1
|
Fan Q, Neubauer P, Lenz O, Gimpel M. Heterologous Hydrogenase Overproduction Systems for Biotechnology-An Overview. Int J Mol Sci 2020; 21:E5890. [PMID: 32824336 PMCID: PMC7460606 DOI: 10.3390/ijms21165890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023] Open
Abstract
Hydrogenases are complex metalloenzymes, showing tremendous potential as H2-converting redox catalysts for application in light-driven H2 production, enzymatic fuel cells and H2-driven cofactor regeneration. They catalyze the reversible oxidation of hydrogen into protons and electrons. The apo-enzymes are not active unless they are modified by a complicated post-translational maturation process that is responsible for the assembly and incorporation of the complex metal center. The catalytic center is usually easily inactivated by oxidation, and the separation and purification of the active protein is challenging. The understanding of the catalytic mechanisms progresses slowly, since the purification of the enzymes from their native hosts is often difficult, and in some case impossible. Over the past decades, only a limited number of studies report the homologous or heterologous production of high yields of hydrogenase. In this review, we emphasize recent discoveries that have greatly improved our understanding of microbial hydrogenases. We compare various heterologous hydrogenase production systems as well as in vitro hydrogenase maturation systems and discuss their perspectives for enhanced biohydrogen production. Additionally, activities of hydrogenases isolated from either recombinant organisms or in vivo/in vitro maturation approaches were systematically compared, and future perspectives for this research area are discussed.
Collapse
Affiliation(s)
- Qin Fan
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| | - Peter Neubauer
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| | - Oliver Lenz
- Department of Chemistry, Technical University of Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Matthias Gimpel
- Institute of Biotechnology, Technical University of Berlin, Ackerstraße 76, 13355 Berlin, Germany; (Q.F.); (P.N.)
| |
Collapse
|
2
|
Hydrogen-uptake genes improve symbiotic efficiency in common beans (Phaseolus vulgaris L.). Antonie van Leeuwenhoek 2020; 113:687-696. [DOI: 10.1007/s10482-019-01381-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/26/2019] [Indexed: 01/20/2023]
|
3
|
Olivares J, Bedmar EJ, Sanjuán J. Biological nitrogen fixation in the context of global change. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:486-494. [PMID: 23360457 DOI: 10.1094/mpmi-12-12-0293-cr] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The intensive application of fertilizers during agricultural practices has led to an unprecedented perturbation of the nitrogen cycle, illustrated by the growing accumulation of nitrates in soils and waters and of nitrogen oxides in the atmosphere. Besides increasing use efficiency of current N fertilizers, priority should be given to value the process of biological nitrogen fixation (BNF) through more sustainable technologies that reduce the undesired effects of chemical N fertilization of agricultural crops. Wider legume adoption, supported by coordinated legume breeding and inoculation programs are approaches at hand. Also available are biofertilizers based on microbes that help to reduce the needs of N fertilization in important crops like cereals. Engineering the capacity to fix nitrogen in cereals, either by themselves or in symbiosis with nitrogen-fixing microbes, are attractive future options that, nevertheless, require more intensive and internationally coordinated research efforts. Although nitrogen-fixing plants may be less productive, at some point, agriculture must significantly reduce the use of warming (chemically synthesized) N and give priority to BNF if it is to sustain both food production and environmental health for a continuously growing human population.
Collapse
Affiliation(s)
- José Olivares
- Dpto. Microbiologia del Suelo y Sistemas Simbioticos, Estacion Experimental del Zaidin, Granada, Spain
| | | | | |
Collapse
|
4
|
Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] hydrogenases in Synechococcus elongatus. PLoS One 2011; 6:e20126. [PMID: 21637846 PMCID: PMC3102683 DOI: 10.1371/journal.pone.0020126] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/13/2011] [Indexed: 12/04/2022] Open
Abstract
Oxygen-tolerant [NiFe] hydrogenases may be used in future photobiological hydrogen production systems once the enzymes can be heterologously expressed in host organisms of interest. To achieve heterologous expression of [NiFe] hydrogenases in cyanobacteria, the two hydrogenase structural genes from Alteromonas macleodii Deep ecotype (AltDE), hynS and hynL, along with the surrounding genes in the gene operon of HynSL were cloned in a vector with an IPTG-inducible promoter and introduced into Synechococcus elongatus PCC7942. The hydrogenase protein was expressed at the correct size upon induction with IPTG. The heterologously-expressed HynSL hydrogenase was active when tested by in vitro H2 evolution assay, indicating the correct assembly of the catalytic center in the cyanobacterial host. Using a similar expression system, the hydrogenase structural genes from Thiocapsa roseopersicina (hynSL) and the entire set of known accessory genes were transferred to S. elongatus. A protein of the correct size was expressed but had no activity. However, when the 11 accessory genes from AltDE were co-expressed with hynSL, the T. roseopersicina hydrogenase was found to be active by in vitro assay. This is the first report of active, heterologously-expressed [NiFe] hydrogenases in cyanobacteria.
Collapse
|
5
|
Weyman PD, Vargas WA, Chuang RY, Chang Y, Smith HO, Xu Q. Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] hydrogenases in Escherichia coli. MICROBIOLOGY-SGM 2011; 157:1363-1374. [PMID: 21349975 DOI: 10.1099/mic.0.044834-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
HynSL from Alteromonas macleodii 'deep ecotype' (AltDE) is an oxygen-tolerant and thermostable [NiFe] hydrogenase. Its two structural genes (hynSL), encoding small and large hydrogenase subunits, are surrounded by eight genes (hynD, hupH and hypCABDFE) predicted to encode accessory proteins involved in maturation of the hydrogenase. A 13 kb fragment containing the ten structural and accessory genes along with three additional adjacent genes (orf2, cyt and orf1) was cloned into an IPTG-inducible expression vector and transferred into an Escherichia coli mutant strain lacking its native hydrogenases. Upon induction, HynSL from AltDE was expressed in E. coli and was active, as determined by an in vitro hydrogen evolution assay. Subsequent genetic analysis revealed that orf2, cyt, orf1 and hupH are not essential for assembling an active hydrogenase. However, hupH and orf2 can enhance the activity of the heterologously expressed hydrogenase. We used this genetic system to compare maturation mechanisms between AltDE HynSL and its Thiocapsa roseopersicina homologue. When the structural genes for the T. roseopersicina hydrogenase, hynSL, were expressed along with known T. roseopersicina accessory genes (hynD, hupK, hypC1C2 and hypDEF), no active hydrogenase was produced. Further, co-expression of AltDE accessory genes hypA and hypB with the entire set of the T. roseopersicina genes did not produce an active hydrogenase. However, co-expression of all AltDE accessory genes with the T. roseopersicina structural genes generated an active T. roseopersicina hydrogenase. This result demonstrates that the accessory genes from AltDE can complement their counterparts from T. roseopersicina and that the two hydrogenases share similar maturation mechanisms.
Collapse
Affiliation(s)
- P D Weyman
- Department of Synthetic Biology and Bioenergy, The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - W A Vargas
- Department of Synthetic Biology and Bioenergy, The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - R-Y Chuang
- Department of Synthetic Biology and Bioenergy, The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Y Chang
- Department of Synthetic Biology and Bioenergy, The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - H O Smith
- Department of Synthetic Biology and Bioenergy, The J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Q Xu
- Department of Synthetic Biology and Bioenergy, The J. Craig Venter Institute, Rockville, MD 20850, USA
| |
Collapse
|
6
|
Wells MA, Mercer J, Mott RA, Pereira-Medrano AG, Burja AM, Radianingtyas H, Wright PC. Engineering a non-native hydrogen production pathway into Escherichia coli via a cyanobacterial [NiFe] hydrogenase. Metab Eng 2011; 13:445-53. [PMID: 21276867 DOI: 10.1016/j.ymben.2011.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/05/2010] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Biotechnology is a promising approach for the generation of hydrogen, but is not yet commercially viable. Metabolic engineering is a potential solution, but has largely been limited to native pathway optimisation. To widen opportunities for use of non-native [NiFe] hydrogenases for improved hydrogen production, we introduced a cyanobacterial hydrogen production pathway and associated maturation factors into Escherichia coli. Hydrogen production is observed in vivo in a hydrogenase null host, demonstrating coupling to host electron transfer systems. Hydrogenase activity is also detected in vitro. Hydrogen output is increased when formate production is abolished, showing that the new pathway is distinct from the native formate dependent pathway and supporting the conclusion that it couples cellular NADH and NADPH pools to molecular hydrogen. This work demonstrates non-native hydrogen production in E. coli, showing the wide portability of [NiFe] hydrogenase pathways and the potential for metabolic engineering to improve hydrogen yields.
Collapse
Affiliation(s)
- Mark A Wells
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, UK
| | | | | | | | | | | | | |
Collapse
|
7
|
Sun J, Hopkins RC, Jenney FE, McTernan PM, Adams MWW. Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production. PLoS One 2010; 5:e10526. [PMID: 20463892 PMCID: PMC2865534 DOI: 10.1371/journal.pone.0010526] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 04/02/2010] [Indexed: 11/25/2022] Open
Abstract
Hydrogen gas is a major biofuel and is metabolized by a wide range of microorganisms. Microbial hydrogen production is catalyzed by hydrogenase, an extremely complex, air-sensitive enzyme that utilizes a binuclear nickel-iron [NiFe] catalytic site. Production and engineering of recombinant [NiFe]-hydrogenases in a genetically-tractable organism, as with metalloprotein complexes in general, has met with limited success due to the elaborate maturation process that is required, primarily in the absence of oxygen, to assemble the catalytic center and functional enzyme. We report here the successful production in Escherichia coli of the recombinant form of a cytoplasmic, NADP-dependent hydrogenase from Pyrococcus furiosus, an anaerobic hyperthermophile. This was achieved using novel expression vectors for the co-expression of thirteen P. furiosus genes (four structural genes encoding the hydrogenase and nine encoding maturation proteins). Remarkably, the native E. coli maturation machinery will also generate a functional hydrogenase when provided with only the genes encoding the hydrogenase subunits and a single protease from P. furiosus. Another novel feature is that their expression was induced by anaerobic conditions, whereby E. coli was grown aerobically and production of recombinant hydrogenase was achieved by simply changing the gas feed from air to an inert gas (N2). The recombinant enzyme was purified and shown to be functionally similar to the native enzyme purified from P. furiosus. The methodology to generate this key hydrogen-producing enzyme has dramatic implications for the production of hydrogen and NADPH as vehicles for energy storage and transport, for engineering hydrogenase to optimize production and catalysis, as well as for the general production of complex, oxygen-sensitive metalloproteins.
Collapse
Affiliation(s)
- Junsong Sun
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Robert C. Hopkins
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Francis E. Jenney
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Patrick M. McTernan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Antolín MC, Muro I, Sánchez-Díaz M. Sewage sludge application can induce changes in antioxidant status of nodulated alfalfa plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:436-442. [PMID: 19959231 DOI: 10.1016/j.ecoenv.2009.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 06/16/2009] [Accepted: 08/30/2009] [Indexed: 05/28/2023]
Abstract
A greenhouse experiment was conducted to investigate the oxidative stress produced by sewage sludge addition on nodulated alfalfa (Medicago sativa L. cv. Aragón) plants. Two types of sludge were incorporated into substrate: anaerobic mesophilic digested (AM) and autothermal thermophilic aerobic digested (ATAD) sludge. Pots without sludge but with inoculated plants were used as control treatment for comparison. Results showed that sludge amended plants had increased tissue accumulation of heavy metals that induced oxidative stress. This is characterized by induction of the antioxidant enzymatic activities and alterations in the redox state of ascorbate. ATAD sludge application produced a reduction in nodulation, increased nodule antioxidant enzyme activities and decreased ascorbate/dehydroascorbate ratio. As a consequence, nodules of ATAD treatment suffered from oxidative damages as evidenced by high malondialdehyde levels. By contrast, AM application enhanced plant growth and no deleterious effects on nodulation were found. Nodules developed in AM sludge had increased antioxidant enzyme activities, ascorbate/dehydroascorbate ratio and improved capacity for thiol synthesis. Results clearly showed that nodulated alfalfa performed better in AM than in ATAD sludge and suggest that differential response appears to be mediated by plant ability to thiol synthesis and to maintenance of a more equilibrated antioxidant status.
Collapse
Affiliation(s)
- M Carmen Antolín
- Dpto. Biología Vegetal, Sección Biología Vegetal (Unidad Asociada al CSIC, EEAD, Zaragoza), Facultades de Ciencias y Farmacia, Universidad de Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain.
| | | | | |
Collapse
|
9
|
Discovery of [NiFe] hydrogenase genes in metagenomic DNA: cloning and heterologous expression in Thiocapsa roseopersicina. Appl Environ Microbiol 2009; 75:5821-30. [PMID: 19633107 DOI: 10.1128/aem.00580-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a metagenomics approach, we have cloned a piece of environmental DNA from the Sargasso Sea that encodes an [NiFe] hydrogenase showing 60% identity to the large subunit and 64% to the small subunit of a Thiocapsa roseopersicina O2-tolerant [NiFe] hydrogenase. The DNA sequence of the hydrogenase identified by the metagenomic approach was subsequently found to be 99% identical to the hyaA and hyaB genes of an Alteromonas macleodii hydrogenase, indicating that it belongs to the Alteromonas clade. We were able to express our new Alteromonas hydrogenase in T. roseopersicina. Expression was accomplished by coexpressing only two accessory genes, hyaD and hupH, without the need to express any of the hyp accessory genes (hypABCDEF). These results suggest that the native accessory proteins in T. roseopersicina could substitute for the Alteromonas counterparts that are absent in the host to facilitate the assembly of a functional Alteromonas hydrogenase. To further compare the complex assembly machineries of these two [NiFe] hydrogenases, we performed complementation experiments by introducing the new Alteromonas hyaD gene into the T. roseopersicina hynD mutant. Interestingly, Alteromonas endopeptidase HyaD could complement T. roseopersicina HynD to cleave endoproteolytically the C-terminal end of the T. roseopersicina HynL hydrogenase large subunit and activate the enzyme. This study refines our knowledge on the selectivity and pleiotropy of the elements of the [NiFe] hydrogenase assembly machineries. It also provides a model for functionally analyzing novel enzymes from environmental microbes in a culture-independent manner.
Collapse
|
10
|
English CM, Eckert C, Brown K, Seibert M, King PW. Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production. Dalton Trans 2009:9970-8. [DOI: 10.1039/b913426n] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Abstract
Enzymes possessing the capacity to oxidize molecular hydrogen have developed convergently three class of enzymes leading to: [FeFe]-, [NiFe]-, and [FeS]-cluster-free hydrogenases. They differ in the composition and the structure of the active site metal centre and the sequence of the constituent structural polypeptides but they show one unifying feature, namely the existence of CN and/or CO ligands at the active site Fe. Recent developments in the analysis of the maturation of [FeFe]- and [NiFe]- hydrogenases have revealed a remarkably complex pattern of mostly novel biochemical reactions. Maturation of [FeFe]-hydrogenases requires a minimum of three auxiliary proteins, two of which belong to the class of Radical-SAM enzymes and other to the family of GTPases. They are sufficient to generate active enzyme when their genes are co-expressed with the structural genes in a heterologous host, otherwise deficient in [FeFe]-hydrogenase expression. Maturation of the large subunit of [NiFe]-hydrogenases depends on the activity of at least seven core proteins that catalyse the synthesis of the CN ligand, have a function in the coordination of the active site iron, the insertion of nickel and the proteolytic maturation of the large subunit. Whereas this core maturation machinery is sufficient to generate active hydrogenase in the cytoplasm, like that of hydrogenase 3 from Escherichia coli, additional proteins are involved in the export of the ready-assembled heterodimeric enzyme to the periplasm via the twin-arginine translocation system in the case of membrane-bound hydrogenases. A series of other gene products with intriguing putative functions indicate that the minimal pathway established for E. coli [NiFe]-hydrogenase maturation may possess even higher complexity in other organisms.
Collapse
Affiliation(s)
- August Böck
- Department Biology I, University of Munich, 80638 Munich, Germany
| | | | | | | |
Collapse
|
12
|
Lenz O, Gleiche A, Strack A, Friedrich B. Requirements for heterologous production of a complex metalloenzyme: the membrane-bound [NiFe] hydrogenase. J Bacteriol 2005; 187:6590-5. [PMID: 16159796 PMCID: PMC1236620 DOI: 10.1128/jb.187.18.6590-6595.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By taking advantage of the tightly clustered genes for the membrane-bound [NiFe] hydrogenase of Ralstonia eutropha H16, broad-host-range recombinant plasmids were constructed carrying the entire membrane-bound hydrogenase (MBH) operon encompassing 21 genes. We demonstrate that the complex MBH biosynthetic apparatus is actively produced in hydrogenase-free hosts yielding fully assembled and functional MBH protein.
Collapse
Affiliation(s)
- Oliver Lenz
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
13
|
Palacios JM, Manyani H, Martínez M, Ureta AC, Brito B, Báscones E, Rey L, Imperial J, Ruiz-Argüeso T. Genetics and biotechnology of the H(2)-uptake [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae, a legume endosymbiotic bacterium. Biochem Soc Trans 2005; 33:94-6. [PMID: 15667275 DOI: 10.1042/bst0330094] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A limited number of strains belonging to several genera of Rhizobiaceae are capable of expressing a hydrogenase system that allows partial or full recycling of hydrogen evolved by nitrogenase, thus increasing the energy efficiency of the nitrogen fixation process. This review is focused on the genetics and biotechnology of the hydrogenase system from Rhizobium leguminosarum bv. viciae, a frequent inhabitant of European soils capable of establishing symbiotic association with peas, lentils, vetches and other legumes.
Collapse
Affiliation(s)
- J M Palacios
- Laboratorio de Microbiología, Department of Biotechnology, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Peralta H, Mora Y, Salazar E, Encarnación S, Palacios R, Mora J. Engineering the nifH promoter region and abolishing poly-beta-hydroxybutyrate accumulation in Rhizobium etli enhance nitrogen fixation in symbiosis with Phaseolus vulgaris. Appl Environ Microbiol 2004; 70:3272-81. [PMID: 15184121 PMCID: PMC427788 DOI: 10.1128/aem.70.6.3272-3281.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium etli, as well as some other rhizobia, presents nitrogenase reductase (nifH) gene reiterations. Several R. etli strains studied in this laboratory showed a unique organization and contained two complete nifHDK operons (copies a and b) and a truncated nifHD operon (copy c). Expression analysis of lacZ fusion demonstrated that copies a and b in strain CFN42 are transcribed at lower levels than copy c, although this copy has no discernible role during nitrogen fixation. To increase nitrogenase production, we constructed a chimeric nifHDK operon regulated by the strong nifHc promoter sequence and expressed it in symbiosis with the common bean plant (Phaseolus vulgaris), either cloned on a stably inherited plasmid or incorporated into the symbiotic plasmid (pSym). Compared with the wild-type strain, strains with the nitrogenase overexpression construction assayed in greenhouse experiments had, increased nitrogenase activity (58% on average), increased plant weight (32% on average), increased nitrogen content in plants (15% at 32 days postinoculation), and most importantly, higher seed yield (36% on average), higher nitrogen content (25%), and higher nitrogen yield (72% on average) in seeds. Additionally, expression of the chimeric nifHDK operon in a poly-beta-hydroxybutyrate-negative R. etli strain produced an additive effect in enhancing symbiosis. To our knowledge, this is the first report of increased seed yield and nutritional content in the common bean obtained by using only the genetic material already present in Rhizobium.
Collapse
Affiliation(s)
- Humberto Peralta
- Departamento de Ingenieria Metabólica, Dinámica del Genoma, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62271, México
| | - Yolanda Mora
- Departamento de Ingenieria Metabólica, Dinámica del Genoma, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62271, México
| | - Emmanuel Salazar
- Departamento de Ingenieria Metabólica, Dinámica del Genoma, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62271, México
| | - Sergio Encarnación
- Departamento de Ingenieria Metabólica, Dinámica del Genoma, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62271, México
| | - Rafael Palacios
- Departamento de Ingenieria Metabólica, Dinámica del Genoma, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62271, México
| | - Jaime Mora
- Departamento de Ingenieria Metabólica, Dinámica del Genoma, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62271, México
- Corresponding author. Mailing address: Departamento de Ingenieria Metabólica, Centro de Investigación sobre Fijación de Nitrogeno, Universidad Nacional Autónoma de México, A. P. 565-A, Cuernavaca, Morelos CP62271, México. Phone: 52 (777) 3 13 99 44. Fax: 52 (777) 3 17 50 94. E-mail:
| |
Collapse
|
15
|
Guan J, Spencer JL, Sampath M, Devenish J. The fate of a genetically modifiedPseudomonasstrain and its transgene during the composting of poultry manure. Can J Microbiol 2004; 50:415-21. [PMID: 15284887 DOI: 10.1139/w04-030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fate of the genetically modified (GM) Pseudomonas chlororaphis strain 3732 RN-L11 and its transgene (lacZ insert) during composting of chicken manure was studied using plate count and nested polymerase chain reaction (PCR) methods. The detection sensitivity of the nested PCR method was 165 copies of the modified gene per gram of moist compost or soil. Compost microcosms consisted of a 100-g mixture of chicken manure and peat, whereas soil microcosms were 100-g samples of sandy clay loam. Each microcosm was inoculated with 4 × 1010CFU of P. chlororaphis RN-L11. In controlled temperature studies, neither P. chlororaphis RN-L11 nor its transgene could be detected in compost microcosms after incubation temperature was elevated to 45 °C or above for one or more days. In contrast, in the compost microcosms incubated at 23 °C, the target organism was not detected by the plate count method after 6 days, but its transgene was detectable for at least 45 days. In compost bins, the target organism was not recovered from compost microcosms or soil microcosms at different levels in the bins for 29 days. However, the transgene was detected in 8 of the 9 soil microcosms and in only 1 of the 9 compost microcosms. The compost microcosm in which transgene was detected was at the lower level of the bin where temperatures remained below 45 °C. The findings indicated that composting of organic wastes could be used to reduce or degrade heat sensitive GM microorganisms and their transgenes.Key words: composting, genetically modified Pseudomonas strain, transgene, polymerase chain reaction.
Collapse
Affiliation(s)
- J Guan
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, Canada.
| | | | | | | |
Collapse
|
16
|
Baginsky C, Brito B, Imperial J, Palacios JM, Ruiz-Argüeso T. Diversity and evolution of hydrogenase systems in rhizobia. Appl Environ Microbiol 2002; 68:4915-24. [PMID: 12324339 PMCID: PMC126442 DOI: 10.1128/aem.68.10.4915-4924.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uptake hydrogenases allow rhizobia to recycle the hydrogen generated in the nitrogen fixation process within the legume nodule. Hydrogenase (hup) systems in Bradyrhizobium japonicum and Rhizobium leguminosarum bv. viciae show highly conserved sequence and gene organization, but important differences exist in regulation and in the presence of specific genes. We have undertaken the characterization of hup gene clusters from Bradyrhizobium sp. (Lupinus), Bradyrhizobium sp. (Vigna), and Rhizobium tropici and Azorhizobium caulinodans strains with the aim of defining the extent of diversity in hup gene composition and regulation in endosymbiotic bacteria. Genomic DNA hybridizations using hupS, hupE, hupUV, hypB, and hoxA probes showed a diversity of intraspecific hup profiles within Bradyrhizobium sp. (Lupinus) and Bradyrhizobium sp. (Vigna) strains and homogeneous intraspecific patterns within R. tropici and A. caulinodans strains. The analysis also revealed differences regarding the possession of hydrogenase regulatory genes. Phylogenetic analyses using partial sequences of hupS and hupL clustered R. leguminosarum and R. tropici hup sequences together with those from B. japonicum and Bradyrhizobium sp. (Lupinus) strains, suggesting a common origin. In contrast, Bradyrhizobium sp. (Vigna) hup sequences diverged from the rest of rhizobial sequences, which might indicate that those organisms have evolved independently and possibly have acquired the sequences by horizontal transfer from an unidentified source.
Collapse
Affiliation(s)
- Cecilia Baginsky
- Laboratorio de Microbiología, E.T.S. Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | |
Collapse
|
17
|
Brito B, Palacios JM, Imperial J, Ruiz-Argüeso T. Engineering the Rhizobium leguminosarum bv. viciae hydrogenase system for expression in free-living microaerobic cells and increased symbiotic hydrogenase activity. Appl Environ Microbiol 2002; 68:2461-7. [PMID: 11976122 PMCID: PMC127565 DOI: 10.1128/aem.68.5.2461-2467.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium leguminosarum bv. viciae UPM791 induces hydrogenase activity in pea (Pisum sativum L.) bacteroids but not in free-living cells. The symbiotic induction of hydrogenase structural genes (hupSL) is mediated by NifA, the general regulator of the nitrogen fixation process. So far, no culture conditions have been found to induce NifA-dependent promoters in vegetative cells of this bacterium. This hampers the study of the R. leguminosarum hydrogenase system. We have replaced the native NifA-dependent hupSL promoter with the FnrN-dependent fixN promoter, generating strain SPF25, which expresses the hup system in microaerobic free-living cells. SPF25 reaches levels of hydrogenase activity in microaerobiosis similar to those induced in UPM791 bacteroids. A sixfold increase in hydrogenase activity was detected in merodiploid strain SPF25(pALPF1). A time course induction of hydrogenase activity in microaerobic free-living cells of SPF25(pALPF1) shows that hydrogenase activity is detected after 3 h of microaerobic incubation. Maximal hydrogen uptake activity was observed after 10 h of microaerobiosis. Immunoblot analysis of microaerobically induced SPF25(pALPF1) cell fractions indicated that the HupL active form is located in the membrane, whereas the unprocessed protein remains in the soluble fraction. Symbiotic hydrogenase activity of strain SPF25 was not impaired by the promoter replacement. Moreover, bacteroids from pea plants grown in low-nickel concentrations induced higher levels of hydrogenase activity than the wild-type strain and were able to recycle all hydrogen evolved by nodules. This constitutes a new strategy to improve hydrogenase activity in symbiosis.
Collapse
Affiliation(s)
- B Brito
- Laboratorio de Microbiología, E. T. S. Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|