1
|
Obi CC, Vayla S, de Gannes V, Berres ME, Walker J, Pavelec D, Hyman J, Hickey WJ. The Integrative Conjugative Element clc (ICEclc) of Pseudomonas aeruginosa JB2. Front Microbiol 2018; 9:1532. [PMID: 30050515 PMCID: PMC6050381 DOI: 10.3389/fmicb.2018.01532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
Integrative conjugative elements (ICE) are a diverse group of chromosomally integrated, self-transmissible mobile genetic elements (MGE) that are active in shaping the functions of bacteria and bacterial communities. Each type of ICE carries a characteristic set of core genes encoding functions essential for maintenance and self-transmission, and cargo genes that endow on hosts phenotypes beneficial for niche adaptation. An important area to which ICE can contribute beneficial functions is the biodegradation of xenobiotic compounds. In the biodegradation realm, the best-characterized ICE is ICEclc, which carries cargo genes encoding for ortho-cleavage of chlorocatechols (clc genes) and aminophenol metabolism (amn genes). The element was originally identified in the 3-chlorobenzoate-degrader Pseudomonas knackmussii B13, and the closest relative is a nearly identical element in Burkholderia xenovorans LB400 (designated ICEclc-B13 and ICEclc-LB400, respectively). In the present report, genome sequencing of the o-chlorobenzoate degrader Pseudomonas aeruginosa JB2 was used to identify a new member of the ICEclc family, ICEclc-JB2. The cargo of ICEclc-JB2 differs from that of ICEclc-B13 and ICEclc-LB400 in consisting of a unique combination of genes that encode for the utilization of o-halobenzoates and o-hydroxybenzoate as growth substrates (ohb genes and hyb genes, respectively) and which are duplicated in a tandem repeat. Also, ICEclc-JB2 lacks an operon of regulatory genes (tciR-marR-mfsR) that is present in the other two ICEclc, and which controls excision from the host. Thus, the mechanisms regulating intracellular behavior of ICEclc-JB2 may differ from that of its close relatives. The entire tandem repeat in ICEclc-JB2 can excise independently from the element in a process apparently involving transposases/insertion sequence associated with the repeats. Excision of the repeats removes important niche adaptation genes from ICEclc-JB2, rendering it less beneficial to the host. However, the reduced version of ICEclc-JB2 could now acquire new genes that might be beneficial to a future host and, consequently, to the survival of ICEclc-JB2. Collectively, the present identification and characterization of ICEclc-JB2 provides insights into roles of MGE in bacterial niche adaptation and the evolution of catabolic pathways for biodegradation of xenobiotic compounds.
Collapse
Affiliation(s)
- Chioma C Obi
- Department of Biological Sciences, Bells University of Technology, Ota, Nigeria
| | - Shivangi Vayla
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Vidya de Gannes
- Department of Food Production, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Mark E Berres
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Jason Walker
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Derek Pavelec
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua Hyman
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - William J Hickey
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
2
|
Adebusoye SA, Miletto M. Characterization of multiple chlorobenzoic acid-degrading organisms from pristine and contaminated systems: mineralization of 2,4-dichlorobenzoic acid. BIORESOURCE TECHNOLOGY 2011; 102:3041-3048. [PMID: 21074990 DOI: 10.1016/j.biortech.2010.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 05/30/2023]
Abstract
Multiple bacterial strains with CBA metabolic properties were isolated using a simple selective strategy. Phylogenetic analysis of the 16S rRNA gene sequences grouped them into two main clusters consisting of four bacterial phyla and belonging to 17 genera. Whereas growth was more frequent with 2-CBA (∼68%), 50% grew on 4-CBA and ∼7% utilized 3-CBA. One third of the strains exhibited 2,4-dichlorobenzoic acid (2,4-diCBA) catabolic function and were mainly representatives of α-, β- and γ-Proteobacteria. In batch experiments, growth was concomitant with substrate disappearance and near-stoichiometric release of chloride. Doubling times for 2,4-diCBA degradation doubled those determined for mono-substituted CBAs. Out of the six 2,4-diCBA degraders submitted for enzyme assays, significant induction of catechol 1,2-dioxygenase types I and II activities in cell-free extracts were found in four while protocatechuate 3,4-dioxygenase activity was detected in the remaining two. Activities in CBA-grown cells were 20 orders-of-magnitude higher than those grown on benzoic acid.
Collapse
Affiliation(s)
- Sunday A Adebusoye
- Department of Microbiology, Faculty of Science, University of Lagos, Lagos, Nigeria.
| | | |
Collapse
|
3
|
Chuang AS, Mattes TE. Identification of polypeptides expressed in response to vinyl chloride, ethene, and epoxyethane in Nocardioides sp. strain JS614 by using peptide mass fingerprinting. Appl Environ Microbiol 2007; 73:4368-72. [PMID: 17483267 PMCID: PMC1932774 DOI: 10.1128/aem.00086-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes expressed in response to vinyl chloride, ethene, and epoxyethane by Nocardioides sp. strain JS614 were identified by using a peptide mass fingerprinting (PMF) approach. PMF provided insight concerning vinyl chloride biodegradation in strain JS614 and extends the use of matrix-assisted laser desorption-ionization time of flight mass spectrometry as a tool to enhance characterization of biodegradation pathways.
Collapse
Affiliation(s)
- Adina S Chuang
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
4
|
Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 2004; 67:170-91. [PMID: 15614564 DOI: 10.1007/s00253-004-1810-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/10/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
The microbial degradation of polychlorinated biphenyls (PCBs) has been extensively studied in recent years. The genetic organization of biphenyl catabolic genes has been elucidated in various groups of microorganisms, their structures have been analyzed with respect to their evolutionary relationships, and new information on mobile elements has become available. Key enzymes, specifically biphenyl 2,3-dioxygenases, have been intensively characterized, structure/sequence relationships have been determined and enzymes optimized for PCB transformation. However, due to the complex metabolic network responsible for PCB degradation, optimizing degradation by single bacterial species is necessarily limited. As PCBs are usually not mineralized by biphenyl-degrading organisms, and cometabolism can result in the formation of toxic metabolites, the degradation of chlorobenzoates has received special attention. A broad set of bacterial strategies to degrade chlorobenzoates has recently been elucidated, including new pathways for the degradation of chlorocatechols as central intermediates of various chloroaromatic catabolic pathways. To optimize PCB degradation in the environment beyond these metabolic limitations, enhancing degradation in the rhizosphere has been suggested, in addition to the application of surfactants to overcome bioavailability barriers. However, further research is necessary to understand the complex interactions between soil/sediment, pollutant, surfactant and microorganisms in different environments.
Collapse
Affiliation(s)
- Dietmar H Pieper
- Department of Environmental Microbiology, German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany.
| |
Collapse
|
5
|
Yuroff AS, Sabat G, Hickey WJ. Transporter-mediated uptake of 2-chloro- and 2-hydroxybenzoate by Pseudomonas huttiensis strain D1. Appl Environ Microbiol 2004; 69:7401-8. [PMID: 14660391 PMCID: PMC309881 DOI: 10.1128/aem.69.12.7401-7408.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the mechanisms of uptake of 2-chlorobenzoate (2-CBa) and 2-hydroxybenzoate (2-HBa) by Pseudomonas huttiensis strain D1. Uptake was monitored by assaying intracellular accumulation of 2-[UL-ring-14C]CBa and 2-[UL-ring-14C]HBa. Uptake of 2-CBa showed substrate saturation kinetics with an apparent Km of 12.7 +/- 2.6 micromoles and a maximum velocity (Vmax) of 9.76 +/- 0.78 nmol min-1 mg of protein-1. Enhanced rates of uptake were induced by growth on 2-CBa and 2-HBa, but not by growth on benzoate or 2,5-di-CBa. Intracellular accumulations of 2-CBa and 2-HBa were 109- and 42-fold greater, respectively, than the extracellular concentrations of these substrates and were indicative of uptake mediated by a transporter rather than driven by substrate catabolism ("metabolic drag"). Results of competitor screening tests indicated that the substrate range of the transporter did not include other o-halobenzoates that serve as growth substrates for strain D1 and for which the metabolism was initiated by the same dioxygenase as 2-CBa and 2-HBa. This suggested that multiple mechanisms for substrate uptake were coupled to the same catabolic enzyme. The preponderance of evidence from tests with metabolic inhibitors and artificial electrochemical gradients suggested that 2-CBa uptake was driven by ATP hydrolysis. If so, the 2-CBa transporter would be the first of the ATP binding cassette type implicated in uptake of haloaromatic acids.
Collapse
Affiliation(s)
- A S Yuroff
- Center for Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
6
|
Chang HK, Mohseni P, Zylstra GJ. Characterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. J Bacteriol 2003; 185:5871-81. [PMID: 13129960 PMCID: PMC193950 DOI: 10.1128/jb.185.19.5871-5881.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthranilate (2-aminobenzoate) is an important intermediate in tryptophan metabolism. In order to investigate the degradation of tryptophan through anthranilate by Burkholderia cepacia, several plasposon mutations were constructed of strain DBO1 and one mutant with the plasposon insertion in the anthranilate dioxygenase (AntDO) genes was chosen for further study. The gene sequence obtained from flanking DNA of the plasposon insertion site revealed unexpected information. B. cepacia DBO1 AntDO (designated AntDO-3C) is a three-component Rieske-type [2Fe-2S] dioxygenase composed of a reductase (AndAa), a ferredoxin (AndAb), and a two-subunit oxygenase (AndAcAd). This is in contrast to the two-component (an oxygenase and a reductase) AntDO enzyme from Acinetobacter sp. strain ADP1, P. aeruginosa PAO1, and P. putida P111. AntDO from strains ADP1, PAO1, and P111 are closely related to benzoate dioxygenase, while AntDO-3C is closely related to aromatic hydrocarbon dioxygenases from Novosphingobium aromaticivorans F199 and Sphingomonas yanoikuyae B1 and 2-chlorobenzoate dioxygenase from P. aeruginosa strains 142 and JB2. Escherichia coli cells expressing the functional AntDO-3C genes transform anthranilate and salicylate (but not 2-chlorobenzoate) to catechol. The enzyme includes a novel reductase whose absence results in less efficient transformation of anthranilate by the oxygenase and ferredoxin. AndR, a possible AraC/XylS-type transcriptional regulator, was shown to positively regulate expression of the andAcAdAbAa genes. Anthranilate was the only effector (of 12 aromatic compounds tested) that was able to induce expression of the genes.
Collapse
Affiliation(s)
- Hung-Kuang Chang
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, New Jersey 08901-8520, USA.
| | | | | |
Collapse
|
7
|
Sentchilo V, Ravatn R, Werlen C, Zehnder AJB, van der Meer JR. Unusual integrase gene expression on the clc genomic island in Pseudomonas sp. strain B13. J Bacteriol 2003; 185:4530-8. [PMID: 12867462 PMCID: PMC165761 DOI: 10.1128/jb.185.15.4530-4538.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An unusual type of gene expression from an integrase promoter was found in cultures of the bacterium Pseudomonas sp. strain B13. The promoter controls expression of the intB13 integrase gene, which is present near the right end of a 105-kb conjugative genomic island (the clc element) encoding catabolism of aromatic compounds. The enzymatic activity of integrase IntB13 is essential for site-specific integration of the clc element into the bacterial host's chromosome. By creating transcription fusions between the intB13 promoter and the gfp gene, we showed that integrase expression in strain B13 was inducible under stationary-phase conditions but, strangely, occurred in only a small proportion of individual bacterial cells rather than equally in the whole population. Integrase expression was significantly stimulated by growing cultures on 3-chlorobenzoate. High cell density, heat shock, osmotic shock, UV irradiation, and treatment with alcohol did not result in measurable integrase expression. The occurrence of the excised form of the clc element and an increase in the rates of clc element transfer in conjugation experiments correlated with the observed induction of the intB13'-gfp fusion in stationary phase and in the presence of 3-chlorobenzoate. This suggested that activation of the intB13 promoter is the first step in stimulation of clc transfer. To our knowledge, this is the first report of a chlorinated compound's stimulating horizontal transfer of the genes encoding its very metabolism.
Collapse
Affiliation(s)
- V Sentchilo
- Process of Environmental Microbiology and Molecular Ecotoxicology, Swiss Federal Institute for Environmental Science and Technology, CH 8600 Dübendorf, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Corbella ME, Puyet A. Real-time reverse transcription-PCR analysis of expression of halobenzoate and salicylate catabolism-associated operons in two strains of Pseudomonas aeruginosa. Appl Environ Microbiol 2003; 69:2269-75. [PMID: 12676709 PMCID: PMC154809 DOI: 10.1128/aem.69.4.2269-2275.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Accepted: 01/21/2003] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa JB2 can use 2-chlorobenzoate (2-CBa), 3-CBa, 2,3-dichlorobenzoate (2,3-DCBa), and 2,5-DCBa as sole carbon and energy sources, whereas strain 142 can only grow on 2-CBa and 2,4-DCBa. Both strains, however, harbor the same halobenzoate 1,2-dioxygenase (ohbAB) and chlorocatechol (clcABD) degradation genes necessary for the metabolism of ortho-CBas. In addition, the hybABCD operon, encoding a salicylate 5-hydroxylase, is also found in both strains. The expression of ohbAB, hybABCD, and clcABD operons was measured in cultures grown on different CBas as the sole carbon source and also in glucose-grown cells supplemented with CBas as inducers. A method to standardize real-time reverse transcription-PCR experimental data was used that allows the comparison of semiquantitative mRNA accumulation in different strains and culture conditions. In both strains, the ohb and hyb systems were induced in cells grown on 2-CBa or DCBas, whereas clc was induced only by DCBas. Repression by catabolite was observed both on ohb and clc systems in glucose-grown cells. Chlorocatechol 1,2-dioxygenase activity in JB2 was detected even in clc-repressed conditions, confirming the presence of additional isofunctional genes previously detected in P. aeruginosa 142. Although similar levels of induction of ohbAB were observed in strain JB2 grown on either benzoate, monochlorobenzoates, or DCBas, the ohbAB operon of strain 142 was only strongly induced by growth on 2-CBa and, to a lesser extent, on 2,4-DCBa. This observation suggests that regulation of the ohbAB operon may be different in both strains. The concomitant induction of ohb and hyb by CBas may allow the formation of hybrid halobenzoate dioxygenase(s) composed of Ohb/Hyb dioxygenase subunits and Hyb ferredoxin/ferredoxin reductase components.
Collapse
Affiliation(s)
- M E Corbella
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | | |
Collapse
|
9
|
Pinyakong O, Habe H, Yoshida T, Nojiri H, Omori T. Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Commun 2003; 301:350-7. [PMID: 12565867 DOI: 10.1016/s0006-291x(02)03036-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Five sets of large and small subunits of terminal oxygenase (ahdA1[a-e] and ahdA2[a-e]) and a single gene set encoding ferredoxin (ahdA3) and ferredoxin reductase (ahdA4) were found to be scattered through 15.8- and 14-kb DNA fragments of phenanthrene-degrading Sphingobium sp. strain P2. RT-PCR analysis indicated the inducible and specific expression of ahdA3, ahdA4, and three sets of genes for terminal oxygenase (ahdA1[c-e] and ahdA2[c-e]) in this strain grown on phenanthrene. The biotransformation experiments with resting cells of Escherichia coli JM109 harboring recombinant ahd genes revealed that AhdA2cA1c, AhdA1dA2d, and AhdA1eA2e can all function as a salicylate 1-hydroxylase which converts salicylate, a metabolic intermediate of phenanthrene, to catechol in cooperation with the electron transport proteins AhdA3A4. The first two oxygenases exhibited a broad range of substrate specificities such that they also catalyzed the hydroxylation of methyl- and chloro-substituted salicylates to produce their corresponding substituted catechols.
Collapse
Affiliation(s)
- Onruthai Pinyakong
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
10
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:443-453. [PMID: 11948851 DOI: 10.1002/jms.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|