1
|
Dhar K, Venkateswarlu K, Megharaj M. Anoxygenic phototrophic purple non-sulfur bacteria: tool for bioremediation of hazardous environmental pollutants. World J Microbiol Biotechnol 2023; 39:283. [PMID: 37594588 PMCID: PMC10439078 DOI: 10.1007/s11274-023-03729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
The extraordinary metabolic flexibility of anoxygenic phototrophic purple non-sulfur bacteria (PNSB) has been exploited in the development of various biotechnological applications, such as wastewater treatment, biohydrogen production, improvement of soil fertility and plant growth, and recovery of high-value compounds. These versatile microorganisms can also be employed for the efficient bioremediation of hazardous inorganic and organic pollutants from contaminated environments. Certain members of PNSB, especially strains of Rhodobacter sphaeroides and Rhodopseudomonas palustris, exhibit efficient remediation of several toxic and carcinogenic heavy metals and metalloids, such as arsenic, cadmium, chromium, and lead. PNSB are also known to utilize diverse biomass-derived lignocellulosic organic compounds and xenobiotics. Although biodegradation of some substituted aromatic compounds by PNSB has been established, available information on the involvement of PNSB in the biodegradation of toxic organic pollutants is limited. In this review, we present advancements in the field of PNSB-based bioremediation of heavy metals and organic pollutants. Furthermore, we highlight that the potential role of PNSB as a promising bioremediation tool remains largely unexplored. Thus, this review emphasizes the necessity of investing extensive research efforts in the development of PNSB-based bioremediation technology.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, Andhra Pradesh, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
2
|
Li M, Ning P, Sun Y, Luo J, Yang J. Characteristics and Application of Rhodopseudomonas palustris as a Microbial Cell Factory. Front Bioeng Biotechnol 2022; 10:897003. [PMID: 35646843 PMCID: PMC9133744 DOI: 10.3389/fbioe.2022.897003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023] Open
Abstract
Rhodopseudomonas palustris, a purple nonsulfur bacterium, is a bacterium with the properties of extraordinary metabolic versatility, carbon source diversity and metabolite diversity. Due to its biodetoxification and biodegradation properties, R. palustris has been traditionally applied in wastewater treatment and bioremediation. R. palustris is rich in various metabolites, contributing to its application in agriculture, aquaculture and livestock breeding as additives. In recent years, R. palustris has been engineered as a microbial cell factory to produce valuable chemicals, especially photofermentation of hydrogen. The outstanding property of R. palustris as a microbial cell factory is its ability to use a diversity of carbon sources. R. palustris is capable of CO2 fixation, contributing to photoautotrophic conversion of CO2 into valuable chemicals. R. palustris can assimilate short-chain organic acids and crude glycerol from industrial and agricultural wastewater. Lignocellulosic biomass hydrolysates can also be degraded by R. palustris. Utilization of these feedstocks can reduce the industry cost and is beneficial for environment. Applications of R. palustris for biopolymers and their building blocks production, and biofuels production are discussed. Afterward, some novel applications in microbial fuel cells, microbial electrosynthesis and photocatalytic synthesis are summarized. The challenges of the application of R. palustris are analyzed, and possible solutions are suggested.
Collapse
Affiliation(s)
- Meijie Li
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Peng Ning
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yi Sun
- Haiyang Comprehensive Administrative Law Enforcement Bureau (Agriculture), Haiyang, China
| | - Jie Luo
- Qingdao Garden Forestry Technology School, Qingdao, China
- *Correspondence: Jie Luo, ; Jianming Yang,
| | - Jianming Yang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Jie Luo, ; Jianming Yang,
| |
Collapse
|
3
|
Lu B, Wang L, Zheng X, Hu Z, Pan Z. Co-metabolic biodegradation of 4-chlorophenol by photosynthetic bacteria. ENVIRONMENTAL TECHNOLOGY 2021; 42:2361-2371. [PMID: 31846595 DOI: 10.1080/09593330.2019.1701567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
ABSTRACTEnvironmental contamination by 4-chlorophenol (4-CP) is a major concern. Photosynthetic bacteria have the ability to biodegrade 4-CP under dark aerobic conditions. In this study, we found that using different carbon sources (i.e. glucose, sodium acetate, sodium propionate sucrose, and malic acid) as co-metabolic substrates accelerated the biodegradation of 4-CP, and this acceleration was especially pronounced in the glucose treatment. A maximum degradation rate of 96.99% was reached under a concentration of 3.0 g·L-1 after 6 days of culture. The optimum conditions were pH 7.5, a temperature of 30°C, and a rotation speed of 135 rpm. The biodegradation of 4-CP was achieved at a range of salinities (0-3.0% NaCl, w/v). The biodegradation kinetics agreed with the Haldane model, and the kinetic constants were rmax = 0.14 d-1, Km = 33.9 mg·L-1, and Ki = 159.6 mg·L-1. Additionally, the coexistence of phenol or 2,4-dichlorophenol (2, 4-DCP) had a certain impact on the degradation of 4-CP under dark aerobic conditions. When the coexisting phenol concentration reached 100 mg·L-1, the maximum degradation rate of 4-CP reached 90.20%. The degradation rate of 4-CP decreased as the concentration of coexisting 2, 4-DCP increased.
Collapse
Affiliation(s)
- Binchao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Liang Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhongce Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Navid A, Jiao Y, Wong SE, Pett-Ridge J. System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris. BMC Bioinformatics 2019; 20:233. [PMID: 31072303 PMCID: PMC6509789 DOI: 10.1186/s12859-019-2844-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Living organisms need to allocate their limited resources in a manner that optimizes their overall fitness by simultaneously achieving several different biological objectives. Examination of these biological trade-offs can provide invaluable information regarding the biophysical and biochemical bases behind observed cellular phenotypes. A quantitative knowledge of a cell system's critical objectives is also needed for engineering of cellular metabolism, where there is interest in mitigating the fitness costs that may result from human manipulation. RESULTS To study metabolism in photoheterotrophs, we developed and validated a genome-scale model of metabolism in Rhodopseudomonas palustris, a metabolically versatile gram-negative purple non-sulfur bacterium capable of growing phototrophically on various carbon sources, including inorganic carbon and aromatic compounds. To quantitatively assess trade-offs among a set of important biological objectives during different metabolic growth modes, we used our new model to conduct an 8-dimensional multi-objective flux analysis of metabolism in R. palustris. Our results revealed that phototrophic metabolism in R. palustris is light-limited under anaerobic conditions, regardless of the available carbon source. Under photoheterotrophic conditions, R. palustris prioritizes the optimization of carbon efficiency, followed by ATP production and biomass production rate, in a Pareto-optimal manner. To achieve maximum carbon fixation, cells appear to divert limited energy resources away from growth and toward CO2 fixation, even in the presence of excess reduced carbon. We also found that to achieve the theoretical maximum rate of biomass production, anaerobic metabolism requires import of additional compounds (such as protons) to serve as electron acceptors. Finally, we found that production of hydrogen gas, of potential interest as a candidate biofuel, lowers the cellular growth rates under all circumstances. CONCLUSIONS Photoheterotrophic metabolism of R. palustris is primarily regulated by the amount of light it can absorb and not the availability of carbon. However, despite carbon's secondary role as a regulating factor, R. palustris' metabolism strives for maximum carbon efficiency, even when this increased efficiency leads to slightly lower growth rates.
Collapse
Affiliation(s)
- Ali Navid
- Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 USA
| | - Yongqin Jiao
- Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 USA
| | - Sergio Ernesto Wong
- Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 USA
| | - Jennifer Pett-Ridge
- Physics and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 USA
| |
Collapse
|
5
|
Chen Y, Tao L, Wu K, Wang Y. Shifts in indigenous microbial communities during the anaerobic degradation of pentachlorophenol in upland and paddy soils from southern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23184-23194. [PMID: 27600728 DOI: 10.1007/s11356-016-7562-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
Pentachlorophenol (PCP) is a common persistent pesticide in soil that has generated a significant environmental problem worldwide. Therefore, anaerobic degradation of PCP by the soil indigenous microbial community has gained increasing attention. However, little information is available concerning the functional microorganisms and the potential shifts in the microbial community associated with PCP degradation. In this study, we conducted a set of experiments to determine which components of the indigenous microbial community were capable of degrading PCP in soils of two land use types (upland and paddy soils) in southern China. Our results showed that the PCP degradation rate was significantly higher in paddy soils than that in upland soils. 16S ribosomal RNA (rRNA) high-throughput sequencing revealed significant differences in microbial taxonomic composition between the soil with PCP and blank (soil without PCP) with Acinetobacter, Clostridium, Coprococcus, Oxobacter, and Sedimentibacter dominating the PCP-affected communities. Acinetobacter was also apparently enriched in the paddy soils with PCP (up to 52.2 %) indicated this genus is likely to play an important role in PCP degradation. Additionally, the Fe(III)-reducing bacteria Clostridium may also be involved in PCP degradation. Our data further revealed hitherto unknown metabolisms of potential PCP degradation by microorganisms including Coprococcus, Oxobacter, and Ruminiclostridium. Overall, these findings indicated that land use types may affect the PCP anaerobic degradation rate via the activities of indigenous bacterial populations and extend our knowledge of the bacterial populations responsible for PCP degradation.
Collapse
Affiliation(s)
- Yating Chen
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liang Tao
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650, People's Republic of China.
| | - Ke Wu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650, People's Republic of China
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yongkui Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650, People's Republic of China
| |
Collapse
|
6
|
Venkidusamy K, Megharaj M. A Novel Electrophototrophic Bacterium Rhodopseudomonas palustris Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments. Front Microbiol 2016; 7:1071. [PMID: 27462307 PMCID: PMC4940424 DOI: 10.3389/fmicb.2016.01071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/27/2016] [Indexed: 11/13/2022] Open
Abstract
An electrophototrophic, hydrocarbonoclastic bacterium Rhodopseudomonas palustris stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS). Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons (PH) in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305 ± 10 mA/m(2) (1000Ω) was generated (power density 131.65 ± 10 mW/m(2)) by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21 ± 3 mA/m(2); power density 720 ± 7 μW/m(2), 1000 Ω) using PH as a sole energy source was also examined using an initial concentration of 800 mg l(-1) of diesel range hydrocarbons (C9-C36) with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation). Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS.
Collapse
Affiliation(s)
- Krishnaveni Venkidusamy
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SAAustralia; CRC for Contamination Assessment and Remediation of the Environment, Mawson Lakes, SAAustralia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SAAustralia; CRC for Contamination Assessment and Remediation of the Environment, Mawson Lakes, SAAustralia; Global Centre for Environmental Risk Assessment and Remediation, The University of Newcastle, Callaghan, NSWAustralia
| |
Collapse
|
7
|
Abstract
The characters of photosynthetic bacteria and its action mechanism were simply described, And the research of using photosynthetic bacteria to treat eleven kinds of wastewater such as monosodium glutamate wastewater, citric acid wastewater, distillery wastewater, starch wastewater, bean products wastewater, Chinese traditional medicine wastewater, dye wastewater etc were discussed in detail in this paper. It was also pointed out that the photosynthetic bacteria will have a promising prospect in water pollution prevention.
Collapse
|
8
|
Valle A, Boschin G, Negri M, Abbruscato P, Sorlini C, D'Agostina A, Zanardini E. The microbial degradation of azimsulfuron and its effect on the soil bacterial community. J Appl Microbiol 2006; 101:443-52. [PMID: 16882153 DOI: 10.1111/j.1365-2672.2006.02937.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS Azimsulfuron is a recently introduced sulfonylurea herbicide useful in controlling weeds in paddy fields. To date very little information is available on the biodegradation of this pesticide and on its effect on the soil microbial community. The aim of this work was to study its biodegradation both in slurry soil microcosms and in batch tests with mixed and pure cultures. METHODS AND RESULTS Azimsulfuron was applied to forest bulk soil in order to study its effect on the structure of the bacterial soil community, as detectable by denaturant gradient gel electrophoresis (DGGE) analyses. Biodegradation and abiotic processes were investigated by HPLC analyses. In addition, a microbial consortium was selected, that was able to use azimsulfuron as the sole energy and carbon source. One of the metabolites produced by the consortium was isolated and identified through LC-MS analyses. Cultivable bacteria of the consortium were isolated and identified by 16S rDNA sequencing (1400 bp). CONCLUSIONS Azimsulfuron treatment seems to have the ability to cause changes in the bacterial community structure that are detectable by DGGE analyses. It is easily biodegraded both in microcosms and in batch tests, with the formation of an intermediate that was identified as 2-methyl-4-(2-methyl-2H-tetrazol-5-yl)-2H-pyrazole-3-sulfonamide. SIGNIFICANCE AND IMPACT OF THE STUDY The study increases the knowledge on the biodegradation of azimsulfuron and its effects on the soil microbiota.
Collapse
Affiliation(s)
- A Valle
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche (DISTAM), Sezione MAAE, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Okubo Y, Futamata H, Hiraishi A. Distribution and Capacity for Utilization of Lower Fatty Acids of Phototrophic Purple Nonsulfur Bacteria in Wastewater Environments. Microbes Environ 2005. [DOI: 10.1264/jsme2.20.135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yoko Okubo
- Department of Ecological Engineering, Toyohashi University of Technology
| | - Hiroyuki Futamata
- Department of Ecological Engineering, Toyohashi University of Technology
| | - Akira Hiraishi
- Department of Ecological Engineering, Toyohashi University of Technology
| |
Collapse
|
10
|
Yuroff AS, Sabat G, Hickey WJ. Transporter-mediated uptake of 2-chloro- and 2-hydroxybenzoate by Pseudomonas huttiensis strain D1. Appl Environ Microbiol 2004; 69:7401-8. [PMID: 14660391 PMCID: PMC309881 DOI: 10.1128/aem.69.12.7401-7408.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the mechanisms of uptake of 2-chlorobenzoate (2-CBa) and 2-hydroxybenzoate (2-HBa) by Pseudomonas huttiensis strain D1. Uptake was monitored by assaying intracellular accumulation of 2-[UL-ring-14C]CBa and 2-[UL-ring-14C]HBa. Uptake of 2-CBa showed substrate saturation kinetics with an apparent Km of 12.7 +/- 2.6 micromoles and a maximum velocity (Vmax) of 9.76 +/- 0.78 nmol min-1 mg of protein-1. Enhanced rates of uptake were induced by growth on 2-CBa and 2-HBa, but not by growth on benzoate or 2,5-di-CBa. Intracellular accumulations of 2-CBa and 2-HBa were 109- and 42-fold greater, respectively, than the extracellular concentrations of these substrates and were indicative of uptake mediated by a transporter rather than driven by substrate catabolism ("metabolic drag"). Results of competitor screening tests indicated that the substrate range of the transporter did not include other o-halobenzoates that serve as growth substrates for strain D1 and for which the metabolism was initiated by the same dioxygenase as 2-CBa and 2-HBa. This suggested that multiple mechanisms for substrate uptake were coupled to the same catabolic enzyme. The preponderance of evidence from tests with metabolic inhibitors and artificial electrochemical gradients suggested that 2-CBa uptake was driven by ATP hydrolysis. If so, the 2-CBa transporter would be the first of the ATP binding cassette type implicated in uptake of haloaromatic acids.
Collapse
Affiliation(s)
- A S Yuroff
- Center for Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
11
|
Mehrabi S, Ekanemesang UM, Aikhionbare FO, Kimbro KS, Bender J. Identification and characterization of Rhodopseudomonas spp., a purple, non-sulfur bacterium from microbial mats. BIOMOLECULAR ENGINEERING 2001; 18:49-56. [PMID: 11535416 DOI: 10.1016/s1389-0344(01)00086-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A species of facultative photo-organotrophic, purple, non-sulfur bacterium was isolated from mixed-species microbial mats, characterized and examined for metal tolerance and bioremediation potential. Contributing mats were natural consortia of microbes, dominated by cyanobacteria and containing several species of bacteria arranged in a laminar structure, stabilized within a gel matrix. Constructed microbial mats were used for bioremediation of heavy metals and organic chemical pollutants. Purple, non-sulfur bacteria are characteristically found in lower strata of intact mats, but their contributing function in mats survival and function by mediating the chemical environment has not been explored. The gram-negative rod-shaped bacterium, reported here, produced a dark red culture under phototrophic conditions, reproduced by budding and formed a lamellar intracytoplasmic membrane (ICM) system parallel to cytoplasmic membrane, which contained bacteriochlorophyll a and carotenoids. This strain was found to have multiple metal resistances and to be effective in the reductive removal of Cr(VI) and the degradation of 2,4,6-trichlorophenol. Based on the results obtained from morphology, nutrient requirements, major bacteriochlorophyll content, GC content, random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) profile and 16S-rDNA phylogenetic analysis, this member of the microbial mats may be identified as a new strain of the genus Rhodopseudomonas.
Collapse
Affiliation(s)
- S Mehrabi
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA.
| | | | | | | | | |
Collapse
|
12
|
Egland PG, Gibson J, Harwood CS. Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris. Appl Environ Microbiol 2001; 67:1396-9. [PMID: 11229940 PMCID: PMC92743 DOI: 10.1128/aem.67.3.1396-1399.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We isolated a strain of Rhodopseudomonas palustris (RCB100) by selective enrichment in light on 3-chlorobenzoate to investigate the steps that it uses to accomplish anaerobic dechlorination. Analyses of metabolite pools as well as enzyme assays suggest that R. palustris grows on 3-chlorobenzoate by (i) converting it to 3-chlorobenzoyl coenzyme A (3-chlorobenzoyl-CoA), (ii) reductively dehalogenating 3-chlorobenzoyl-CoA to benzoyl-CoA, and (iii) degrading benzoyl-CoA to acetyl-CoA and carbon dioxide. R. palustris uses 3-chlorobenzoate only as a carbon source and thus incorporates the acetyl-CoA that is produced into cell material. The reductive dechlorination route used by R. palustris for 3-chlorobenzoate degradation differs from those previously described in that a CoA thioester, rather than an unmodified aromatic acid, is the substrate for complete dehalogenation.
Collapse
Affiliation(s)
- P G Egland
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|