1
|
Ordaz-Guillén Y, Galíndez-Mayer CJ, Ruiz-Ordaz N, Juárez-Ramírez C, Santoyo-Tepole F, Ramos-Monroy O. Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8765-8773. [PMID: 24737019 DOI: 10.1007/s11356-014-2809-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
Tordon is a widely used herbicide formulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram), and it is considered a toxic herbicide. The purposes of this work were to assess the feasibility of a microbial consortium inoculated in a lab-scale compartmentalized biobarrier, to remove these herbicides, and isolate, identify, and evaluate their predominant microbial constituents. Volumetric loading rates of herbicides ranging from 31.2 to 143.9 g m(-3) day(-1), for 2,4-D, and 12.8 to 59.3 g m(-3) day(-1) for picloram were probed; however, the top operational limit of the biobarrier, detected by a decay in the removal efficiency, was not reached. At the highest loading rates probed, high average removal efficiencies of 2,4-D, 99.56 ± 0.44; picloram, 94.58 ± 2.62; and chemical oxygen demand (COD), 89.42 ± 3.68, were obtained. It was found that the lab-scale biofilm reactor efficiently removed both herbicides at dilution rates ranging from 0.92 to 4.23 day(-1), corresponding to hydraulic retention times from 1.087 to 0.236 days. On the other hand, few microbial strains able to degrade picloram are reported in the literature. In this work, three of the nine bacterial strains isolated cometabolically degrade picloram. They were identified as Hydrocarboniphaga sp., Tsukamurella sp., and Cupriavidus sp.
Collapse
Affiliation(s)
- Yolanda Ordaz-Guillén
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, IPN, Carpio y Plan de Ayala, Colonia Santo Tomás s/n, CP 11340, México, D.F., México
| | | | | | | | | | | |
Collapse
|
2
|
Rate limiting factors in trichloroethylene co-metabolic degradation by phenol-grown aerobic granules. Biodegradation 2013; 25:227-37. [DOI: 10.1007/s10532-013-9655-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 07/04/2013] [Indexed: 11/26/2022]
|
3
|
Mason OU, Nakagawa T, Rosner M, Van Nostrand JD, Zhou J, Maruyama A, Fisk MR, Giovannoni SJ. First investigation of the microbiology of the deepest layer of ocean crust. PLoS One 2010; 5:e15399. [PMID: 21079766 PMCID: PMC2974637 DOI: 10.1371/journal.pone.0015399] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 09/07/2010] [Indexed: 11/17/2022] Open
Abstract
The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W). Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304), and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305). The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes ("GeoChip"), producing further evidence of genomic potential for hydrocarbon degradation--genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic microbial community reported here might utilize carbon sources produced independently of the surface biosphere.
Collapse
Affiliation(s)
- Olivia U Mason
- College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
4
|
|
5
|
Ryan MP, Pembroke JT, Adley CC. Ralstonia pickettiiin environmental biotechnology: potential and applications. J Appl Microbiol 2007; 103:754-64. [PMID: 17897177 DOI: 10.1111/j.1365-2672.2007.03361.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xenobiotic pollutants such as toluene and trichloroethylene are released into the environment by various industrial processes. Ralstonia pickettii possess significant biotechnological potential in the field of bioremediation and has demonstrated the ability to breakdown many of these toxic substances. Here, we provide a description of the major compounds that various strains of R. pickettii are capable of degrading and a brief review of their breakdown pathways and an argument for its use in bioremediation.
Collapse
Affiliation(s)
- M P Ryan
- Systems Microbiology Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| | | | | |
Collapse
|
6
|
Den W, Ravindran V, Pirbazari M. Photooxidation and biotrickling filtration for controlling industrial emissions of trichloroethylene and perchloroethylene. Chem Eng Sci 2006. [DOI: 10.1016/j.ces.2006.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Johnson DR, Park J, Kukor JJ, Abriola LM. Effect of carbon starvation on toluene degradation activity by toluene monooxygenase-expressing bacteria. Biodegradation 2006; 17:437-45. [PMID: 16477358 DOI: 10.1007/s10532-005-9014-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2005] [Indexed: 11/29/2022]
Abstract
Subsurface bacteria commonly exist in a starvation state with only periodic exposure to utilizable sources of carbon and energy. In this study, the effect of carbon starvation on aerobic toluene degradation was quantitatively evaluated with a selection of bacteria representing all the known toluene oxygenase enzyme pathways. For all the investigated strains, the rate of toluene biodegradation decreased exponentially with starvation time. First-order deactivation rate constants for TMO-expressing bacteria were approximately an order of magnitude greater than those for other oxygenase-expressing bacteria. When growth conditions (the type of growth substrate and the type and concentration of toluene oxygenase inducer) were varied in the cultures prior to the deactivation experiments, the rate of deactivation was not significantly affected, suggesting that the rate of deactivation is independent of previous substrate/inducer conditions. Because TMO-expressing bacteria are known to efficiently detoxify TCE in subsurface environments, these findings have significant implications for in situ TCE bioremediation, specifically for environments experiencing variable growth-substrate exposure conditions.
Collapse
Affiliation(s)
- David R Johnson
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
| | | | | | | |
Collapse
|
8
|
Hubert C, Shen Y, Voordouw G. Changes in soil microbial community composition induced by cometabolism of toluene and trichloroethylene. Biodegradation 2005; 16:11-22. [PMID: 15727151 DOI: 10.1007/s10531-003-0471-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effects of trichloroethylene (TCE) on microbial community composition were analyzed by reverse sample genome probing. Soil enrichments were incubated in dessicators containing an organic phase of either 1 or 10% (w/w) toluene in vacuum pump oil, delivering constant equilibrium aqueous concentrations of 16 and 143 mg/l, respectively. Increasing the equilibrium aqueous concentration of TCE from 0 to 10 mg/l led to shifts in community composition at 16, but not at 143 mg/l of toluene. In closed system co-degradation studies, TCE at an aqueous concentration of 1 mg/l was effectively degraded by toluene-degrading soil enrichments once the aqueous toluene concentration dropped below 25 mg/l. Little TCE degradation was observed at higher toluene concentrations (50-250 mg/l). The results indicate that TCE changes microbial community composition under conditions where it is being actively metabolized.
Collapse
Affiliation(s)
- Casey Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | |
Collapse
|
9
|
Denitrification Activity of a Poly-Hydroxybutirate (PHB) Embedded Soil-Column Reactor and Genomic Study of the Bacterial Community. ACTA ACUST UNITED AC 2005. [DOI: 10.2521/jswtb.41.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Fishman A, Tao Y, Rui L, Wood TK. Controlling the regiospecific oxidation of aromatics via active site engineering of toluene para-monooxygenase of Ralstonia pickettii PKO1. J Biol Chem 2004; 280:506-14. [PMID: 15498762 DOI: 10.1074/jbc.m410320200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A primary goal of protein engineering is to control catalytic activity. Here we show that through mutagenesis of three active site residues, the catalytic activity of a multicomponent monooxygenase is altered so that it hydroxylates all three positions of toluene as well as both positions of naphthalene. Hence, for the first time, an enzyme has been engineered so that its regiospecific oxidation of a substrate can be controlled. Through the A107G mutation in the alpha-subunit of toluene para-monooxygenase, a variant was formed that hydroxylated toluene primarily at the ortho-position while converting naphthalene to 1-naphthol. Conversely, the A107T variant produced >98% p-cresol and p-nitrophenol from toluene and nitrobenzene, respectively, as well as produced 2-naphthol from naphthalene. The mutation I100S/G103S produced a toluene para-monooxygenase variant that formed 75% m-cresol from toluene and 100% m-nitrophenol from nitrobenzene; thus, for the first time a true meta-hydroxylating toluene monooxygenase was created.
Collapse
Affiliation(s)
- Ayelet Fishman
- Departments of Chemical Engineering and Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3222, USA
| | | | | | | |
Collapse
|
11
|
North NN, Dollhopf SL, Petrie L, Istok JD, Balkwill DL, Kostka JE. Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl Environ Microbiol 2004; 70:4911-20. [PMID: 15294831 PMCID: PMC492330 DOI: 10.1128/aem.70.8.4911-4920.2004] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that metal-reducing microorganisms can effectively promote the precipitation and removal of uranium from contaminated groundwater. Microbial communities were stimulated in the acidic subsurface by pH neutralization and addition of an electron donor to wells. In single-well push-pull tests at a number of treated sites, nitrate, Fe(III), and uranium were extensively reduced and electron donors (glucose, ethanol) were consumed. Examination of sediment chemistry in cores sampled immediately adjacent to treated wells 3.5 months after treatment revealed that sediment pH increased substantially (by 1 to 2 pH units) while nitrate was largely depleted. A large diversity of 16S rRNA gene sequences were retrieved from subsurface sediments, including species from the alpha, beta, delta, and gamma subdivisions of the class Proteobacteria, as well as low- and high-G+C gram-positive species. Following in situ biostimulation of microbial communities within contaminated sediments, sequences related to previously cultured metal-reducing delta-Proteobacteria increased from 5% to nearly 40% of the clone libraries. Quantitative PCR revealed that Geobacter-type 16S rRNA gene sequences increased in biostimulated sediments by 1 to 2 orders of magnitude at two of the four sites tested. Evidence from the quantitative PCR analysis corroborated information obtained from 16S rRNA gene clone libraries, indicating that members of the delta-Proteobacteria subdivision, including Anaeromyxobacter dehalogenans-related and Geobacter-related sequences, are important metal-reducing organisms in acidic subsurface sediments. This study provides the first cultivation-independent analysis of the change in metal-reducing microbial communities in subsurface sediments during an in situ bioremediation experiment.
Collapse
Affiliation(s)
- Nadia N North
- Department of Oceanography, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | |
Collapse
|
12
|
Fishman A, Tao Y, Wood TK. Toluene 3-monooxygenase of Ralstonia pickettii PKO1 is a para-hydroxylating enzyme. J Bacteriol 2004; 186:3117-23. [PMID: 15126473 PMCID: PMC400597 DOI: 10.1128/jb.186.10.3117-3123.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxygenases are promising biocatalysts for performing selective hydroxylations not accessible by chemical methods. Whereas toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 hydroxylates monosubstituted benzenes at the para position and toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 hydroxylates at the ortho position, toluene 3-monooxygenase (T3MO) of Ralstonia pickettii PKO1 was reported previously to hydroxylate toluene at the meta position, producing primarily m-cresol (R. H. Olsen, J. J. Kukor, and B. Kaphammer, J. Bacteriol. 176:3749-3756, 1994). Using gas chromatography, we have discovered that T3MO hydroxylates monosubstituted benzenes predominantly at the para position. TG1/pBS(Kan)T3MO cells expressing T3MO oxidized toluene at a maximal rate of 11.5 +/- 0.33 nmol/min/mg of protein with an apparent Km value of 250 microM and produced 90% p-cresol and 10% m-cresol. This product mixture was successively transformed to 4-methylcatechol. T4MO, in comparison, produces 97% p-cresol and 3% m-cresol. Pseudomonas aeruginosa PAO1 harboring pRO1966 (the original T3MO-bearing plasmid) also exhibited the same product distribution as that of TG1/pBS(Kan)T3MO. TG1/pBS(Kan)T3MO produced 66% p-nitrophenol and 34% m-nitrophenol from nitrobenzene and 100% p-methoxyphenol from methoxybenzene, as well as 62% 1-naphthol and 38% 2-naphthol from naphthalene; similar results were found with TG1/pBS(Kan)T4MO. Sequencing of the tbu locus from pBS(Kan)T3MO and pRO1966 revealed complete identity between the two, thus eliminating any possible cloning errors. 1H nuclear magnetic resonance analysis confirmed the structural identity of p-cresol in samples containing the product of hydroxylation of toluene by pBS(Kan)T3MO.
Collapse
Affiliation(s)
- Ayelet Fishman
- Departments of Chemical Engineering and Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3222, USA
| | | | | |
Collapse
|
13
|
Park J, Malinverni J, Adriaens P, Kukor JJ. Quantitative structure-activity relationship (QSAR) analysis of aromatic effector specificity in NtrC-like transcriptional activators from aromatic oxidizing bacteria. FEMS Microbiol Lett 2003; 224:45-52. [PMID: 12855166 DOI: 10.1016/s0378-1097(03)00400-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A quantitative structure-activity relationship (QSAR) approach was taken to provide mechanistic insights into the interaction between the chemical structure of inducing compounds and the transcriptional activation of aromatic monooxygenase operons among the XylR/DmpR subclass of bacterial NtrC-like transcriptional regulators. Compared to XylR and DmpR, a broader spectrum of effector compounds was observed for the TbuT system from Ralstonia pickettii PKO1. The results of QSAR analysis for TbuT suggested that a steric effect, rather than hydrophobic or electronic effects, may be the predominant factor in determining aromatic effector specificity, and the active site of the regulator may positively interact not only with the methyl moiety but also with the most electron-rich aryl side of an aromatic effector.
Collapse
Affiliation(s)
- Joonhong Park
- Center for Microbial Ecology, Michigan State University, A528 PSS Building, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|