1
|
Nonaka K, Osamura T, Takahashi F. A 4-hydroxybenzoate 3-hydroxylase mutant enables 4-amino-3-hydroxybenzoic acid production from glucose in Corynebacterium glutamicum. Microb Cell Fact 2023; 22:168. [PMID: 37644492 PMCID: PMC10466732 DOI: 10.1186/s12934-023-02179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Microbial production of aromatic chemicals is an attractive method for obtaining high-performance materials from biomass resources. A non-proteinogenic amino acid, 4-amino-3-hydroxybenzoic acid (4,3-AHBA), is expected to be a precursor of highly functional polybenzoxazole polymers; however, methods for its microbial production have not been reported. In this study, we attempted to produce 4,3-AHBA from glucose by introducing 3-hydroxylation of 4-aminobenzoic acid (4-ABA) into the metabolic pathway of an industrially relevant bacterium, Corynebacterium glutamicum. RESULTS Six different 4-hydroxybenzoate 3-hydroxylases (PHBHs) were heterologously expressed in C. glutamicum strains, which were then screened for the production of 4,3-AHBA by culturing with glucose as a carbon source. The highest concentration of 4,3-AHBA was detected in the strain expressing PHBH from Caulobacter vibrioides (CvPHBH). A combination of site-directed mutagenesis in the active site and random mutagenesis via laccase-mediated colorimetric assay allowed us to obtain CvPHBH mutants that enhanced 4,3-AHBA productivity under deep-well plate culture conditions. The recombinant C. glutamicum strain expressing CvPHBHM106A/T294S and having an enhanced 4-ABA biosynthetic pathway produced 13.5 g/L (88 mM) 4,3-AHBA and 0.059 g/L (0.43 mM) precursor 4-ABA in fed-batch culture using a nutrient-rich medium. The culture of this strain in the chemically defined CGXII medium yielded 9.8 C-mol% of 4,3-AHBA from glucose, corresponding to 12.8% of the theoretical maximum yield (76.8 C-mol%) calculated using a genome-scale metabolic model of C. glutamicum. CONCLUSIONS Identification of PHBH mutants that could efficiently catalyze the 3-hydroxylation of 4-ABA in C. glutamicum allowed us to construct an artificial biosynthetic pathway capable of producing 4,3-AHBA on a gram-scale using glucose as the carbon source. These findings will contribute to a better understanding of enzyme-catalyzed regioselective hydroxylation of aromatic chemicals and to the diversification of biomass-derived precursors for high-performance materials.
Collapse
Affiliation(s)
- Kyoshiro Nonaka
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan.
| | - Tatsuya Osamura
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| | - Fumikazu Takahashi
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| |
Collapse
|
2
|
Mahato S, Meheta N, Kotakonda M, Joshi M, Ghosh P, Shit M, Choudhury AR, Biswas B. Ligand directed synthesis of a unprecedented tetragonalbipyramidal copper (II) complex and its antibacterial activity and catalytic role in oxidative dimerisation of 2‐aminophenol. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shreya Mahato
- Department of Chemistry University of North Bengal Darjeeling‐734013 India
| | - Nishith Meheta
- Department of Chemistry University of North Bengal Darjeeling‐734013 India
| | | | - Mayank Joshi
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli PO Mohali Punjab 140306 India
| | - Prasanta Ghosh
- Department of Chemistry Narendrapur Ramakrishna Mission Residential College Kolkata 700103 India
| | - Madhusudan Shit
- Department of Chemistry Dinabandhu Andrews College Kolkata 700084 India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli PO Mohali Punjab 140306 India
| | - Bhaskar Biswas
- Department of Chemistry University of North Bengal Darjeeling‐734013 India
| |
Collapse
|
3
|
Sousa AC, Conceição Oliveira M, Martins LO, Robalo MP. A Sustainable Synthesis of Asymmetric Phenazines and Phenoxazinones Mediated by CotA-Laccase. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ana Catarina Sousa
- Área Departamental de Engenharia Química, ISEL - Instituto Superior de Engenharia de Lisboa; Instituto Politécnico de Lisboa; R. Conselheiro Emídio Navarro, 1 1959-007 Lisboa Portugal
- Centro de Química Estrutural, Complexo I; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - M. Conceição Oliveira
- Centro de Química Estrutural, Complexo I; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Av da República 2780-157 Oeiras Portugal
| | - M. Paula Robalo
- Área Departamental de Engenharia Química, ISEL - Instituto Superior de Engenharia de Lisboa; Instituto Politécnico de Lisboa; R. Conselheiro Emídio Navarro, 1 1959-007 Lisboa Portugal
- Centro de Química Estrutural, Complexo I; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| |
Collapse
|
4
|
Wu S, Zhang L, Chen J. Paracetamol in the environment and its degradation by microorganisms. Appl Microbiol Biotechnol 2012; 96:875-84. [DOI: 10.1007/s00253-012-4414-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/29/2012] [Accepted: 09/03/2012] [Indexed: 11/28/2022]
|
5
|
Degradation of paracetamol by pure bacterial cultures and their microbial consortium. Appl Microbiol Biotechnol 2012; 97:3687-98. [DOI: 10.1007/s00253-012-4170-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/25/2012] [Accepted: 05/10/2012] [Indexed: 11/26/2022]
|
6
|
Gomes PB, Nett M, Dahse HM, Sattler I, Martin K, Hertweck C. Bezerramycins AâC, Antiproliferative Phenoxazinones fromStreptomyces griseusFeaturing Carboxy, Carboxamide or Nitrile Substituents. European J Org Chem 2010. [DOI: 10.1002/ejoc.200901206] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Le Roes-Hill M, Goodwin C, Burton S. Phenoxazinone synthase: what's in a name? Trends Biotechnol 2009; 27:248-58. [DOI: 10.1016/j.tibtech.2009.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 11/29/2022]
|
8
|
|
9
|
Giurg M, Piekielska K, Gębala M, Ditkowski B, Wolański M, Peczyńska‐Czoch W, Młochowski J. Catalytic Oxidative Cyclocondensation ofo‐Aminophenols to 2‐Amino‐3H‐phenoxazin‐3‐ones. SYNTHETIC COMMUN 2007. [DOI: 10.1080/00397910701316136] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mirosław Giurg
- a Department of Organic Chemistry, Faculty of Chemistry , Wrocław University of Technology , Wrocław, Poland
| | - Katarzyna Piekielska
- a Department of Organic Chemistry, Faculty of Chemistry , Wrocław University of Technology , Wrocław, Poland
| | - Magdalena Gębala
- a Department of Organic Chemistry, Faculty of Chemistry , Wrocław University of Technology , Wrocław, Poland
| | - Bartosz Ditkowski
- a Department of Organic Chemistry, Faculty of Chemistry , Wrocław University of Technology , Wrocław, Poland
| | - Marcin Wolański
- a Department of Organic Chemistry, Faculty of Chemistry , Wrocław University of Technology , Wrocław, Poland
| | - Wanda Peczyńska‐Czoch
- a Department of Organic Chemistry, Faculty of Chemistry , Wrocław University of Technology , Wrocław, Poland
| | - Jacek Młochowski
- a Department of Organic Chemistry, Faculty of Chemistry , Wrocław University of Technology , Wrocław, Poland
| |
Collapse
|
10
|
Iwaki H, Muraki T, Ishihara S, Hasegawa Y, Rankin KN, Sulea T, Boyd J, Lau PCK. Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. J Bacteriol 2007; 189:3502-14. [PMID: 17277060 PMCID: PMC1855914 DOI: 10.1128/jb.01098-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens strain KU-7 is a prototype microorganism that metabolizes 2-nitrobenzoate (2-NBA) via the formation of 3-hydroxyanthranilate (3-HAA), a known antioxidant and reductant. The initial two steps leading to the sequential formation of 2-hydroxy/aminobenzoate and 3-HAA are catalyzed by a NADPH-dependent 2-NBA nitroreductase (NbaA) and 2-hydroxylaminobenzoate mutase (NbaB), respectively. The 216-amino-acid protein NbaA is 78% identical to a plasmid-encoded hypothetical conserved protein of Polaromonas strain JS666; structurally, it belongs to the homodimeric NADH:flavin mononucleotide (FMN) oxidoreductase-like fold family. Structural modeling of complexes with the flavin, coenzyme, and substrate suggested specific residues contributing to the NbaA catalytic activity, assuming a ping-pong reaction mechanism. Mutational analysis supports the roles of Asn40, Asp76, and Glu113, which are predicted to form the binding site for a divalent metal ion implicated in FMN binding, and a role in NADPH binding for the 10-residue insertion in the beta5-alpha2 loop. The 181-amino-acid sequence of NbaB is 35% identical to the 4-hydroxylaminobenzoate lyases (PnbBs) of various 4-nitrobenzoate-assimilating bacteria, e.g., Pseudomonas putida strain TW3. Coexpression of nbaB with nbaA in Escherichia coli produced a small amount of 3-HAA from 2-NBA, supporting the functionality of the nbaB gene. We also showed by gene knockout and chemotaxis assays that nbaY, a chemoreceptor NahY homolog located downstream of the nbaA gene, is responsible for strain KU-7 being attracted to 2-NBA. NbaY is the first chemoreceptor in nitroaromatic metabolism to be identified, and this study completes the gene elucidation of 2-NBA metabolism that is localized within a 24-kb chromosomal locus of strain KU-7.
Collapse
Affiliation(s)
- Hiroaki Iwaki
- Department of Biotechnology, Faculty of Engineering and High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Suzuki H, Furusho Y, Higashi T, Ohnishi Y, Horinouchi S. A Novel o-Aminophenol Oxidase Responsible for Formation of the Phenoxazinone Chromophore of Grixazone. J Biol Chem 2006; 281:824-33. [PMID: 16282322 DOI: 10.1074/jbc.m505806200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Grixazone contains a phenoxazinone chromophore and is a secondary metabolite produced by Streptomyces griseus. In the grixazone biosynthesis gene cluster, griF (encoding a tyrosinase homolog) and griE (encoding a protein similar to copper chaperons for tyrosinases) are encoded. An expression study of GriE and GriF in Escherichia coli showed that GriE activated GriF by transferring copper ions to GriF, as has been observed for a Streptomyces melanogenesis system in which the MelC1 copper chaperon transfers copper ions to MelC2 tyrosinase. In contrast with tyrosinases, GriF showed no monophenolase activity, although it oxidized various o-aminophenols as preferable substrates rather than catechol-type substrates. Deletion of the griEF locus on the chromosome resulted in accumulation of 3-amino-4-hydroxybenzaldehyde (3,4-AHBAL) and its acetylated compound, 3-acetylamino-4-hydroxybenzaldehyde. GriF oxidized 3,4-AHBAL to yield an o-quinone imine derivative, which was then non-enzymatically coupled with another molecule of the o-quinone imine to form a phenoxazinone. The coexistence of N-acetylcysteine in the in vitro oxidation of 3,4-AH-BAL by GriF resulted in the formation of grixazone A, suggesting that the -SH group of N-acetylcysteine is conjugated to the o-quinone imine formed from 3,4-AHBAL and that the conjugate is presumably coupled with another molecule of the o-quinone imine. GriF is thus a novel o-aminophenol oxidase that is responsible for the formation of the phenoxazinone chromophore in the grixazone biosynthetic pathway.
Collapse
Affiliation(s)
- Hirokazu Suzuki
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | |
Collapse
|
12
|
Takenaka S, Okugawa S, Kadowaki M, Murakami S, Aoki K. The metabolic pathway of 4-aminophenol in Burkholderia sp. strain AK-5 differs from that of aniline and aniline with C-4 substituents. Appl Environ Microbiol 2003; 69:5410-3. [PMID: 12957929 PMCID: PMC194951 DOI: 10.1128/aem.69.9.5410-5413.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia sp. strain AK-5 utilized 4-aminophenol as the sole carbon, nitrogen, and energy source. A pathway for the metabolism of 4-aminophenol in strain AK-5 was proposed based on the identification of three key metabolites by gas chromatography-mass spectrometry analysis. Strain AK-5 converted 4-aminophenol to 1,2,4-trihydroxybenzene via 1,4-benzenediol. 1,2,4-Trihydroxybenzene 1,2-dioxygenase cleaved the benzene ring of 1,2,4-trihydroxybenzene to form maleylacetic acid. The enzyme showed a high dioxygenase activity only for 1,2,4-trihydroxybenzene, with K(m) and V(max) values of 9.6 micro M and 6.8 micro mol min(-1) mg of protein(-1), respectively.
Collapse
Affiliation(s)
- Shinji Takenaka
- Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Rokko, Kobe, Japan
| | | | | | | | | |
Collapse
|
13
|
Nadeau LJ, He Z, Spain JC. Bacterial conversion of hydroxylamino aromatic compounds by both lyase and mutase enzymes involves intramolecular transfer of hydroxyl groups. Appl Environ Microbiol 2003; 69:2786-93. [PMID: 12732549 PMCID: PMC154516 DOI: 10.1128/aem.69.5.2786-2793.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H(2)(18)O did not indicate any (18)O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was (18)O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups.
Collapse
Affiliation(s)
- Lloyd J Nadeau
- Air Force Research Laboratory, 139 Barnes Drive, Suite 2, Tyndall Air Force Base, FL 32403, USA
| | | | | |
Collapse
|