1
|
Baylous HR, Gladfelter MF, Gardner MI, Foley M, Wilson AE, Steffen MM. Indole-3-acetic acid promotes growth in bloom-forming Microcystis via an antioxidant response. HARMFUL ALGAE 2024; 133:102575. [PMID: 38485434 DOI: 10.1016/j.hal.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 03/19/2024]
Abstract
Interactions between bacteria and phytoplankton in the phycosphere facilitate and constrain biogeochemical cycling in aquatic ecosystems. Indole-3-acetic acid (IAA) is a bacterially produced chemical signal that promotes growth of phytoplankton and plants. Here, we explored the impact of IAA on bloom-forming cyanobacteria and their associated bacteria. Exposure to IAA and its precursor, tryptophan, resulted in a strong growth response in a bloom of the freshwater cyanobacterium, Microcystis. Metatranscriptome analysis revealed the induction of an antioxidant response in Microcystis upon exposure to IAA, potentially allowing populations to increase photosynthetic rate and overcome internally generated reactive oxygen. Our data reveal that co-occurring bacteria within the phycosphere microbiome exhibit a division of labor for supportive functions, such as nutrient mineralization and transport, vitamin synthesis, and reactive oxygen neutralization. These complex dynamics within the Microcystis phycosphere microbiome are an example of interactions within a microenvironment that can have ecosystem-scale consequences.
Collapse
Affiliation(s)
- Hunter R Baylous
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Matthew F Gladfelter
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Malia I Gardner
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Madalynn Foley
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Morgan M Steffen
- Department of Biology, James Madison University, Harrisonburg, VA 22801, USA.
| |
Collapse
|
2
|
Chávez-Moctezuma MP, Martínez-Cámara R, Hernández-Salmerón J, Moreno-Hagelsieb G, Santoyo G, Valencia-Cantero E. Comparative genomic and functional analysis of Arthrobacter sp. UMCV2 reveals the presence of luxR-related genes inducible by the biocompound N, N-dimethylhexadecilamine. Front Microbiol 2022; 13:1040932. [PMID: 36386619 PMCID: PMC9659744 DOI: 10.3389/fmicb.2022.1040932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 09/29/2023] Open
Abstract
Quorum sensing (QS) is a bacterial cell-cell communication system with genetically regulated mechanisms dependent on cell density. Canonical QS systems in gram-negative bacteria possess an autoinducer synthase (LuxI family) and a transcriptional regulator (LuxR family) that respond to an autoinducer molecule. In Gram-positive bacteria, the LuxR transcriptional regulators "solo" (not associated with a LuxI homolog) may play key roles in intracellular communication. Arthrobacter sp. UMCV2 is an actinobacterium that promotes plant growth by emitting the volatile organic compound N, N-dimethylhexadecylamine (DMHDA). This compound induces iron deficiency, defense responses in plants, and swarming motility in Arthrobacter sp. UMCV2. In this study, the draft genome of this bacterium was assembled and compared with the genomes of type strains of the Arthrobacter genus, finding that it does not belong to any previously described species. Genome explorations also revealed the presence of 16 luxR-related genes, but no luxI homologs were discovered. Eleven of these sequences possess the LuxR characteristic DNA-binding domain with a helix-turn-helix motif and were designated as auto-inducer-related regulators (AirR). Four sequences possessed LuxR analogous domains and were designated as auto-inducer analogous regulators (AiaR). When swarming motility was induced with DMHDA, eight airR genes and two aiaR genes were upregulated. These results indicate that the expression of multiple luxR-related genes is induced in actinobacteria, such as Arthrobacter sp. UMCV2, by the action of the bacterial biocompound DMHDA when QS behavior is produced.
Collapse
Affiliation(s)
| | - Ramiro Martínez-Cámara
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
- Tecnológico Nacional de México, Morelia, Michoacán, Mexico
| | | | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| |
Collapse
|
3
|
Influence of Sugarcane Variety on Rhizosphere Microbiota Under Irrigated and Water-Limiting Conditions. Curr Microbiol 2022; 79:246. [PMID: 35834135 DOI: 10.1007/s00284-022-02946-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
Drought is one of the main problems linked to climate change that is faced by agriculture, affecting various globally important crops, including sugarcane. Environmentally sustainable strategies have been sought to mitigate the effects of climate change on crops. Among them, the use of beneficial microorganisms offers a promising approach. However, it is still necessary to understand the mechanisms that regulate plant-microorganism interactions, in normal situations and under stress. In this work, the rhizosphere metagenomes of two sugarcane varieties, one resistant and the other susceptible to drought, were compared under normal conditions and under water-limiting conditions. The results showed that for the drought-resistant sugarcane variety, bacteria belonging to the order Sphingomonadales and the family Xanthomonadaceae presented increased activities in terms of mobility, colonization, and cell growth. In contrast, the rhizosphere associated with the drought-sensitive variety exhibited increases of bacteria belonging to the family Polyangiaceae, and the genus Streptomyces, with modifications in DNA metabolism and ribosome binding proteins. The results pointed to variation in the rhizosphere microbiota that was modulated by the host plant genotype, revealing potential bacterial candidates that could be recruited to assist plants during water-limiting conditions.
Collapse
|
4
|
Nascimento FX, Urón P, Glick BR, Giachini A, Rossi MJ. Genomic Analysis of the 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Pseudomonas thivervalensis SC5 Reveals Its Multifaceted Roles in Soil and in Beneficial Interactions With Plants. Front Microbiol 2021; 12:752288. [PMID: 34659189 PMCID: PMC8515041 DOI: 10.3389/fmicb.2021.752288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Beneficial 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing bacteria promote plant growth and stress resistance, constituting a sustainable alternative to the excessive use of chemicals in agriculture. In this work, the increased plant growth promotion activity of the ACC deaminase-producing Pseudomonas thivervalensis SC5, its ability to limit the growth of phytopathogens, and the genomics behind these important properties are described in detail. P. thivervalensis SC5 displayed several active plant growth promotion traits and significantly increased cucumber plant growth and resistance against salt stress (100mmol/L NaCl) under greenhouse conditions. Strain SC5 also limited the in vitro growth of the pathogens Botrytis cinerea and Pseudomonas syringae DC3000 indicating active biological control activities. Comprehensive analysis revealed that P. thivervalensis SC5 genome is rich in genetic elements involved in nutrient acquisition (N, P, S, and Fe); osmotic stress tolerance (e.g., glycine-betaine, trehalose, and ectoine biosynthesis); motility, chemotaxis and attachment to plant tissues; root exudate metabolism including the modulation of plant phenolics (e.g., hydroxycinnamic acids), lignin, and flavonoids (e.g., quercetin); resistance against plant defenses (e.g., reactive oxygens species-ROS); plant hormone modulation (e.g., ethylene, auxins, cytokinins, and salicylic acid), and bacterial and fungal phytopathogen antagonistic traits (e.g., 2,4-diacetylphloroglucinol, HCN, a fragin-like non ribosomal peptide, bacteriocins, a lantipeptide, and quorum-quenching activities), bringing detailed insights into the action of this versatile plant-growth-promoting bacterium. Ultimately, the combination of both increased plant growth promotion/protection and biological control abilities makes P. thivervalensis SC5 a prime candidate for its development as a biofertilizer/biostimulant/biocontrol product. The genomic analysis of this bacterium brings new insights into the functioning of Pseudomonas and their role in beneficial plant-microbe interactions.
Collapse
Affiliation(s)
- Francisco X Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Laboratório de Microbiologia e Bioprocessos, Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Paola Urón
- Laboratório de Microbiologia e Bioprocessos, Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Admir Giachini
- Laboratório de Microbiologia e Bioprocessos, Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Márcio J Rossi
- Laboratório de Microbiologia e Bioprocessos, Departamento de Microbiologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
5
|
SigB regulates stress resistance, glucose starvation, MnSOD production, biofilm formation, and root colonization in Bacillus cereus 905. Appl Microbiol Biotechnol 2021; 105:5943-5957. [PMID: 34350477 DOI: 10.1007/s00253-021-11402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 10/20/2022]
Abstract
Bacillus cereus 905, originally isolated from wheat rhizosphere, exhibits strong colonization ability on wheat roots. Our previous studies showed that root colonization is contributed by the ability of the bacterium to efficiently utilize carbon sources and form biofilms and that the sodA2 gene-encoded manganese-containing superoxide dismutase (MnSOD2) plays an indispensable role in the survival of B. cereus 905 in the wheat rhizosphere. In this investigation, we further demonstrated that the ability of B. cereus 905 to resist adverse environmental conditions is partially attributed to activation of the alternative sigma factor σB, encoded by the sigB gene. The sigB mutant experienced a dramatic reduction in survival when cells were exposed to ethanol, acid, heat, and oxidative stress or under glucose starvation. Analysis of the sodA2 gene transcription revealed a partial, σB-dependent induction of the gene during glucose starvation or when treated with paraquat. In addition, the sigB mutant displayed a defect in biofilm formation under stress conditions. Finally, results from the root colonization assay indicated that sigB and sodA2 collectively contribute to B. cereus 905 colonization on wheat roots. Our study suggests a diverse role of SigB in rhizosphere survival and root colonization of B. cereus 905 under stress conditions. KEY POINTS : • SigB confers resistance to environmental stresses in B. cereus 905. • SigB plays a positive role in glucose utilization and biofilm formation in B. cereus. • SigB and SodA2 collectively contribute to colonization on wheat roots by B. cereus.
Collapse
|
6
|
Marian M, Fujikawa T, Shimizu M. Genome analysis provides insights into the biocontrol ability of Mitsuaria sp. strain TWR114. Arch Microbiol 2021; 203:3373-3388. [PMID: 33880605 DOI: 10.1007/s00203-021-02327-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022]
Abstract
Mitsuaria sp. TWR114 is a biocontrol agent against tomato bacterial wilt (TBW). We aimed to gain genomic insights relevant to the biocontrol mechanisms and colonization ability of this strain. The draft genome size was found to be 5,632,523 bp, with a GC content of 69.5%, assembled into 1144 scaffolds. Genome annotation predicted a total of 4675 protein coding sequences (CDSs), 914 pseudogenes, 49 transfer RNAs, 3 noncoding RNAs, and 2 ribosomal RNAs. Genome analysis identified multiple CDSs associated with various pathways for the metabolism and transport of amino acids and carbohydrates, motility and chemotactic capacities, protection against stresses (oxidative, antibiotic, and phage), production of secondary metabolites, peptidases, quorum-quenching enzymes, and indole-3-acetic acid, as well as protein secretion systems and their related appendages. The genome resource will extend our understanding of the genomic features related to TWR114's biocontrol and colonization abilities and facilitate its development as a new biopesticide against TBW.
Collapse
Affiliation(s)
- Malek Marian
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.,College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki, 300-0393, Japan
| | - Takashi Fujikawa
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8605, Japan
| | - Masafumi Shimizu
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
7
|
The recA gene is crucial to mediate colonization of Bacillus cereus 905 on wheat roots. Appl Microbiol Biotechnol 2020; 104:9251-9265. [PMID: 32970180 DOI: 10.1007/s00253-020-10915-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
Bacillus cereus 905, one of the plant growth-promoting rhizobacteria (PGPRs), is capable of colonizing wheat roots in a large population size. From previous studies, we learned that the sodA2-encoding manganese-containing superoxide dismutase (MnSOD2) is important for B. cereus 905 to survive in wheat rhizosphere. In this investigation, we demonstrated that deletion of the recA gene, which codes for the recombinase A, significantly reduced MnSOD2 expression at both the mRNA and the protein levels. Through comparison with the wild-type, the ∆recA showed a dramatic decrease in cell survival after exposure to 50 μM paraquat or 15 mM H2O2. Evidence indicated that the recA gene of B. cereus 905 also notably regulated nutrition utilization efficiency, biofilm formation, and swarming motility. The root colonization examination showed that the ∆recA had a 1000- to 2500-fold reduction in colonization on wheat roots, suggesting that RecA plays an indispensable role in effective colonization on wheat roots by B. cereus 905. Taken together, the recA gene positively regulates MnSOD2 production and nutrition utilization and protects B. cereus 905 cells against paraquat and H2O2. Besides, biofilm formation and swarming motility of B. cereus 905 are promoted by RecA. Finally, RecA significantly contributes to wheat root colonization of B. cereus 905. Our results showed the important role of RecA during physiological processes in B. cereus 905, especially for colonization on wheat roots. Our findings will point out a research direction to study the colonization mechanisms of B. cereus 905 in the future and provide potential effective strategy to enhance the biocontrol efficacy of PGPR strains. KEY POINTS : • RecA plays an indispensable role in root colonization of B. cereus.
Collapse
|
8
|
Andreani NA, Carraro L, Zhang L, Vos M, Cardazzo B. Transposon mutagenesis in Pseudomonas fluorescens reveals genes involved in blue pigment production and antioxidant protection. Food Microbiol 2019; 82:497-503. [PMID: 31027811 DOI: 10.1016/j.fm.2019.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/18/2022]
Abstract
Pseudomonas fluorescens Ps_77 is a blue-pigmenting strain able to cause food product discoloration, causing relevant economic losses especially in the dairy industry. Unlike non-pigmenting P. fluorescens, blue pigmenting strains previously were shown to carry a genomic region that includes homologs of trpABCDF genes, pointing at a possible role of the tryptophan biosynthetic pathway in production of the pigment. Here, we employ random mutagenesis to first identify the genes involved in blue-pigment production in P. fluorescens Ps_77 and second to investigate the biological function of the blue pigment. Genetic analyses based on the mapping of the random insertions allowed the identification of eight genes involved in pigment production, including the second copy of trpB (trpB_1) gene. Phenotypic characterization of Ps_77 white mutants demonstrated that the blue pigment increases oxidative-stress resistance. Indeed, while Ps_77 was growing at a normal rate in presence of 5 mM of H2O2, white mutants were completely inhibited. The antioxidative protection is not available for non-producing bacteria in co-culture with Ps_77.
Collapse
Affiliation(s)
- Nadia Andrea Andreani
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università, 16, Legnaro, 35020, Padova, Italy; European Centre for Environment and Human Health University of Exeter ESI Building, Penryn Campus, TR109FE, Penryn, UK
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università, 16, Legnaro, 35020, Padova, Italy
| | - Lihong Zhang
- European Centre for Environment and Human Health University of Exeter ESI Building, Penryn Campus, TR109FE, Penryn, UK
| | - Michiel Vos
- European Centre for Environment and Human Health University of Exeter ESI Building, Penryn Campus, TR109FE, Penryn, UK
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università, 16, Legnaro, 35020, Padova, Italy.
| |
Collapse
|
9
|
Gao T, Ding M, Yang CH, Fan H, Chai Y, Li Y. The phosphotransferase system gene ptsH plays an important role in MnSOD production, biofilm formation, swarming motility, and root colonization in Bacillus cereus 905. Res Microbiol 2018; 170:86-96. [PMID: 30395927 DOI: 10.1016/j.resmic.2018.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/24/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
The rhizosphere bacterium Bacillus cereus 905 is capable of promoting plant growth through effective colonization on plant roots. The sodA2-encoding manganese-containing superoxide dismutase (MnSOD2) is important for survival of B. cereus 905 in the wheat rhizosphere. However, the genes involved in regulating sodA2 expression and the mechanisms of rhizosphere colonization of B. cereus 905 are not well elucidated. In this study, we found that the deletion of the ptsH gene, which encodes the histidine-phosphorylatable protein (HPr), a component of the phosphotransferase system (PTS), causes a decrease of about 60% in the MnSOD2 expression. Evidences indicate that the ptsH dramatically influences resistance to oxidative stress, glucose uptake, as well as biofilm formation and swarming motility of B. cereus 905. Root colonization assay demonstrated that ΔptsH is defective in colonizing wheat roots, while complementation of the sodA2 gene could partially restore the ability in utilization of arabinose, a non-PTS sugar, and root colonization caused by the loss of the ptsH gene. In toto, based on the current findings, we propose that PtsH contributes to root colonization of B. cereus 905 through multiple indistinct mechanisms, involving PTS and uptake of PTS-sugars, up-regulation of MnSOD2 production, and promotion of biofilm formation and swarming motility.
Collapse
Affiliation(s)
- Tantan Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02215, USA.
| | - Mingzheng Ding
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, 53211, USA.
| | - Haiyan Fan
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Yunrong Chai
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02215, USA.
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Gao T, Li Y, Ding M, Chai Y, Wang Q. The phosphotransferase system gene ptsI in Bacillus cereus regulates expression of sodA2 and contributes to colonization of wheat roots. Res Microbiol 2017; 168:524-535. [PMID: 28478075 DOI: 10.1016/j.resmic.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022]
Abstract
Plant growth-promoting rhizobacteria effectively enhance plant growth and root colonization by the bacteria is a prerequisite during the process. Bacillus cereus 905, a rhizosphere bacterium originally isolated from wheat roots, colonizes the wheat rhizosphere with a large population size. We previously showed that a manganese-containing superoxide dismutase (MnSOD2), encoded by the sodA2 gene, plays an important role in colonization of the wheat rhizosphere by B. cereus 905. In this study, we identified a gene, ptsI, which positively regulates transcription of sodA2. ptsI encodes Enzyme I of the phosphotransferase system (PTS), a major regulator of carbohydrate uptake in bacteria. Assays of β-galactosidase activity and real-time quantitative PCR showed that loss of ptsI caused a 70% reduction in sodA2 expression. The ΔptsI mutant also showed a 1000-fold reduction in colonization of wheat roots, as well as a reduced growth rate in minimal media with either glucose or succinate as the sole carbon source. Artificial induction of sodA2 in the ΔptsI mutant partially restored root colonizing ability and utilization of succinate, but not glucose. These results suggest that the PTS plays an important role in rhizosphere colonization by both promoting nutrient utilization and regulating sodA2 expression in B. cereus 905.
Collapse
Affiliation(s)
- Tantan Gao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02215, USA
| | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingzheng Ding
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, 360 Huntington Avenue, Boston, MA 02215, USA.
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Méndez-Gómez M, Castro-Mercado E, Alexandre G, García-Pineda E. Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction. PROTOPLASMA 2016; 253:477-486. [PMID: 25952083 DOI: 10.1007/s00709-015-0826-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
Azospirillum is a plant growth-promoting rhizobacteria (PGPR) able to enhance the growth of wheat. The aim of this study was to test the effect of Azospirillum brasilense cell wall components on superoxide (O2·(-)) production in wheat roots and the effect of oxidative stress on A. brasilense viability. We found that inoculation with A. brasilense reduced O2·(-) levels by approx. 30 % in wheat roots. Inoculation of wheat with papain-treated A. brasilense, a Cys protease, notably increased O2·(-) production in all root tissues, as was observed by the nitro blue tetrazolium (NBT) reduction. However, a 24-h treatment with rhizobacteria lipopolysaccharides (50 and 100 μg/mL) alone did not affect the pattern of O2·(-) production. Analysis of the effect of plant cell wall components on A. brasilense oxidative enzyme activity showed no changes in catalase activity but a decrease in superoxide dismutase activity in response to polygalacturonic acid treatment. Furthermore, A. brasilense growth was only affected by high concentrations of H2O2 or paraquat, but not by sodium nitroprusside. Our results suggest that rhizobacterial cell wall components play an important role in controlling plant cell responses and developing tolerance of A. brasilense to oxidative stress produced by the plant.
Collapse
Affiliation(s)
- Manuel Méndez-Gómez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán, CP 58040, Mexico
| | - Elda Castro-Mercado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán, CP 58040, Mexico
| | - Gladys Alexandre
- Department of Biology and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán, CP 58040, Mexico.
| |
Collapse
|
12
|
Gade A, Adams J, Britt DW, Shen FA, McLean JE, Jacobson A, Kim YC, Anderson AJ. Ag nanoparticles generated using bio-reduction and -coating cause microbial killing without cell lysis. Biometals 2016; 29:211-23. [DOI: 10.1007/s10534-015-9906-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/17/2015] [Indexed: 12/11/2022]
|
13
|
Kim J, Park W. Oxidative stress response in Pseudomonas putida. Appl Microbiol Biotechnol 2014; 98:6933-46. [PMID: 24957251 DOI: 10.1007/s00253-014-5883-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/30/2022]
Abstract
Pseudomonas putida is widely distributed in nature and is capable of degrading various organic compounds due to its high metabolic versatility. The survival capacity of P. putida stems from its frequent exposure to various endogenous and exogenous oxidative stresses. Oxidative stress is an unavoidable consequence of interactions with various reactive oxygen species (ROS)-inducing agents existing in various niches. ROS could facilitate the evolution of bacteria by mutating genomes. Aerobic bacteria maintain defense mechanisms against oxidative stress throughout their evolution. To overcome the detrimental effects of oxidative stress, P. putida has developed defensive cellular systems involving induction of stress-sensing proteins and detoxification enzymes as well as regulation of oxidative stress response networks. Genetic responses to oxidative stress in P. putida differ markedly from those observed in Escherichia coli and Salmonella spp. Two major redox-sensing transcriptional regulators, SoxR and OxyR, are present and functional in the genome of P. putida. However, the novel regulators FinR and HexR control many genes belonging to the E. coli SoxR regulon. Oxidative stress can be generated by exposure to antibiotics, and iron homeostasis in P. putida is crucial for bacterial cell survival during treatment with antibiotics. This review highlights and summarizes current knowledge of oxidative stress in P. putida, as a model soil bacterium, together with recent studies from molecular genetics perspectives.
Collapse
Affiliation(s)
- Jisun Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5Ga, Seungbuk-Ku, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
14
|
Oh SA, Kim JS, Park JY, Han SH, Dimkpa C, Anderson AJ, Kim YC. The RpoS Sigma Factor Negatively Regulates Production of IAA and Siderophore in a Biocontrol Rhizobacterium, Pseudomonas chlororaphis O6. THE PLANT PATHOLOGY JOURNAL 2013; 29:323-9. [PMID: 25288959 PMCID: PMC4174801 DOI: 10.5423/ppj.nt.01.2013.0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/03/2013] [Accepted: 03/03/2013] [Indexed: 05/07/2023]
Abstract
The stationary-phase sigma factor, RpoS, influences the expression of factors important in survival of Pseudomonas chlororaphis O6 in the rhizosphere. A partial proteomic profile of a rpoS mutant in P. chlororaphis O6 was conducted to identify proteins under RpoS regulation. Five of 14 differentially regulated proteins had unknown roles. Changes in levels of proteins in P. chlororaphis O6 rpoS mutant were associated with iron metabolism, and protection against oxidative stress. The P. chlororaphis O6 rpoS mutant showed increased production of a pyoverdine-like siderophore, indole acetic acid, and altered isozyme patterns for peroxidase, catalase and superoxide dismutase. Consequently, sensitivity to hydrogen peroxide exposure increased in the P. chlororaphis O6 rpoS mutant, compared with the wild type. Taken together, RpoS exerted regulatory control over factors important for the habitat of P. chlororaphis O6 in soil and on root surfaces. The properties of several of the proteins in the RpoS regulon are currently unknown.
Collapse
Affiliation(s)
- Sang A Oh
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 500-757, Korea
| | - Ji Soo Kim
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 500-757, Korea
| | - Ju Yeon Park
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 500-757, Korea
| | - Song Hee Han
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 500-757, Korea
| | | | | | - Young Cheol Kim
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 500-757, Korea
- Corresponding author. Phone) +82-62-530-2071, FAX) +82-62-530-0208, E-mail)
| |
Collapse
|
15
|
Ramírez-Puebla ST, Servín-Garcidueñas LE, Jiménez-Marín B, Bolaños LM, Rosenblueth M, Martínez J, Rogel MA, Ormeño-Orrillo E, Martínez-Romero E. Gut and root microbiota commonalities. Appl Environ Microbiol 2013; 79:2-9. [PMID: 23104406 PMCID: PMC3536091 DOI: 10.1128/aem.02553-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends.
Collapse
|
16
|
Fones H, Preston GM. Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas. FEMS Microbiol Lett 2011; 327:1-8. [PMID: 22092667 DOI: 10.1111/j.1574-6968.2011.02449.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/22/2011] [Indexed: 11/29/2022] Open
Abstract
Reactive oxygen species (ROS) are a key feature of plant (and animal) defences against invading pathogens. As a result, plant pathogens must be able to either prevent their production or tolerate high concentrations of these highly reactive chemicals. In this review, we focus on plant pathogenic bacteria of the genus Pseudomonas and the ways in which they overcome the challenges posed by ROS. We also explore the ways in which pseudomonads may exploit plant ROS generation for their own purposes and even produce ROS directly as part of their infection mechanisms.
Collapse
Affiliation(s)
- Helen Fones
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
17
|
Dimkpa CO, Calder A, Gajjar P, Merugu S, Huang W, Britt DW, McLean JE, Johnson WP, Anderson AJ. Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. JOURNAL OF HAZARDOUS MATERIALS 2011; 188:428-35. [PMID: 21339046 DOI: 10.1016/j.jhazmat.2011.01.118] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 05/23/2023]
Abstract
This study explores the potential antimicrobial mechanisms of commercial silver nanoparticles (Ag NPs) in the environmental bacterium, Pseudomonas chlororaphis O6. The 10nm size NPs aggregated in water, as demonstrated by atomic force microscopy. Solubility of the NPs at 10mg/L was 0.28 mg/L (pH 6) and 2.3mg/L (pH 7); release from 10mg/L bulk Ag was below detection. The NPs eliminated cell culturability at 3mg/L, whereas no effect was observed at 10mg/L bulk Ag. Zeta potential measurements revealed that the NPs were negatively charged; unlike Ag ions, their addition to the negatively charged cells did not change cell charge at pH 6, but showed a trend to reduce cell charge at pH 7. Isolated extracellular polymeric substances (EPS) from PcO6 was polydisperse, with negative charge that was neutralized by Ag ions, but not by the NPs. Addition of EPS eliminated Ag NP's toxicity in cells lacking EPS. Intracellular accumulation of OH was not detected in NP-treated cells; however, the use of scavengers suggested the NPs caused extracellular H(2)O(2) production. No evidence was found for loss of membrane integrity upon treatment with the NPs. Our findings indicate that growth of environmental bacteria could be impaired by Ag NPs, depending on the extent of EPS production.
Collapse
Affiliation(s)
- Christian O Dimkpa
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Rodrigues VD, Martins PF, Gaziola SA, Azevedo RA, Ottoboni LM. Antioxidant enzyme activity in Acidithiobacillus ferrooxidans LR maintained in contact with chalcopyrite. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Chaves DFS, de Souza EM, Monteiro RA, de Oliveira Pedrosa F. A two-dimensional electrophoretic profile of the proteins secreted by Herbaspirillum seropedicae strain Z78. J Proteomics 2009; 73:50-6. [DOI: 10.1016/j.jprot.2009.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 07/17/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
|
21
|
Somers E, Vanderleyden J, Srinivasan M. Rhizosphere Bacterial Signalling: A Love Parade Beneath Our Feet. Crit Rev Microbiol 2008; 30:205-40. [PMID: 15646398 DOI: 10.1080/10408410490468786] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plant roots support the growth and activities of a wide variety of microorganisms that may have a profound effect on the growth and/or health of plants. Among these microorganisms, a high diversity of bacteria have been identified and categorized as deleterious, beneficial, or neutral with respect to the plant. The beneficial bacteria, termed plant growth-promoting rhizobacteria (PGPR), are widely studied by microbiologists and agronomists because of their potential in plant production. Azospirillum, a genus of versatile PGPR, is able to enhance the plant growth and yield of a wide range of economically important crops in different soils and climatic regions. Plant beneficial effects of Azospirillum have mainly been attributed to the production of phytohormones, nitrate reduction, and nitrogen fixation, which have been subject of extensive research throughout the years. These elaborate studies made Azospirillum one of the best-characterized genera of PGPR. However, the genetic and molecular determinants involved in the initial interaction between Azospirillum and plant roots are not yet fully understood. This review will mainly highlight the current knowledge on Azospirillum plant root interactions, in the context of preceding and ongoing research on the association between plants and plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- E Somers
- Centre of Microbial and Plant Genetics, K U Leuven, Heverlee, Belgium.
| | | | | |
Collapse
|
22
|
Kang YS, Lee Y, Jung H, Jeon CO, Madsen EL, Park W. Overexpressing antioxidant enzymes enhances naphthalene biodegradation in Pseudomonas sp. strain As1. Microbiology (Reading) 2007; 153:3246-3254. [PMID: 17906124 DOI: 10.1099/mic.0.2007/008896-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We tested the hypothesis that during metabolism of naphthalene and other substrates by Pseudomonas sp. strain As1 oxidative stress arises and can be reduced by antioxidant enzymes. Our approach was to prepare plasmid constructs that conferred expression of two single antioxidant enzymes [Fpr (ferredoxin-NADP(+) reductase) and SOD (superoxide dismutase)] and the pair of enzymes SOD plus AhpC (alkyl hydroperoxide reductase). The fpr, sodA and ahpC genes were placed under the transcriptional control of both the constitutive lac promoter and their respective native promoters. Both HPLC and growth-rate analyses showed that naphthalene metabolism was enhanced in the recombinant strains. All antioxidant-overexpressing recombinant strains, with the exception of one with an upregulated sodA gene due to the lac promoter [strain As1(sodA)], exhibited resistance to the superoxide generating agent paraquat (PQ). The growth of strain As1(sodA) was inhibited by PQ, but this growth defect was rapidly overcome by the simultaneous overproduction of AhpC, which is a known hydrogen peroxide scavenger. After PQ-induced oxidative damage of the [Fe-S] enzyme aconitase, recovery of enzyme activity was enhanced in the recombinant strains. Reporter strains to monitor oxidative stress in strain As1 were prepared by fusing gfp (encoding green fluorescent protein, GFP) to the fpr promoter. Growth on salicylate and naphthalene boosted the GFP fluorescent signal 21- and 14-fold, respectively. Using these same oxidative stress reporters, overexpression of fpr and sodA was found to considerably reduce PQ-induced stress. Taken together, these data demonstrate that the overproduction of Fpr or SodA contributes to oxidative tolerance during naphthalene degradation; however, elevated SOD activity may trigger the generation of excess hydrogen peroxide, resulting in cell death.
Collapse
Affiliation(s)
- Yoon-Suk Kang
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5 Ga, Seoul, South Korea
| | - Yunho Lee
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5 Ga, Seoul, South Korea
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, Sinchon-Dong, Seoul, South Korea
| | - Che Ok Jeon
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, South Korea
| | - Eugene L Madsen
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Woojun Park
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, South Korea
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5 Ga, Seoul, South Korea
| |
Collapse
|
23
|
Loper JE, Kobayashi DY, Paulsen IT. The Genomic Sequence of Pseudomonas fluorescens Pf-5: Insights Into Biological Control. PHYTOPATHOLOGY 2007; 97:233-8. [PMID: 18944380 DOI: 10.1094/phyto-97-2-0233] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ABSTRACT The complete sequence of the 7.07 Mb genome of the biological control agent Pseudomonas fluorescens Pf-5 is now available, providing a new opportunity to advance knowledge of biological control through genomics. P. fluorescens Pf-5 is a rhizosphere bacterium that suppresses seedling emergence diseases and produces a spectrum of antibiotics toxic to plant-pathogenic fungi and oomycetes. In addition to six known secondary metabolites produced by Pf-5, three novel secondary metabolite biosynthesis gene clusters identified in the genome could also contribute to biological control. The genomic sequence provides numerous clues as to mechanisms used by the bacterium to survive in the spermosphere and rhizosphere. These features include broad catabolic and transport capabilities for utilizing seed and root exudates, an expanded collection of efflux systems for defense against environmental stress and microbial competition, and the presence of 45 outer membrane receptors that should allow for the uptake of iron from a wide array of siderophores produced by soil microorganisms. As expected for a bacterium with a large genome that lives in a rapidly changing environment, Pf-5 has an extensive collection of regulatory genes, only some of which have been characterized for their roles in regulation of secondary metabolite production or biological control. Consistent with its commensal lifestyle, Pf-5 appears to lack a number of virulence and pathogenicity factors found in plant pathogens.
Collapse
|
24
|
Gourion B, Rossignol M, Vorholt JA. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci U S A 2006; 103:13186-91. [PMID: 16926146 PMCID: PMC1559774 DOI: 10.1073/pnas.0603530103] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aerial plant surfaces are colonized by diverse bacteria such as the ubiquitous Methylobacterium spp. The specific physiological traits as well as the underlying regulatory mechanisms for bacterial plant colonization are largely unknown. The purpose of this study was to identify proteins produced specifically in the phyllosphere by comparing the proteome of Methylobacterium extorquens colonizing the leaves either with that of bacteria colonizing the roots or with that of bacteria growing on synthetic medium. We identified 45 proteins that were more abundant in M. extorquens present on plant surfaces as compared with bacteria growing on synthetic medium, including 9 proteins that were more abundant on leaves compared with roots. Among the proteins induced during epiphytic growth, we found enzymes involved in methanol utilization, prominent stress proteins, and proteins of unknown function. In addition, we detected a previously undescribed type of two-domain response regulator, named PhyR, that consists of an N-terminal sigma factor (RpoE)-like domain and a C-terminal receiver domain and is predicted to be present in essentially all Alphaproteobacteria. The importance of PhyR was demonstrated through phenotypic tests of a deletion mutant strain shown to be deficient in plant colonization. Among PhyR-regulated gene products, we found a number of general stress proteins and, in particular, proteins known to be involved in the oxidative stress response such as KatE, SodA, AhpC, Ohr, Trx, and Dps. The PhyR-regulated gene products partially overlap with the bacterial in planta-induced proteome, suggesting that PhyR is a key regulator for adaptation to epiphytic life of M. extorquens.
Collapse
Affiliation(s)
- Benjamin Gourion
- *Laboratoire des Interactions Plantes Micro-Organismes (LIPM), Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, BP52627, 31326 Castanet-Tolosan, France; and
| | - Michel Rossignol
- Unité Mixte de Recherche 5546, Centre National de la Recherche/Université P. Sabatier, F-31326 Castanet-Tolosan, France
| | - Julia A. Vorholt
- *Laboratoire des Interactions Plantes Micro-Organismes (LIPM), Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, BP52627, 31326 Castanet-Tolosan, France; and
| |
Collapse
|
25
|
Nam HS, Anderson AJ, Yang KY, Cho BH, Kim YC. The dctA gene of Pseudomonas chlororaphis O6 is under RpoN control and is required for effective root colonization and induction of systemic resistance. FEMS Microbiol Lett 2006; 256:98-104. [PMID: 16487325 DOI: 10.1111/j.1574-6968.2006.00092.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Transcription from the dctA gene, which encodes an organic acid transporter in the root-colonizing bacterium Pseudomonas chlororaphis O6, is under complex regulatory control. Promoter sequence analysis revealed an RpoN binding site. The regulation of transcript accumulation by the level of ammonium ions in the growth medium confirmed RpoN regulation, even in the presence of glucose. A dctA mutant colonized tobacco roots to a lesser extent than the wild-type mutant during early seedling development. Colonization by the dctA mutant, as compared to the wild type, also reduced the level of systemically induced resistance against the soft rot pathogen Erwinia carotovora SCC1. We ascribe this reduced colonization to the inability of the mutant to utilize certain organic acid components in the root exudates. The dctA mutant failed to grow on succinate and fumarate, and showed reduced growth on malate. All altered properties of the mutant were complemented by the full-length dctA gene. We propose that organic acids in root exudates may provide important nutrient sources for the beneficial root-colonizing pseudomonad.
Collapse
Affiliation(s)
- Hyo Song Nam
- Agricultural Plant Stress Research Center and Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | | | | | | | | |
Collapse
|
26
|
Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS, Thomashow LS, Loper JE. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 2005; 23:873-8. [PMID: 15980861 PMCID: PMC7416659 DOI: 10.1038/nbt1110] [Citation(s) in RCA: 435] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 05/04/2005] [Indexed: 12/11/2022]
Abstract
Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.
Collapse
Affiliation(s)
- Ian T Paulsen
- The Institute for Genomic Research, Rockville, Maryland USA
| | - Caroline M Press
- US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, Oregon USA
| | - Jacques Ravel
- The Institute for Genomic Research, Rockville, Maryland USA
| | - Donald Y Kobayashi
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey USA
| | | | - Dmitri V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, Washington USA
| | - Robert T DeBoy
- The Institute for Genomic Research, Rockville, Maryland USA
| | - Rekha Seshadri
- The Institute for Genomic Research, Rockville, Maryland USA
| | - Qinghu Ren
- The Institute for Genomic Research, Rockville, Maryland USA
| | - Ramana Madupu
- The Institute for Genomic Research, Rockville, Maryland USA
| | | | - A Scott Durkin
- The Institute for Genomic Research, Rockville, Maryland USA
| | | | | | | | | | | | - Liwei Zhou
- The Institute for Genomic Research, Rockville, Maryland USA
| | - Davd J Schneider
- US Department of Agriculture, Agricultural Research Service, Ithaca, New York USA
| | - Samuel W Cartinhour
- US Department of Agriculture, Agricultural Research Service, Ithaca, New York USA
| | | | - Janice Weidman
- The Institute for Genomic Research, Rockville, Maryland USA
| | - Kisha Watkins
- The Institute for Genomic Research, Rockville, Maryland USA
| | - Kevin Tran
- The Institute for Genomic Research, Rockville, Maryland USA
| | - Hoda Khouri
- The Institute for Genomic Research, Rockville, Maryland USA
| | | | - Leland S Pierson
- Department of Plant Sciences, University of Arizona, Tucson, Arizona USA
| | - Linda S Thomashow
- US Department of Agriculture, Agricultural Research Service, Root Disease and Biological Control Research Unit, Pullman, Washington USA
| | - Joyce E Loper
- US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, Oregon USA
| |
Collapse
|
27
|
Kim SY, Nishioka M, Hayashi S, Honda H, Kobayashi T, Taya M. The gene yggE functions in restoring physiological defects of Escherichia coli cultivated under oxidative stress conditions. Appl Environ Microbiol 2005; 71:2762-5. [PMID: 15870370 PMCID: PMC1087592 DOI: 10.1128/aem.71.5.2762-2765.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA microarray analysis showed that yfiD, yggB, and yggE genes were up-regulated when superoxide dismutase (SOD)-deficient Escherichia coli IM303 (I4) was cultivated under the oxidative stress generated by photoexcited TiO(2), and pYFD, pYGB, and pYGE were constructed by inserting the respective genes into a pUC 19 vector. The content of reactive oxygen species (ROS) in IM303 (I4) cells carrying pYGE was reduced to 31% of ROS content in the control cells with pUC 19. In the culture of wild-type strain, E. coli MM294, in the medium with paraquat (10 micromol/l), maximum specific growth rate of the cells with pYGE was about five times higher than that of the control cells, with a decreased ROS content in the former cells. The introduction of pYGE also suppressed the occurrence of the cells with altered amino acid requirement in the culture of MM294 cells with paraquat.
Collapse
Affiliation(s)
- Sun Young Kim
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Kim SY, Nishioka M, Taya M. Promoted proliferation of an SOD-deficient mutant ofEscherichia coliunder oxidative stress induced by photoexcited TiO2. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09635.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
29
|
Miller CD, Kim YC, Anderson AJ. Competitiveness in root colonization by Pseudomonas putida requires the rpoS gene. Can J Microbiol 2004; 47:41-8. [PMID: 15049448 DOI: 10.1139/w00-123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The rpoS gene in Pseudomonas putida was essential for plant root colonization under competitive conditions from other microbes. The RpoS- mutant survived less well than the wild-type strain in culture medium, and unlike the wild-type, failed to colonize the roots in a peat matrix containing an established diverse microflora. The RpoS-deficient P. putida isolate was generated by insertion of a glucuronidase-npt cassette into the rpoS gene. The RpoS mutant had dose-dependent increased sensitivity to oxidative stress and produced Mn-superoxide dismutase activity earlier than the parent. While extracts from wild-type P. putida stationary-phase cells contained three isozymes of catalase (CatA, CatB, and CatC), the sigma38-deficient P. putida lacked CatB. These results are consistent with previous findings that CatB is induced in stationary-phase.
Collapse
Affiliation(s)
- C D Miller
- Department of Biology, Utah State University, Logan, UT 84522-5305, USA
| | | | | |
Collapse
|
30
|
Nam HS, Spencer M, Anderson AJ, Cho BH, Kim YC. Transcriptional regulation and mutational analysis of a dctA gene encoding an organic acid transporter protein from Pseudomonas chlororaphis O6. Gene 2003; 323:125-31. [PMID: 14659885 DOI: 10.1016/j.gene.2003.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A dctA gene encoding a protein with identity to a C(4)-dicarboxylic acid/H(+) symporter was cloned from a beneficial root colonizer, Pseudomonas chlororaphis O6 (PcO6). Expression of the dctA gene was induced in minimal medium by several organic acids and was repressed by glucose. Highest expression was observed in early-logarithmic (log) cells grown on fumarate, acetate or succinate with decline as cells approached late-log growth phase. The dctA transcript accumulated weakly when cells were grown on malate, but strong expression was observed with benzoate. Expression of the dctA transcript was repressed in early-log cells upon addition of glucose to fumarate, but was detected as the cell culture aged. A dctA-deficient mutant of PcO6, constructed by marker exchange mutagenesis, did not grow on minimal medium containing succinate, benzoate, acetate or fumarate and growth on malate was delayed. The dctA mutant and wild-type grew equally on citrate, glucose, fructose, sucrose or inositol. We conclude that the transporter protein encoded by dctA is essential for utilization of certain organic acids and its expression is controlled by the availability of sugars.
Collapse
Affiliation(s)
- Hyo Song Nam
- Agricultural Plant Stress Research Center and Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, South Korea
| | | | | | | | | |
Collapse
|
31
|
Miché L, Belkin S, Rozen R, Balandreau J. Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors. Environ Microbiol 2003; 5:403-11. [PMID: 12713466 DOI: 10.1046/j.1462-2920.2003.00432.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A set of Escherichia coli sensor strains was used to evaluate the stress exerted on surrounding bacteria by germinating rice seed exudates. These biosensor strains contain Vibrio fischeri luxCDABE genes fused to the promoters of different genes involved in bacterial responses to environmental stresses. They provided clear evidence for a stress exerted by rice exudates, as shown by the induction of the universal stress protein gene uspA as well as genes of the heat shock regulon, grpE, lon and dnaK. The oxidative stress gene katG, and the post-transcriptional ompF regulator encoded by micF were also activated. The lack of derepression of recA, uvrA and alkA indicated that damage to the DNA was not induced in the E. coli strains tested. Interestingly, resorcinolic lipids extracted from rice root seedlings induced the same promoters as whole exudates, suggesting that these compounds may contribute to the stress exerted by seedling exudates. The results obtained with E. coli biosensors thus indicate that, in vivo, exudates may also exert a selective pressure on root-colonizing bacteria.
Collapse
Affiliation(s)
- Lucie Miché
- Laboratoire d'Ecologie Microbienne, UMR 5557 CNRS - Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France.
| | | | | | | |
Collapse
|
32
|
Langlois P, Bourassa S, Poirier GG, Beaulieu C. Identification of Streptomyces coelicolor proteins that are differentially expressed in the presence of plant material. Appl Environ Microbiol 2003; 69:1884-9. [PMID: 12676660 PMCID: PMC154778 DOI: 10.1128/aem.69.4.1884-1889.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2002] [Accepted: 11/11/2002] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor and Lemna minor were used as a model to study the modulation of bacterial gene expression during plant-streptomycete interactions. S. coelicolor was grown in minimal medium with and without L. minor fronds. Bacterial proteomes were analyzed by two-dimensional gel electrophoresis, and a comparison of the two culture conditions resulted in identification of 31 proteins that were induced or repressed by the presence of plant material. One-half of these proteins were identified by peptide mass fingerprinting by using matrix-assisted laser desorption ionization-time of flight mass spectrometry. The induced proteins were involved in energetic metabolism (glycolysis, pentose phosphate pathway, oxidative phosphorylation), protein synthesis, degradation of amino acids, alkenes, or cellulose, tellurite resistance, and growth under general physiological or oxidative stress conditions. The repressed proteins were proteins synthesized under starvation stress conditions. These results suggest that root exudates provide additional carbon sources to the bacteria and that physiological adaptations are required for efficient bacterial growth in the presence of plants.
Collapse
Affiliation(s)
- P Langlois
- Centre d'Etude et de Valorisation de la Diversité Microbienne, Département de Biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| | | | | | | |
Collapse
|
33
|
Silva G, LeGall J, Xavier AV, Teixeira M, Rodrigues-Pousada C. Molecular characterization of Desulfovibrio gigas neelaredoxin, a protein involved in oxygen detoxification in anaerobes. J Bacteriol 2001; 183:4413-20. [PMID: 11443075 PMCID: PMC95335 DOI: 10.1128/jb.183.4.4413-4420.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Desulfovibrio gigas neelaredoxin is an iron-containing protein of 15 kDa, having a single iron site with a His(4)Cys coordination. Neelaredoxins and homologous proteins are widespread in anaerobic prokaryotes and have superoxide-scavenging activity. To further understand its role in anaerobes, its genomic organization and expression in D. gigas were studied and its ability to complement Escherichia coli superoxide dismutase deletion mutant was assessed. In D. gigas, neelaredoxin is transcribed as a monocistronic mRNA of 500 bases as revealed by Northern analysis. Putative promoter elements resembling sigma(70) recognition sequences were identified. Neelaredoxin is abundantly and constitutively expressed, and its expression is not further induced during treatment with O(2) or H(2)O(2). The neelaredoxin gene was cloned by PCR and expressed in E. coli, and the protein was purified to homogeneity. The recombinant neelaredoxin has spectroscopic properties identical to those observed for the native one. Mutations of Cys-115, one of the iron ligands, show that this ligand is essential for the activity of neelaredoxin. In an attempt to elucidate the function of neelaredoxin within the cell, it was expressed in an E. coli mutant deficient in cytoplasmic superoxide dismutases (sodA sodB). Neelaredoxin suppresses the deleterious effects produced by superoxide, indicating that it is involved in oxygen detoxification in the anaerobe D. gigas.
Collapse
Affiliation(s)
- G Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
34
|
Hammad Y, Maréchal J, Cournoyer B, Normand P, Domenach AM. Modification of the protein expression pattern induced in the nitrogen-fixing actinomycete Frankia sp. strain ACN14a-tsr by root exudates of its symbiotic host Alnus glutinosa and cloning of the sodF gene. Can J Microbiol 2001; 47:541-7. [PMID: 11467730 DOI: 10.1139/w01-046] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two-dimensional (2-D) polyacrylamide gel electrophoresis was used to detect proteins induced in Frankia sp. strain ACN14a-tsr by root exudates of its symbiotic host, Alnus glutinosa. The 5 most prominent proteins were purified from 2-D gels and characterized by N-terminal sequencing. All of these proteins had a high percentage of similarity with known stress proteins. One protein match was the Fe superoxide dismutase (Fe-SOD), another was a tellurite resistance protein (Ter), the third was a bacterioferritin comigratory protein (Bcp); and two matches, differing only by their isoelectric point, were the same small heat shock protein (Hsp), a major immune reactive protein found in mycobacteria. This suggests that the symbiotic microorganism Frankia, first responds with a normal stress response to toxic root products of its symbiotic host plant. To confirm its identity, the gene corresponding to the Fe-SOD protein, sodF was isolated from a genomic library by a PCR-approach and sequenced. It is the first stress response gene characterized in Frankia.
Collapse
Affiliation(s)
- Y Hammad
- Ecologie Microbienne, UMR CNRS 5557, Université Lyon 1, Villeurbanne, France
| | | | | | | | | |
Collapse
|