleton, and those associated with the transcriptional machinery. Clustering the proteins encoded by the identified determinants of ethanol resistance by their known physical and genetic interactions highlighted the importance of the vacuolar protein sorting machinery, the vacuolar H(+)-ATPase complex, and the peroxisome protein import machinery. Evidence showing that vacuolar acidification and increased resistance to the cell wall lytic enzyme beta-glucanase occur in response to ethanol-induced stress was obtained. Based on the genome-wide results, the particular role of the FPS1 gene, encoding a plasma membrane aquaglyceroporin which mediates controlled glycerol efflux, in ethanol stress resistance was further investigated. FPS1 expression contributes to decreased [(3)H]ethanol accumulation in yeast cells, suggesting that Fps1p may also play a role in maintaining the intracellular ethanol level during active fermentation. The increased expression of FPS1 confirmed the important role of this gene in alcoholic fermentation, leading to increased final ethanol concentration under conditions that lead to high ethanol production.
Collapse
|
40
|
Hendrych T, Kodedová M, Sigler K, Gášková D. Characterization of the kinetics and mechanisms of inhibition of drugs interacting with the S. cerevisiae multidrug resistance pumps Pdr5p and Snq2p. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:717-23. [DOI: 10.1016/j.bbamem.2008.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/28/2008] [Accepted: 12/03/2008] [Indexed: 01/29/2023]
|
41
|
Casal M, Paiva S, Queirós O, Soares-Silva I. Transport of carboxylic acids in yeasts. FEMS Microbiol Rev 2008; 32:974-94. [DOI: 10.1111/j.1574-6976.2008.00128.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
42
|
The Lmpma1 gene of Leptosphaeria maculans encodes a plasma membrane H+-ATPase isoform essential for pathogenicity towards oilseed rape. Fungal Genet Biol 2008; 45:1122-34. [PMID: 18538267 DOI: 10.1016/j.fgb.2008.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/05/2008] [Accepted: 04/10/2008] [Indexed: 11/22/2022]
Abstract
Following Agrobacterium tumefaciens-mediated mutagenesis in Leptosphaeria maculans, we identified the mutant 210, displaying total loss of pathogenicity towards its host plant (Brassica napus). Microscopic observations showed that m210 is unable to germinate on the host leaf surface and is thus blocked at the pre-penetration stage. The pathogenicity phenotype is linked with a single T-DNA insertion into the promoter region of a typical plasma membrane H(+)-ATPase-encoding gene, termed Lmpma1, thus leading to a twofold reduction in Lmpma1 expression. Since LmPMA1 is involved in intracellular pH homeostasis, we postulate that reduction in LmPMA1 activity disturbs the electrochemical transmembrane gradient in m210, thus leading to conidia defective in turgor pressure generation on leaf surface. Whole genome survey showed that L. maculans possesses a second plasma membrane H(+)-ATPase-encoding gene, termed Lmpma2. Silencing experiments, expression analyses and phylogenetic studies allowed us to highlight the essential role assumed by the Lmpma1 isoform in L.maculans pathogenicity.
Collapse
|
43
|
Sabev HA, Robson GD, Handley PS. Influence of starvation, surface attachment and biofilm growth on the biocide susceptibility of the biodeteriogenic yeast Aureobasidium pullulans. J Appl Microbiol 2007; 101:319-30. [PMID: 16882139 DOI: 10.1111/j.1365-2672.2006.03014.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To investigate the effect of starvation, surface attachment and growth in a biofilm on the susceptibility of Aureobasidium pullulans to the biocides 2-n-octyl-4-isothiazolin-3-one (OIT) and sodium hypochlorite (NaOCl). METHODS AND RESULTS Fluorescence loss from a green fluorescent protein (GFP)-transformed strain was used to monitor real-time loss in viability as previously described in situ in 96-well plates. Exponential phase, yeast-like (YL) cells were settled in the bottom of the wells as a low-density monolayer (LDM) and were susceptible to all biocide concentrations (25-100 mug ml(-1)). The exponential phase YL cells were either starved for 48 h in suspension or starved for 48 h as LDMs in the wells. Starvation in both cases led to a small reduction in susceptibility to the biocides. In contrast, 48-h biofilms grown in malt extract broth showed an apparent lack of susceptibility to 25 and 50 mug ml(-1) OIT and to 25-100 mug ml(-1) NaOCl. However, when the OIT concentration was increased to compensate for the higher cell density in the biofilm, the biofilms were found to be equally susceptible to the LDM. CONCLUSIONS Starvation of A. pullulans YL cells either in suspension or as attached LDM resulted in a decrease in susceptibility to low concentrations of both OIT and NaOCl while the apparent reduced susceptibility of mature biofilms was due to the increase in biofilm cell density rather than true biofilm resistance per se. SIGNIFICANCE AND IMPACT OF THE STUDY Monitoring fluorescence loss from the GFP-transformed strain of A. pullulans can be used as a fast and reliable method for monitoring cell death in real time as a response to biocide and antimicrobial challenge.
Collapse
Affiliation(s)
- H A Sabev
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
44
|
Zafeiridou G, Geronikaki A, Papaefthimiou C, Tryfonos M, Kosmidis EK, Theophilidis G. Assessing the effects of the three herbicides acetochlor, 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 2,4-dichlorophenoxyacetic acid on the compound action potential of the sciatic nerve of the frog (Rana ridibunda). CHEMOSPHERE 2006; 65:1040-8. [PMID: 16674996 DOI: 10.1016/j.chemosphere.2006.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 02/21/2006] [Accepted: 03/18/2006] [Indexed: 05/09/2023]
Abstract
To assess the relative toxicity of the herbicides acetochlor and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) on the nervous system, the sciatic nerve of the frog (Rana ridibunda) nerve was incubated in saline inside a specially designed recording chamber. This chamber permits monitoring of the evoked compound action potential (CAP) of the nerve, a parameter that could be used to quantify the vitality of the nerve in normal conditions as well as when the nerve was exposed to the compounds under investigation. Thus, when the nerve was exposed to acetochlor, the EC(50) was estimated to be 0.22mM, while for 2,4,5-T the EC(50) was 0.90mM. Using the identical nerve preparation, the EC(50) of 2,4-D was estimated to be 3.80mM [Kouri, G., Theophilidis, G., 2002. The action of the herbicide 2,4-dichlorophenoxyacetic acid on the isolated sciatic nerve of the frog (Rana ridibunda). Neurotoxicol. Res. 4, 25-32]. The ratio of the relative toxicity for acetochlor, 2,4,5-T and 2,4-D was found to be 1:4:17.2. However, because it is well-known that the action of 2,4-D is dependent on the pH, the relative toxicity of the three compounds was tested at pH 3.3, since it has been found that the sciatic nerve of the frog is tolerant of such a low pH. Under these conditions, the EC(50) was 0.77mM (from 0.22mM at pH 7.2) for acetochlor, 0.20mM (from 0.90mM) for 2,4,5-T and 0.24mM (from 3.80mM at pH 7.2) for 2,4-D. Thus, the relative toxicity of the three compounds changed drastically to 1:0.25:0.31. This change in the relative toxicity is due not only to the increase in the toxicity of 2,4,5-T and 2,4-D at low pH levels, but also to the decrease in the toxicity of acetochlor at pH 3.3.
Collapse
Affiliation(s)
- Georgia Zafeiridou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University, Thessaloniki 54124, Hellas, Greece
| | | | | | | | | | | |
Collapse
|
45
|
Valli M, Sauer M, Branduardi P, Borth N, Porro D, Mattanovich D. Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH. Appl Environ Microbiol 2006; 72:5492-9. [PMID: 16885303 PMCID: PMC1538745 DOI: 10.1128/aem.00683-06] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast strains expressing heterologous L-lactate dehydrogenases can produce lactic acid. Although these microorganisms are tolerant of acidic environments, it is known that at low pH, lactic acid exerts a high level of stress on the cells. In the present study we analyzed intracellular pH (pHi) and viability by staining with cSNARF-4F and ethidium bromide, respectively, of two lactic-acid-producing strains of Saccharomyces cerevisiae, CEN.PK m850 and CEN.PK RWB876. The results showed that the strain producing more lactic acid, CEN.PK m850, has a higher pHi. During batch culture, we observed in both strains a reduction of the mean pHi and the appearance of a subpopulation of cells with low pHi. Simultaneous analysis of pHi and viability proved that the cells with low pHi were dead. Based on the observation that the better lactic-acid-producing strain had a higher pHi and that the cells with low pHi were dead, we hypothesized that we might find better lactic acid producers by screening for cells within the highest pHi range. The screening was performed on UV-mutagenized populations through three consecutive rounds of cell sorting in which only the viable cells within the highest pHi range were selected. The results showed that lactic acid production was significantly improved in the majority of the mutants obtained compared to the parental strains. The best lactic-acid-producing strain was identified within the screening of CEN.PK m850 mutants.
Collapse
Affiliation(s)
- Minoska Valli
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
46
|
Simões T, Mira NP, Fernandes AR, Sá-Correia I. The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives. Appl Environ Microbiol 2006; 72:7168-75. [PMID: 16980434 PMCID: PMC1636168 DOI: 10.1128/aem.01476-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Saccharomyces cerevisiae SPI1 gene encodes a member of the glycosylphosphatidylinositol-anchored cell wall protein family. In this work we show results indicating that SPI1 expression protects the yeast cell from damage caused by weak acids used as food preservatives. This is documented by a less extended period of adaptation to growth in their presence and by a less inhibited specific growth rate for a parental strain compared with a mutant with SPI1 deleted. Maximal protection exerted by Spi1p against equivalent concentrations of the various weak acids tested was registered for the more lipophilic acids (octanoic acid, followed by benzoic acid) and was minimal for acetic acid. Weak-acid adaptation was found to involve the rapid activation of SPI1 transcription, which is dependent on the presence of the Msn2p transcription factor. Activation of SPI1 transcription upon acetic acid stress also requires Haa1p, whereas this recently described transcription factor has a negligible role in the adaptive response to benzoic acid. The expression of SPI1 was found to play a prominent role in the development of yeast resistance to 1,3-beta-glucanase in benzoic acid-stressed cells, while its involvement in acetic acid-induced resistance to the cell wall-lytic enzyme is slighter. The results are consistent with the notion that Spi1p expression upon weak-acid stress leads to cell wall remodeling, especially for the more lipophilic acids, decreasing cell wall porosity. Decreased cell wall porosity, in turn, reduces access to the plasma membrane, reducing membrane damage, intracellular acidification, and viability loss.
Collapse
Affiliation(s)
- T Simões
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | |
Collapse
|
47
|
Kasemets K, Kahru A, Laht TM, Paalme T. Study of the toxic effect of short- and medium-chain monocarboxylic acids on the growth of Saccharomyces cerevisiae using the CO2-auxo-accelerostat fermentation system. Int J Food Microbiol 2006; 111:206-15. [PMID: 16945441 DOI: 10.1016/j.ijfoodmicro.2006.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Revised: 05/05/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
The effect of aliphatic monocarboxylic acids (formic, acetic, propionic, valeric, octanoic and decanoic acids) on the growth and metabolic activity of Saccharomyces cerevisiae S288C was studied, using continuous cultivation method - CO(2)-auxo-accelerostat with smooth increase in the concentration of added monocarboxylic acids. Slow increase in the concentration of these acids resulted in the rapid decrease in the growth yield (Y(ATP)) and specific growth rate (micro), however, the specific ATP production rate (Q(ATP)) increased or stayed almost constant. On the other hand, Q(ATP) decreased if the concentration of formic, acetic or decanoic acids was increased rapidly. The toxic effect of aliphatic monocarboxylic acids on the growth of S. cerevisiae was characterized and quantified from the respective dose-effect curves as the IC(50) value (mM) using two different endpoints: a decrease of 50% in the specific growth rate (IC(50 micro)) and a decrease of 50% in the growth yield based on ATP production (IC(50YATP)). The concentrations of formic, acetic, propionic, valeric, octanoic and decanoic acids causing the 50% reduction in the specific growth rate (IC(50 micro)) were, respectively, 18.1, 47.1, 33.6, 2.3, 0.16 and 0.07 mM. The IC(50 micro) values were notably lower (up to 5-fold) in case of a more rapid increase in the concentration of acid in the medium. The results of the CO(2)-auxo-accelerostat experiments show that the toxic effect depends not only on the nature of the monocarboxylic acid (lipophilicity) but also on the rate at which its concentration changes in the growth environment.
Collapse
Affiliation(s)
- Kaja Kasemets
- National Institute of Chemical Physics and Biophysics, Laboratory of Molecular Genetics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | | | | | | |
Collapse
|
48
|
Teixeira MC, Fernandes AR, Mira NP, Becker JD, Sá-Correia I. Early transcriptional response of Saccharomyces cerevisiae to stress imposed by the herbicide 2,4-dichlorophenoxyacetic acid. FEMS Yeast Res 2006; 6:230-48. [PMID: 16487346 DOI: 10.1111/j.1567-1364.2006.00041.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The global gene transcription pattern of the eukaryotic experimental model Saccharomyces cerevisiae in response to sudden aggression with the widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was analysed. Under acute stress, 14% of the yeast transcripts suffered a greater than twofold change. The yeastract database was used to predict the transcription factors mediating the response registered in this microarray analysis. Most of the up-regulated genes in response to 2,4-D are known targets of Msn2p, Msn4p, Yap1p, Pdr1p, Pdr3p, Stp1p, Stp2p and Rpn4p. The major regulator of ribosomal protein genes, Sfp1p, is known to control 60% of the down-regulated genes, in particular many involved in the transcriptional and translational machinery and in cell division. The yeast response to the herbicide includes the increased expression of genes involved in the oxidative stress response, the recovery or degradation of damaged proteins, cell wall remodelling and multiple drug resistance. Although the protective role of TPO1 and PDR5 genes was confirmed, the majority of the responsive genes encoding multidrug resistance do not confer resistance to 2,4-D. The increased expression of genes involved in alternative carbon and nitrogen source metabolism, fatty acid beta-oxidation and autophagy was also registered, suggesting that acute herbicide stress leads to nutrient limitation.
Collapse
Affiliation(s)
- Miguel Cacho Teixeira
- Biological Sciences Research Group, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
49
|
Teixeira MC, Santos PM, Fernandes AR, Sá-Correia I. A proteome analysis of the yeast response to the herbicide 2,4-dichlorophenoxyacetic acid. Proteomics 2005; 5:1889-901. [PMID: 15832368 DOI: 10.1002/pmic.200401085] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The intensive use of herbicides may give rise to a number of toxicological problems in non-target organisms and has led to the emergence of resistant weeds. To gain insights into the mechanisms of adaptation to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), we have identified variations in protein expression level in the eukaryotic experimental model Saccharomyces cerevisiae exposed to herbicide aggression, based on two-dimensional gel electrophoresis. We show results suggesting that during the adaptation period preceding the resumption of inhibited exponential growth under herbicide stress, the antioxidant enzyme Ahp1p and the heat shock proteins Hsp12p and Ssb2p (or Ssb1p) are present in higher amounts. The increased level of other enzymes involved in protein (Cdc48p) and mRNA (Dcp1p) degradation, in carbohydrate metabolism (Eno1p, Eno2p and Glk1p) and in vacuolar H(+)-ATPase (V-ATPase) function (Vma1p and Vma2p, two subunits of the peripheral catalytic sector) was also registered. V-ATPase is involved in the homeostasis of intracellular pH and in the compartmentalization of amino acids and other metabolites in the vacuole. The increased expression of amino acid biosynthetic enzymes (Arg1p, Aro3p, Aro8p, Gdh1p, His4p, Ilv3p and Met6p), also suggested by comparative analysis of the proteome, was correlated with the reduction of amino acid concentration registered in both the vacuole and the cytosol of 2,4-D-stressed cells, possibly due to the disturbance of vacuolar and plasma membrane functions by the lipophilic acid herbicide.
Collapse
Affiliation(s)
- Miguel C Teixeira
- Biological Sciences Research Group, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Lisbon, Portugal
| | | | | | | |
Collapse
|
50
|
Liu S, Li C, Xie L, Cao Z. Intracellular pH and metabolic activity of long-chain dicarylic acid-producing yeast Candida tropicalis. J Biosci Bioeng 2005; 96:349-53. [PMID: 16233535 DOI: 10.1016/s1389-1723(03)90135-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Accepted: 06/30/2003] [Indexed: 11/21/2022]
Abstract
The intracellular pH (pH(i) of alpha-omega-dicarylic acid producing Candida tropicalis was determined by a fluorescence technique using the pH-sensitive fluorescent probe 5(6)-carboxyfluorescein diacetate. Fermentations with n-tridecane substrate to produce alpha,omega-tridecanedioic acid were carried out in a 5-l bioreactor in which growth and production were separated. During the growth phase, the measured pH(i) values were varied from 5.65 to 6.15 in all the experiments performed under different constant pH-operating conditions. The specific rates of growth, sucrose consumption, CO2 production, and O2 consumption were correlated with pH(i). Cytochrome P450 monooxygenase (P450), which catalyzes n-alkane hydroxylation, was only slightly expressed during the growth phase. During the first 6 h of the production phase, P450 activity was induced rapidly accompanying higher pH(i). A much higher level of P450 activity was observed at pH(i) of 6.55+/-0.15 for all the fermentations, with maximum productivity (1.919 g/l/h) occurring when using an optimal pH-control strategy. However, P450 activity, tridecanedioic acid productivity, and pH(i) decreased progressively during the latter part of the production phase, as a consequence of the metabolic activity changes of the cells. Even though culture pH has only a slight influence on pH(i), the metabolic activity of C. tropicalis is sensitive to the variations in pH(i). The measured pH(i) varied from 6.1 to 6.7 during the production phase for all the fermentations. Thus, both tridecanedioic acid productivity and P450 activity are correlated with pH(i) or pH gradients across the cell membrane.
Collapse
Affiliation(s)
- Shuchen Liu
- Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China.
| | | | | | | |
Collapse
|