1
|
Gao L, Imanaka T, Fujiwara S. A Mutant Chaperonin That Is Functional at Lower Temperatures Enables Hyperthermophilic Archaea To Grow under Cold-Stress Conditions. J Bacteriol 2015; 197:2642-52. [PMID: 26013483 PMCID: PMC4507335 DOI: 10.1128/jb.00279-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Thermococcus kodakarensis grows optimally at 85°C and possesses two chaperonins, cold-inducible CpkA and heat-inducible CpkB, which are involved in adaptation to low and high temperatures, respectively. The two chaperonins share a high sequence identity (77%), except in their C-terminal regions. CpkA, which contains tandem repeats of a GGM motif, shows its highest ATPase activity at 60°C to 70°C, whereas CpkB shows its highest activity at temperatures higher than 90°C. To clarify the effects of changes in ATPase activity on chaperonin function at lower temperatures, various CpkA variants were constructed by introducing single point mutations into the C-terminal region. A CpkA variant in which Glu530 was replaced with Gly (CpkA-E530G) showed increased ATPase activity, with its highest activity at 50°C. The efficacy of the CpkA variants against denatured indole-3-glycerol-phosphate synthase of T. kodakarensis (TrpCTk), which is a CpkA target, was then examined in vitro. CpkA-E530G was more effective than wild-type CpkA at facilitating the refolding of chemically unfolded TrpCTk at 50°C. The effect of cpkA-E530G on cell growth was then examined by introducing cpkA-E530G into the genome of T. kodakarensis KU216 (pyrF). The mutant strain, DA4 (pyrF cpkA-E530G), grew as well as the parental KU216 strain at 60°C. In contrast, DA4 grew more vigorously than KU216 at 50°C. These results suggested that the CpkA-E530G mutation prevented cold denaturation of proteins under cold-stress conditions, thereby enabling cells to grow in cooler environments. Thus, a single base pair substitution in a chaperonin gene allows cells to grow vigorously in a new environment. IMPORTANCE Thermococcus kodakarensis possesses two group II chaperonins, cold-inducible CpkA and heat-inducible CpkB, which are involved in adaptation to low and high temperatures, respectively. CpkA might act as an "adaptive allele" to adapt to cooler environments. In this study, we compared the last 20 amino acids within the C termini of the chaperonins and found a clear correlation between the CpkA-type chaperonin gene copy number and growth temperature. Furthermore, we introduced single mutations into the CpkA C-terminal region to clarify its role in cold adaptation, and we showed that a single base substitution allowed the organism to adapt to a lower temperature. The present data suggest that hyperthermophiles have evolved by obtaining mutations in chaperonins that allow them to adapt to a colder environment.
Collapse
Affiliation(s)
- Le Gao
- Research Center for Intelligent Bio-Materials, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo, Japan
| | - Tadayuki Imanaka
- Research Organization of Science and Technology, Ritsumeikan University, Kasatsu, Shiga, Japan
| | - Shinsuke Fujiwara
- Research Center for Intelligent Bio-Materials, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo, Japan Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda, Hyogo, Japan
| |
Collapse
|
2
|
Importance and determinants of induction of cold-induced DEAD RNA helicase in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 2013; 195:3442-50. [PMID: 23729644 DOI: 10.1128/jb.00332-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thermococcus kodakarensis, which grows optimally at 85°C, expresses cold stress-inducible DEAD box RNA helicase (Tk-deaD) when shifted to 60°C. A DDA1 deletion (ΔTk-deaD) mutant exhibited decreased cell growth, and cells underwent lysis at 60°C in nutrient broth in the absence of elemental sulfur. In contrast, cells in medium containing elemental sulfur at 60°C did not undergo lysis, suggesting that Tk-deaD is necessary for cell growth in sulfur-free medium. To identify the element responsible for the cold response, a pTKR expression probe plasmid was constructed using thermostable catalase from Pyrobaculum calidifontis as a reporter. The plasmid pTKRD, which contained the transcription factor B recognition element, TATA region, and Shine-Dalgarno (SD) region, including the initiation codon of the Tk-deaD gene, exhibited cold inducibility. We also constructed a series of deletion and chimeric constructs with the glutamate dehydrogenase (gdh) promoter, whose expression is constitutive independent of culture temperatures and catalase expression. Reporter assay experiments indicated that the regulatory element is located in the region between the SD region and the initiation codon (ATG). Nucleotide sequences in the upstream regions of Tk-deaD and gdh were compared and revealed a five-adenosine (AAAAA) sequence between SD and ATG of Tk-deaD that was not present in gdh. Replacement of the repeated adenosine sequence with other sequences revealed that the AAAAA sequence is important for cold induction. This sequence-specific mechanism is unique and is one that has not been identified in other known cold-inducible genes.
Collapse
|
3
|
Indole-3-glycerol-phosphate synthase is recognized by a cold-inducible group II chaperonin in Thermococcus kodakarensis. Appl Environ Microbiol 2012; 78:3806-15. [PMID: 22447592 DOI: 10.1128/aem.07996-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermococcus kodakarensis optimally grows at 85°C and possesses two chaperonins, cold-inducible CpkA and heat-inducible CpkB. Gene disruptants DA1 (ΔcpkA) and DB1 (ΔcpkB) showed decreased cell growth at 60°C and 93°C, respectively. The DB2 mutant (ΔcpkAcpkB ΔcpkB), whose cpkB gene was expressed under the control of the cpkA promoter, did not grow at 60°C, and the DB3 mutant [ΔcpkA(1-524)cpkB(1-524) ΔcpkB], whose CpkA amino acid residues 1 to 524 were replaced with corresponding CpkB residues that maintained the C-terminal region intact, grew at 60°C, implying that the CpkA C-terminal region plays a key role in cell growth at 60°C. To screen for specific CpkA target proteins, comparative pulldown studies with anti-Cpk were performed using cytoplasmic fractions from DA1 cells cultivated at 93°C and DB1 cells cultivated at 60°C. Among the proteins coprecipitated with anti-Cpk, TK0252, encoding indole-3-glycerol-phosphate synthase (TrpC), showed the highest Mascot score. Counter-pulldown experiments were also performed on DA1 and DB1 extracts using anti-TrpC. CpkA coimmunoprecipitated with anti-TrpC while CpkB did not. The results obtained indicate that TrpC is a specific target for CpkA. The effects of Cpks on denatured TrpC were then examined. The refolding of partially denatured TrpC was accelerated by the addition of CpkA but not by adding CpkB. DA1 cells grew optimally in minimal medium only in the presence of tryptophan but hardly grew in the absence of tryptophan at 60°C. It has been suggested that a lesion of functional TrpC is caused by cpkA disruption, resulting in tryptophan auxotrophy.
Collapse
|
4
|
Imanaka T. Molecular bases of thermophily in hyperthermophiles. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:587-602. [PMID: 22075760 PMCID: PMC3309922 DOI: 10.2183/pjab.87.587] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
I reflect on some of our studies on the hyperthermophilic archaeon, Thermococcus kodakarensis KOD1 and its enzymes. The strain can grow at temperatures up to 100 °C, and also represents one of the simplest forms of life. As expected, all enzymes, DNA, RNA, cytoplasmic membrane, and cytoplasmic solute displayed remarkable thermostability, and we have determined some of the basic principles that govern this feature. To our delight, many of the enzymes exhibited unique biochemical properties and novel structures not found in mesophilic proteins. Here, I will focus on some enzymes whose three-dimensional structures are characteristic of thermostable enzymes. I will also add some examples on the stabilization of DNA, RNA, cytoplasmic membrane, and cytoplasmic solute.
Collapse
Affiliation(s)
- Tadayuki Imanaka
- Department of Biotechnology, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
5
|
Prevention of in Vitro thermal aggregation and inactivation of foreign proteins by the hyperthermophilic group II chaperonin α-subunit from Aeropyrum pernix K1. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-0093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Overexpression, purification, and functional characterization of the group II chaperonin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-009-0008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Kanai T, Takedomi S, Fujiwara S, Atomi H, Imanaka T. Identification of the Phr-dependent heat shock regulon in the hyperthermophilic archaeon, Thermococcus kodakaraensis. J Biochem 2009; 147:361-70. [PMID: 19887527 DOI: 10.1093/jb/mvp177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The hyperthermophilic archaeon Thermococcus kodakaraensis harbors a putative transcriptional regulator (Tk-Phr) that is orthologous to the Pyrococcus furiosus Phr (Pf-Phr). Pf-Phr, a transcriptional regulator, represses genes encoding the small heat shock protein (sHSP), AAA(+) ATPase and Pf-Phr itself under normal growth temperatures. Here we constructed a gene disruption strain of Tk-Phr (strain KHR1). KHR1 cells showed similar specific growth rates with those of the wild-type strain under various temperatures. A whole genome microarray analysis was performed between KHR1 and wild-type cells grown at 80 degrees C. Transcript levels of more than 20 genes were significantly higher in KHR1 cells. Most genes contained a sequence motif virtually identical to that of Pf-Phr in their 5'-flanking regions. The Tk-Phr regulon included genes encoding sHSP, AAA(+) ATPase, prefoldin, RecA superfamily ATPase and Tip49. On the other hand, more than half of the members in the regulon encoded conserved/hypothetical proteins, raising the possibility that these proteins participate in unidentified processes of the heat shock response. In contrast, Tk-Phr deletion did not lead to dramatic increase in transcript and protein levels of a chaperonin (CpkB) previously shown to respond to heat shock, suggesting the presence of a second, Phr-independent heat shock response mechanism in T. kodakaraensis.
Collapse
Affiliation(s)
- Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
8
|
Expression profiles and physiological roles of two types of molecular chaperonins from the hyperthermophilic archaeon Thermococcus kodakarensis. Appl Environ Microbiol 2008; 74:7306-12. [PMID: 18835998 DOI: 10.1128/aem.01245-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermococcus kodakarensis possesses two chaperonins, CpkA and CpkB, and their expression is induced by the downshift and upshift, respectively, of the cell cultivation temperature. The expression levels of the chaperonins were examined by using specific antibodies at various cell growth temperatures in the logarithmic and stationary phases. At 60 degrees C, CpkA was highly expressed in both the logarithmic and stationary phases; however, CpkB was not expressed in either phase. At 85 degrees C, CpkA and CpkB were expressed in both phases; however, the CpkA level was decreased in the stationary phase. At 93 degrees C, CpkA was expressed only in the logarithmic phase and not in the stationary phase. In contrast, CpkB was highly expressed in both phases. The results of reverse transcription-PCR experiments showed the same growth phase- and temperature-dependent profiles as observed in immunoblot analyses, indicating that the expression of cpkA and cpkB is regulated at the mRNA level. The cpkA or cpkB gene disruptant was then constructed, and its growth profile was monitored. The cpkA disruptant showed poor cell growth at 60 degrees C but no significant defects at 85 degrees C and 93 degrees C. On the other hand, cpkB disruption led to growth defects at 93 degrees C but no significant defects at 60 degrees C and 85 degrees C. These data indicate that CpkA and CpkB are necessary for cell growth at lower and higher temperatures, respectively. The logarithmic-phase-dependent expression of CpkA at 93 degrees C suggested that CpkA participates in initial cell growth in addition to lower-temperature adaptation. Promoter mapping and quantitative analyses using the Phr (Pyrococcus heat-shock regulator) gene disruptant revealed that temperature-dependent expression was achieved in a Phr-independent manner.
Collapse
|
9
|
Imanaka T. Adaptation Strategy of Thermophiles toward Hyperthermophily and Their Molecular Bases. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Effective approaches for the production of heterologous proteins using the Thermococcus kodakaraensis-based translation system. J Biotechnol 2008; 133:177-82. [DOI: 10.1016/j.jbiotec.2007.08.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 08/09/2007] [Accepted: 08/22/2007] [Indexed: 11/17/2022]
|
11
|
Yoshida T, Kanzaki T, Iizuka R, Komada T, Zako T, Suzuki R, Maruyama T, Yohda M. Contribution of the C-terminal region to the thermostability of the archaeal group II chaperonin from Thermococcus sp. strain KS-1. Extremophiles 2006; 10:451-9. [PMID: 16685467 DOI: 10.1007/s00792-006-0519-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 02/19/2006] [Indexed: 10/24/2022]
Abstract
Chaperonin is a double ring-shaped oligomeric protein complex, which captures a protein in the folding intermediate state and assists its folding in an ATP-dependent manner. The chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, is a group II chaperonin and is composed of two distinct subunits, alpha and beta. Although these subunits are highly homologous in sequence, the homo-oligomer of the beta-subunit is more thermostable than that of the alpha-subunit. To identify the region responsible for this difference in thermostability, we constructed domain-exchange mutants. The mutants containing the equatorial domain of the beta-subunit were more resistant to thermal dissociation than the mutants with that of the alpha-subunit. Thermostability of a beta-subunit mutant whose C-terminal 22 residues were replaced with those of the alpha-subunit decreased to the comparable level of that of the alpha-subunit homo-oligomer. These results indicate that the difference in thermostability between alpha- and beta-subunits mainly originates in the C-terminal residues in the equatorial domain, only where they exhibit substantial sequence difference.
Collapse
Affiliation(s)
- Takao Yoshida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 184-8588 Koganei, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nagahisa K, Nakamura T, Fujiwara S, Imanaka T, Takagi M. Characterization of FtsZ homolog from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. J Biosci Bioeng 2005; 89:181-7. [PMID: 16232723 DOI: 10.1016/s1389-1723(00)88734-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/1999] [Accepted: 11/25/1999] [Indexed: 11/29/2022]
Abstract
The gene of bacterial type ftsZ homolog in hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1 (Pk-ftsZ), was identified. The gene product of the Pk-ftsZ gene is composed of 380 amino acids with a molecular mass of 41,354 Da. In the deduced amino acid sequence of the Pk-ftsZ gene, a glycine-rich sequence (Gly-Gly-Gly-Thr-Gly-Ala-Gly) implicated in GTP binding was well conserved. The Pk-ftsZ gene was overexpressed using Escherichia coli as a host and the recombinant protein was purified. The purified Pk-FtsZ protein exhibited GTPase activity with optimum temperatures higher than 80 degrees C. However, the protein showed little GTPase activity at 40 degrees C, indicating that a high reaction temperature is required for the GTPase activity in accordance with the thermophilic nature of P. kodakaraensis KOD1. The GTP-binding ability of Pk-FtsZ protein could also be detected by UV-induced cross-linking of a protein to [alpha-32P] GTP. The Pk-ftsZ gene was expressed in E. coli cells with a temperature-sensitive ftsZ mutation, E. coli ftsZ84 (ts), but its mutant phenotype of elongated cell form at a nonpermissive temperature (42 degrees C) could not be compensated, possibly because of the thermophilic nature of the Pk-FtsZ. Pk-FtsZ could form protofilaments in a GTP-dependent manner at 90 degrees C. Results of phylogenetic analysis suggest that there might be additional factors required for formation of the Z ring in P. kodakaraensis KOD1.
Collapse
Affiliation(s)
- K Nagahisa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
13
|
Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T. Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 2005; 15:352-63. [PMID: 15710748 PMCID: PMC551561 DOI: 10.1101/gr.3003105] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 12/21/2004] [Indexed: 01/27/2023]
Abstract
The genus Thermococcus, comprised of sulfur-reducing hyperthermophilic archaea, belongs to the order Thermococcales in Euryarchaeota along with the closely related genus Pyrococcus. The members of Thermococcus are ubiquitously present in natural high-temperature environments, and are therefore considered to play a major role in the ecology and metabolic activity of microbial consortia within hot-water ecosystems. To obtain insight into this important genus, we have determined and annotated the complete 2,088,737-base genome of Thermococcus kodakaraensis strain KOD1, followed by a comparison with the three complete genomes of Pyrococcus spp. A total of 2306 coding DNA sequences (CDSs) have been identified, among which half (1165 CDSs) are annotatable, whereas the functions of 41% (936 CDSs) cannot be predicted from the primary structures. The genome contains seven genes for probable transposases and four virus-related regions. Several proteins within these genetic elements show high similarities to those in Pyrococcus spp., implying the natural occurrence of horizontal gene transfer of such mobile elements among the order Thermococcales. Comparative genomics clarified that 1204 proteins, including those for information processing and basic metabolisms, are shared among T. kodakaraensis and the three Pyrococcus spp. On the other hand, among the set of 689 proteins unique to T. kodakaraensis, there are several intriguing proteins that might be responsible for the specific trait of the genus Thermococcus, such as proteins involved in additional pyruvate oxidation, nucleotide metabolisms, unique or additional metal ion transporters, improved stress response system, and a distinct restriction system.
Collapse
Affiliation(s)
- Toshiaki Fukui
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Refolding of proteins by hexadecamers and monomers of the α and β subunits of group II chaperonin from the hyperthermophilic archaeum Thermococcus strain KS-1. Biochem Eng J 2004. [DOI: 10.1016/s1369-703x(03)00168-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Gene cloning and characterization of fructose-1,6-bisphosphate aldolase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Biosci Bioeng 2002. [DOI: 10.1016/s1389-1723(02)80156-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Hashimoto Y, Yamamoto T, Fujiwara S, Takagi M, Imanaka T. Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001. J Bacteriol 2001; 183:5050-7. [PMID: 11489857 PMCID: PMC95380 DOI: 10.1128/jb.183.17.5050-5057.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2000] [Accepted: 06/04/2001] [Indexed: 11/20/2022] Open
Abstract
A unique extracellular and thermostable cyclomaltodextrin glucanotransferase (CGTase) from the hyperthermophilic archaeon Thermococcus sp. strain B1001 produces predominantly (>85%) alpha-cyclomaltodextrin (alpha-CD) from starch (Y. Tachibana, et al., Appl. Environ. Microbiol. 65:1991--1997, 1999). Nucleotide sequencing of the CGTase gene (cgtA) and its flanking region was performed, and a cluster of five genes was found, including a gene homolog encoding a cyclomaltodextrinase (CDase) involved in the degradation of CDs (cgtB), the gene encoding CGTase (cgtA), a gene homolog for a CD-binding protein (CBP) (cgtC), and a putative CBP-dependent ABC transporter involved in uptake of CDs (cgtDE). The CDase was expressed in Escherichia coli and purified. The optimum pH and temperature for CD hydrolysis were 5.5 and 95 degrees C, respectively. The molecular weight of the recombinant enzyme was estimated to be 79,000. The CDase hydrolyzed beta-CD most efficiently among other CDs. Maltose and pullulan were not utilized as substrates. Linear maltodextrins with a small glucose unit were very slowly hydrolyzed, and starch was hydrolyzed more slowly. Analysis by thin-layer chromatography revealed that glucose and maltose were produced as end products. The purified recombinant CBP bound to maltose as well as to alpha-CD. However, the CBP exhibited higher thermostability in the presence of alpha-CD. These results suggested that strain B1001 possesses a unique metabolic pathway that includes extracellular synthesis, transmembrane uptake, and intracellular degradation of CDs in starch utilization. Potential advantages of this starch metabolic pathway via CDs are discussed.
Collapse
|
17
|
Affiliation(s)
- S Fujiwara
- Department of Biotechnology, Osaka University Graduate School of Engineering, Osaka 565-0871, Japan
| | | | | |
Collapse
|
18
|
Izumi M, Fujiwara S, Takagi M, Fukui K, Imanaka T. Two kinds of archaeal chaperonin with different temperature dependency from a hyperthermophile. Biochem Biophys Res Commun 2001; 280:581-7. [PMID: 11162559 DOI: 10.1006/bbrc.2000.4154] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thermococcus kodakaraensis KOD1 produces two kinds of chaperonin subunits, CpkA and CpkB. To monitor the expression levels of CpkA and CpkB, anti-CpkA and anti-CpkB antisera were obtained by using synthesized peptides as the haptens. These haptens were prepared based on the carboxyl terminus regions of CpkA and CpkB, which show clear differences in amino acid sequence. Immunoblotting analysis using obtained antisera revealed that the expression levels of CpkA and CpkB changed depending on the cultivation temperature. When cells were grown at 95 degrees C, intracellular amount of CpkA was low, while CpkB was expressed at extremely high level in KOD1. In the case of 70 degrees C cultivation, CpkA existed as the major chaperonin in the cell, whereas CpkB existed as the minor one. Temperature-shift experiments showed that the expression of CpkB was induced by the up-shift and reduced by the down-shift of temperature. In contrast, the expression of CpkA was reduced by the up-shift and induced by the down-shift of temperature. Furthermore, native PAGE and immunoprecipitation experiments revealed that the stoichiometrical ratio of CpkA and CpkB in chaperonin complex changed according to growth temperature.
Collapse
Affiliation(s)
- M Izumi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Izumi M, Fujiwara S, Shiraki K, Takagi M, Fukui K, Imanaka T. Utilization of Immobilized Archaeal Chaperonin for Enzyme Stabilization. J Biosci Bioeng 2001; 91:316-8. [PMID: 16232997 DOI: 10.1263/jbb.91.316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2000] [Accepted: 12/12/2000] [Indexed: 11/17/2022]
Abstract
CpkA and CpkB are thermostable chaperonins from hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. CpkA or CpkB was immobilized onto agarose beads by the carbodiimide coupling method. In order to investigate whether immobilized CpkA or CpkB stabilizes a foreign enzyme, their ability to stabilize enzyme was examined using beta-D-galactosidase from Escherichia coli as a model target. In the absence of chaperonin beads, 38.1% of the total soluble protein was precipitated by heat treatment at 53 degrees C for 30 min. The protein structure of the residual soluble fraction was examined by circular dichroism, indicating that beta-D-galactosidase exists as a mixture of the active folded form and the inactive unfolded form. The specific activity of the residual soluble fraction decreased to 85.1% that of the unheated level (from 149.0 U/mg to 127.0 U/mg), indicating that the active folded form in the heated soluble fraction was 85.2%. In the presence of CpkA- or CpkB-beads, 28.6% or 34.3% of beta-d-galactosidase was precipitated by the same heat treatment. However, the specific activity in the soluble fraction was almost maintained (CpkA, from 151.0 U/mg to 140.3 U/mg; CpkB, from 149.0 U/mg to 140.3 U/mg). These results indicated that CpkA- or CpkB-beads are useful for keeping the enzyme active.
Collapse
Affiliation(s)
- M Izumi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Recent structural data imply differences in allosteric behavior of the group I chaperonins, typified by GroEL from Escherichia coli, and the group II chaperonins, which comprise archaeal thermosome and eukaryotic TRiC/CCT. Therefore, this study addresses the mechanism of interaction of adenine nucleotides with recombinant alpha-only and native alphabeta-thermosomes from Thermoplasma acidophilum, which also enables us to analyze the role of the heterooligomeric composition of the natural thermosome. Although all subunits of the alpha-only thermosome seem to bind nucleotides tightly and independently, the native chaperonin has two different classes of ATP-binding sites. Furthermore, for the alpha-only thermosome, the steady-state ATPase rate is determined by the cleavage reaction itself, whereas, for the alphabeta-thermosome, the rate-limiting step is associated with a post-hydrolysis isomerisation into a non-covalent ADP*P(i) species prior to the release of the gamma-phosphate group. After half-saturation with ATP, a negative cooperativity in hydrolysis is observed for both thermosomes. The effect of Mg(2+) and K(+) nucleotide cycling is documented. We conclude that archaeal chaperonins have unique allosteric properties and discuss them in the light of the mechanism established for the group I chaperonins.
Collapse
Affiliation(s)
- I Gutsche
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18a, Martinsried, D-82152, Germany.
| | | | | |
Collapse
|
22
|
Macario AJ, Lange M, Ahring BK, Conway de Macario E. Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 1999; 63:923-67, table of contents. [PMID: 10585970 PMCID: PMC98981 DOI: 10.1128/mmbr.63.4.923-967.1999] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The field covered in this review is new; the first sequence of a gene encoding the molecular chaperone Hsp70 and the first description of a chaperonin in the archaea were reported in 1991. These findings boosted research in other areas beyond the archaea that were directly relevant to bacteria and eukaryotes, for example, stress gene regulation, the structure-function relationship of the chaperonin complex, protein-based molecular phylogeny of organisms and eukaryotic-cell organelles, molecular biology and biochemistry of life in extreme environments, and stress tolerance at the cellular and molecular levels. In the last 8 years, archaeal stress genes and proteins belonging to the families Hsp70, Hsp60 (chaperonins), Hsp40(DnaJ), and small heat-shock proteins (sHsp) have been studied. The hsp70(dnaK), hsp40(dnaJ), and grpE genes (the chaperone machine) have been sequenced in seven, four, and two species, respectively, but their expression has been examined in detail only in the mesophilic methanogen Methanosarcina mazei S-6. The proteins possess markers typical of bacterial homologs but none of the signatures distinctive of eukaryotes. In contrast, gene expression and transcription initiation signals and factors are of the eucaryal type, which suggests a hybrid archaeal-bacterial complexion for the Hsp70 system. Another remarkable feature is that several archaeal species in different phylogenetic branches do not have the gene hsp70(dnaK), an evolutionary puzzle that raises the important question of what replaces the product of this gene, Hsp70(DnaK), in protein biogenesis and refolding and for stress resistance. Although archaea are prokaryotes like bacteria, their Hsp60 (chaperonin) family is of type (group) II, similar to that of the eukaryotic cytosol; however, unlike the latter, which has several different members, the archaeal chaperonin system usually includes only two (in some species one and in others possibly three) related subunits of approximately 60 kDa. These form, in various combinations depending on the species, a large structure or chaperonin complex sometimes called the thermosome. This multimolecular assembly is similar to the bacterial chaperonin complex GroEL/S, but it is made of only the large, double-ring oligomers each with eight (or nine) subunits instead of seven as in the bacterial complex. Like Hsp70(DnaK), the archaeal chaperonin subunits are remarkable for their evolution, but for a different reason. Ubiquitous among archaea, the chaperonins show a pattern of recurrent gene duplication-hetero-oligomeric chaperonin complexes appear to have evolved several times independently. The stress response and stress tolerance in the archaea involve chaperones, chaperonins, other heat shock (stress) proteins including sHsp, thermoprotectants, the proteasome, as yet incompletely understood thermoresistant features of many molecules, and formation of multicellular structures. The latter structures include single- and mixed-species (bacterial-archaeal) types. Many questions remain unanswered, and the field offers extraordinary opportunities owing to the diversity, genetic makeup, and phylogenetic position of archaea and the variety of ecosystems they inhabit. Specific aspects that deserve investigation are elucidation of the mechanism of action of the chaperonin complex at different temperatures, identification of the partners and substitutes for the Hsp70 chaperone machine, analysis of protein folding and refolding in hyperthermophiles, and determination of the molecular mechanisms involved in stress gene regulation in archaeal species that thrive under widely different conditions (temperature, pH, osmolarity, and barometric pressure). These studies are now possible with uni- and multicellular archaeal models and are relevant to various areas of basic and applied research, including exploration and conquest of ecosystems inhospitable to humans and many mammals and plants.
Collapse
Affiliation(s)
- A J Macario
- Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, School of Public Health, The University at Albany, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|
23
|
Gutsche I, Essen LO, Baumeister W. Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J Mol Biol 1999; 293:295-312. [PMID: 10550210 DOI: 10.1006/jmbi.1999.3008] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the past decade, the eubacterial group I chaperonin GroEL became the paradigm of a protein folding machine. More recently, electron microscopy and X-ray crystallography offered insights into the structure of the thermosome, the archetype of the group II chaperonins which also comprise the chaperonin from the eukaryotic cytosol TRiC. Some structural differences from GroEL were revealed, namely the existence of a built-in lid provided by the helical protrusions of the apical domains instead of a GroES-like co-chaperonin. These structural studies provide a framework for understanding the differences in the mode of action between the group II and the group I chaperonins. In vitro analyses of the folding of non-native substrates coupled to ATP binding and hydrolysis are progressing towards establishing a functional cycle for group II chaperonins. A protein complex called GimC/prefoldin has recently been found to cooperate with TRiC in vivo, and its characterization is under way.
Collapse
Affiliation(s)
- I Gutsche
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18a, D-82152, Germany
| | | | | |
Collapse
|