1
|
Liu M, Ge W, Zhong G, Yang Y, Xun L, Xia Y. Dual-Plasmid Mini-Tn5 System to Stably Integrate Multicopy of Target Genes in Escherichia coli. ACS Synth Biol 2024; 13:3523-3538. [PMID: 39418641 DOI: 10.1021/acssynbio.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The efficiency of valuable metabolite production by engineered microorganisms underscores the importance of stable and controllable gene expression. While plasmid-based methods offer flexibility, integrating genes into host chromosomes can establish stability without selection pressure. However, achieving site-directed multicopy integration presents challenges, including site selection and stability. We introduced a stable multicopy integration method by using a novel dual-plasmid mini-Tn5 system to insert genes into Escherichia coli's genome. The gene of interest was combined with a removable antibiotic resistance gene. After the selection of bacteria with inserted genes, the antibiotic resistance gene was removed. Optimizations yielded an integration efficiency of approximately 5.5 × 10-3 per recipient cell in a single round. Six rounds of integration resulted in 19 and 5 copies of the egfp gene in the RecA+ strain MG1655 and the RecA- strain XL1-Blue MRF', respectively. Additionally, we integrated a polyhydroxybutyrate (PHB) synthesis gene cluster into E. coli MG1655, yielding an 8-copy integration strain producing more PHB than strains with the cluster on a high-copy plasmid. The method was efficient in generating gene insertions in various E. coli strains, and the inserted genes were stable after extended culture. This stable, high-copy integration tool offers potential for diverse applications in synthetic biology.
Collapse
Affiliation(s)
- Menghui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Wei Ge
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
- Clinical Laboratory, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong 266024, People's Republic of China
| | - Guomei Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Yuqing Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, United States
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
2
|
Penkov D, Zubkova E, Parfyonova Y. Tn5 DNA Transposase in Multi-Omics Research. Methods Protoc 2023; 6:mps6020024. [PMID: 36961044 PMCID: PMC10037646 DOI: 10.3390/mps6020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Tn5 transposase use in biotechnology has substantially advanced the sequencing applications of genome-wide analysis of cells. This is mainly due to the ability of Tn5 transposase to efficiently transpose DNA essentially randomly into any target DNA without the aid of other factors. This concise review is focused on the advances in Tn5 applications in multi-omics technologies, genome-wide profiling, and Tn5 hybrid molecule creation. The possibilities of other transposase uses are also discussed.
Collapse
Affiliation(s)
- Dmitry Penkov
- IRCCS San Raffaele Hospital, 20132 Milan, Italy
- National Medical Research Centre of Cardiology Named after E. I. Chazov, 121552 Moscow, Russia
| | - Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after E. I. Chazov, 121552 Moscow, Russia
| | - Yelena Parfyonova
- National Medical Research Centre of Cardiology Named after E. I. Chazov, 121552 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Gomez-Raya-Vilanova MV, Leskinen K, Bhattacharjee A, Virta P, Rosenqvist P, Smith JLR, Bayfield O, Homberger C, Kerrinnes T, Vogel J, Pajunen M, Skurnik M. The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner. Nucleic Acids Res 2022; 50:3985-3997. [PMID: 35357498 PMCID: PMC9023294 DOI: 10.1093/nar/gkac203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Yersinia phage YerA41 is morphologically similar to jumbo bacteriophages. The isolated genomic material of YerA41 could not be digested by restriction enzymes, and used as a template by conventional DNA polymerases. Nucleoside analysis of the YerA41 genomic material, carried out to find out whether this was due to modified nucleotides, revealed the presence of a ca 1 kDa substitution of thymidine with apparent oligosaccharide character. We identified and purified the phage DNA polymerase (DNAP) that could replicate the YerA41 genomic DNA even without added primers. Cryo-electron microscopy (EM) was used to characterize structural details of the phage particle. The storage capacity of the 131 nm diameter head was calculated to accommodate a significantly longer genome than that of the 145 577 bp genomic DNA of YerA41 determined here. Indeed, cryo-EM revealed, in contrast to the 25 Å in other phages, spacings of 33-36 Å between shells of the genomic material inside YerA41 heads suggesting that the heavily substituted thymidine increases significantly the spacing of the DNA packaged inside the capsid. In conclusion, YerA41 appears to be an unconventional phage that packages thymidine-modified genomic DNA into its capsids along with its own DNAP that has the ability to replicate the genome.
Collapse
Affiliation(s)
- Miguel V Gomez-Raya-Vilanova
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
| | - Katarzyna Leskinen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
| | - Arnab Bhattacharjee
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
- Drug Discovery, Herantis Pharma Ltd. Bertel Jungin Aukio 1, 02600 Espoo, Finland
| | - Pasi Virta
- Department of Chemistry, 20014 University of Turku, Turku, Finland
| | - Petja Rosenqvist
- Department of Chemistry, 20014 University of Turku, Turku, Finland
| | - Jake L R Smith
- York Structural Biology Laboratory, University of York, YO10 5DD York, United Kingdom
| | - Oliver W Bayfield
- York Structural Biology Laboratory, University of York, YO10 5DD York, United Kingdom
| | - Christina Homberger
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Tobias Kerrinnes
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Faculty of Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Maria I Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH, Helsinki, Finland
- Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| |
Collapse
|
4
|
Screening of Bacteriophage Encoded Toxic Proteins with a Next Generation Sequencing-Based Assay. Viruses 2021; 13:v13050750. [PMID: 33923360 PMCID: PMC8145870 DOI: 10.3390/v13050750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteriophage vB_EcoM_fHy-Eco03 (fHy-Eco03 for short) was isolated from a sewage sample based on its ability to infect an Escherichia coli clinical blood culture isolate. Altogether, 32 genes encoding hypothetical proteins of unknown function (HPUFs) were identified from the genomic sequence of fHy-Eco03. The HPUFs were screened for toxic properties (toxHPUFs) with a novel, Next Generation Sequencing (NGS)-based approach. This approach identifies toxHPUF-encoding genes through comparison of gene-specific read coverages in DNA from pooled ligation mixtures before electroporation and pooled transformants after electroporation. The performance and reliability of the NGS screening assay was compared with a plating efficiency-based method, and both methods identified the fHy-Eco03 gene g05 product as toxic. While the outcomes of the two screenings were highly similar, the NGS screening assay outperformed the plating efficiency assay in both reliability and efficiency. The NGS screening assay can be used as a high throughput method in the search for new phage-inspired antimicrobial molecules.
Collapse
|
5
|
Spruit CM, Wicklund A, Wan X, Skurnik M, Pajunen MI. Discovery of Three Toxic Proteins of Klebsiella Phage fHe-Kpn01. Viruses 2020; 12:E544. [PMID: 32429141 PMCID: PMC7291057 DOI: 10.3390/v12050544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
The lytic phage, fHe-Kpn01 was isolated from sewage water using an extended-spectrum beta-lactamase-producing strain of Klebsiella pneumoniae as a host. The genome is 43,329 bp in size and contains direct terminal repeats of 222 bp. The genome contains 56 predicted genes, of which proteomics analysis detected 29 different proteins in purified phage particles. Comparison of fHe-Kpn01 to other phages, both morphologically and genetically, indicated that the phage belongs to the family Podoviridae and genus Drulisvirus. Because fHe-Kpn01 is strictly lytic and does not carry any known resistance or virulence genes, it is suitable for phage therapy. It has, however, a narrow host range since it infected only three of the 72 tested K. pneumoniae strains, two of which were of capsule type KL62. After annotation of the predicted genes based on the similarity to genes of known function and proteomics results on the virion-associated proteins, 22 gene products remained annotated as hypothetical proteins of unknown function (HPUF). These fHe-Kpn01 HPUFs were screened for their toxicity in Escherichia coli. Three of the HPUFs, encoded by the genes g10, g22, and g38, were confirmed to be toxic.
Collapse
Affiliation(s)
- Cindy M. Spruit
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Anu Wicklund
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Division of Clinical Microbiology, HUSLAB, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Xing Wan
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
- Division of Clinical Microbiology, HUSLAB, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (C.M.S.); (A.W.); (X.W.); (M.S.)
| |
Collapse
|
6
|
Li Y, Xia H, Bai F, Song X, Zhuang L, Xu H, Zhang X, Zhang X, Qiao M. PA5001 gene involves in swimming motility and biofilm formation in Pseudomonas aeruginosa. Microb Pathog 2020; 144:103982. [PMID: 32105802 DOI: 10.1016/j.micpath.2020.103982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Pseudomonas aeruginosa is a nosocomial human pathogen causing infections in immunocompromised patients. To explore new genes involved in P. aeruginosa swimming motility, Mu transposon mutagenesis library was screened for isolates with altered swimming motility. Eleven nonmobile mutants were identified. Sequence analysis shows the nonmobile phenotype of one isolate was attributed to the inactivation of PA5001 gene. PA5001 knockout mutant based on the PAK lab strain also displayed comparable phenotypes suggesting the universal gene function regardless of strain. Exotic PA5001 gene fragment provided on expressing plasmid was capable of storing nonmobile phenotype of PA5001 mutant, suggesting the functional involvement of PA5001 gene on bacterial swimming. Impact of PA5001 inactivation on biofilm formation was examined, as adhesion and interaction during biofilm formation is highly dependent of bacterial mobility. The result shows that normal architecture of biofilm was disrupted in the mutant. Complementing by exotic PA5001 gene fragment resulted in the restoration of biofilm phenotype. Our results provide evidences suggesting the functional participation of PA5001 gene in bacterial mobility and biofilm formation. The critical function by PA5001 in bacterial motility and biofilm might serve as hint for the novel target for the treatment of chronic infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Yingli Li
- College of Life Sciences, Nankai University, Tianjin, 300071, China; School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Huiming Xia
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fang Bai
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xuyang Song
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Luning Zhuang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Haijin Xu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiuming Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiuming Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mingqiang Qiao
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Bhatt S, Chalmers R. Targeted DNA transposition in vitro using a dCas9-transposase fusion protein. Nucleic Acids Res 2019; 47:8126-8135. [PMID: 31429873 PMCID: PMC6735945 DOI: 10.1093/nar/gkz552] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Homology-directed genome engineering is limited by transgene size. Although DNA transposons are more efficient with large transgenes, random integrations are potentially mutagenic. Here we present an in vitro mechanistic study that demonstrates efficient Cas9 targeting of the mariner transposon Hsmar1. Integrations were unidirectional and tightly constrained to one side of the sgRNA binding site. Further analysis of the nucleoprotein intermediates demonstrated that the transposase and Cas9 moieties can bind their respective substrates independently or in concert. Kinetic analysis of the reaction in the presence of the Cas9 target-DNA revealed a delay between first and second strand cleavage at the transposon end. This step involves a significant conformational change that may be hindered by the properties of the interdomainal linker. Otherwise, the transposase moiety behaved normally and was proficient for integration in vitro and in Escherichia coli. Specific integration into the lacZ gene in E. coli was obscured by a high background of random integrations. Nevertheless, Cas9 is an attractive candidate for transposon-targeting because it has a high affinity and long dwell-time at its target site. This will facilitate a future optogenetic strategy for the temporal control of integration, which will increase the ratio of targeted to untargeted events.
Collapse
Affiliation(s)
- Shivam Bhatt
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
8
|
Mohanraj U, Wan X, Spruit CM, Skurnik M, Pajunen MI. A Toxicity Screening Approach to Identify Bacteriophage-Encoded Anti-Microbial Proteins. Viruses 2019; 11:E1057. [PMID: 31739448 PMCID: PMC6893735 DOI: 10.3390/v11111057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022] Open
Abstract
The rapid emergence of antibiotic resistance among many pathogenic bacteria has created a profound need to discover new alternatives to antibiotics. Bacteriophages, the viruses of microbes, express special proteins to overtake the metabolism of the bacterial host they infect, the best known of which are involved in bacterial lysis. However, the functions of majority of bacteriophage encoded gene products are not known, i.e., they represent the hypothetical proteins of unknown function (HPUFs). In the current study we present a phage genomics-based screening approach to identify phage HPUFs with antibacterial activity with a long-term goal to use them as leads to find unknown targets to develop novel antibacterial compounds. The screening assay is based on the inhibition of bacterial growth when a toxic gene is expression-cloned into a plasmid vector. It utilizes an optimized plating assay producing a significant difference in the number of transformants after ligation of the toxic and non-toxic genes into a cloning vector. The screening assay was first tested and optimized using several known toxic and non-toxic genes. Then, it was applied to screen 94 HPUFs of bacteriophage φR1-RT, and identified four HPUFs that were toxic to Escherichia coli. This optimized assay is in principle useful in the search for bactericidal proteins of any phage, and also opens new possibilities to understanding the strategies bacteriophages use to overtake bacterial hosts.
Collapse
Affiliation(s)
- Ushanandini Mohanraj
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (U.M.); (X.W.); (C.M.S.); (M.S.)
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
| | - Xing Wan
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (U.M.); (X.W.); (C.M.S.); (M.S.)
- Division Animal and Human Health Engineering, Kasteelpark Arenberg 21 - box 2462, 3001 Leuven, Belgium
| | - Cindy M. Spruit
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (U.M.); (X.W.); (C.M.S.); (M.S.)
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (U.M.); (X.W.); (C.M.S.); (M.S.)
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland
| | - Maria I. Pajunen
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (U.M.); (X.W.); (C.M.S.); (M.S.)
| |
Collapse
|
9
|
Rasila TS, Pulkkinen E, Kiljunen S, Haapa-Paananen S, Pajunen MI, Salminen A, Paulin L, Vihinen M, Rice PA, Savilahti H. Mu transpososome activity-profiling yields hyperactive MuA variants for highly efficient genetic and genome engineering. Nucleic Acids Res 2019; 46:4649-4661. [PMID: 29294068 PMCID: PMC5961161 DOI: 10.1093/nar/gkx1281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/21/2017] [Indexed: 11/22/2022] Open
Abstract
The phage Mu DNA transposition system provides a versatile species non-specific tool for molecular biology, genetic engineering and genome modification applications. Mu transposition is catalyzed by MuA transposase, with DNA cleavage and integration reactions ultimately attaching the transposon DNA to target DNA. To improve the activity of the Mu DNA transposition machinery, we mutagenized MuA protein and screened for hyperactivity-causing substitutions using an in vivo assay. The individual activity-enhancing substitutions were mapped onto the MuA–DNA complex structure, containing a tetramer of MuA transposase, two Mu end segments and a target DNA. This analysis, combined with the varying effect of the mutations in different assays, implied that the mutations exert their effects in several ways, including optimizing protein–protein and protein–DNA contacts. Based on these insights, we engineered highly hyperactive versions of MuA, by combining several synergistically acting substitutions located in different subdomains of the protein. Purified hyperactive MuA variants are now ready for use as second-generation tools in a variety of Mu-based DNA transposition applications. These variants will also widen the scope of Mu-based gene transfer technologies toward medical applications such as human gene therapy. Moreover, the work provides a platform for further design of custom transposases.
Collapse
Affiliation(s)
- Tiina S Rasila
- Division of Genetics and Physiology, Department of Biology, FI-20014 University of Turku, Turku, Finland.,Institute of Biotechnology, Viikki Biocenter, P. O. Box 56, FI-00014 University of Helsinki, Helsinki, Finland
| | - Elsi Pulkkinen
- Division of Genetics and Physiology, Department of Biology, FI-20014 University of Turku, Turku, Finland
| | - Saija Kiljunen
- Division of Genetics and Physiology, Department of Biology, FI-20014 University of Turku, Turku, Finland
| | - Saija Haapa-Paananen
- Division of Genetics and Physiology, Department of Biology, FI-20014 University of Turku, Turku, Finland
| | - Maria I Pajunen
- Division of Biochemistry and Biotechnology, Department of Biosciences, FI-00014 University of Helsinki, Helsinki, Finland
| | - Anu Salminen
- Department of Biochemistry, FI-20014 University of Turku, Turku, Finland
| | - Lars Paulin
- Institute of Biotechnology, Viikki Biocenter, P. O. Box 56, FI-00014 University of Helsinki, Helsinki, Finland
| | - Mauno Vihinen
- Department of Experimental Medical Science, Lund University, SE-221 84, Lund, Sweden
| | - Phoebe A Rice
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Harri Savilahti
- Division of Genetics and Physiology, Department of Biology, FI-20014 University of Turku, Turku, Finland.,Institute of Biotechnology, Viikki Biocenter, P. O. Box 56, FI-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Blundell-Hunter G, Tellier M, Chalmers R. Transposase subunit architecture and its relationship to genome size and the rate of transposition in prokaryotes and eukaryotes. Nucleic Acids Res 2019; 46:9637-9646. [PMID: 30184164 PMCID: PMC6182136 DOI: 10.1093/nar/gky794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/01/2018] [Indexed: 12/17/2022] Open
Abstract
Cut-and-paste transposons are important tools for mutagenesis, gene-delivery and DNA sequencing applications. At the molecular level, the most thoroughly understood are Tn5 and Tn10 in bacteria, and mariner and hAT elements in eukaryotes. All bacterial cut-and-paste transposases characterized to date are monomeric prior to interacting with the transposon end, while all eukaryotic transposases are multimers. Although there is a limited sample size, we proposed that this defines two pathways for transpososome assembly which distinguishes the mechanism of the bacterial and eukaryotic transposons. We predicted that the respective pathways would dictate how the rate of transposition is related to transposase concentration and genome size. Here, we have tested these predictions by creating a single-chain dimer version of the bacterial Tn5 transposase. We show that artificial dimerization switches the transpososome assembly pathway from the bacterial-style to the eukaryotic-style. Although this had no effect in vitro, where the transposase does not have to search far to locate the transposon ends, it increased the rate of transposition in bacterial and HeLa cell assays. However, in contrast to the mariner elements, the Tn5 single-chain dimer remained unaffected by over-production inhibition, which is an emergent property of the transposase subunit structure in the mariner elements.
Collapse
Affiliation(s)
- George Blundell-Hunter
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
11
|
Abstract
Random transposon mutagenesis allows for relatively rapid, genome-wide surveys to detect genes involved in functional traits, by performing screens of mutant libraries. This approach has been widely applied to identify genes responsible for activities of interest in multiple eukaryote and prokaryote organisms, although most studies on microorganisms have focused on pathogenic and clinically relevant bacteria. In this chapter we describe the implementation of an in vitro Tn5-based transposome strategy to generate a large collection of random mutants in the gut commensal Bifidobacterium breve UCC2003, and discuss considerations when applying this mutagenesis system to other Bifidobacterium species or strains of interest.
Collapse
Affiliation(s)
- Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, Villaviciosa, Asturias, Spain
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
12
|
Gorshkova NV, Lobanova JS, Tokmakova IL, Smirnov SV, Akhverdyan VZ, Krylov AA, Mashko SV. Mu-driven transposition of recombinant mini-Mu unit DNA in the Corynebacterium glutamicum chromosome. Appl Microbiol Biotechnol 2018; 102:2867-2884. [PMID: 29392386 PMCID: PMC5847225 DOI: 10.1007/s00253-018-8767-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 02/05/2023]
Abstract
A dual-component Mu-transposition system was modified for the integration/amplification of genes in Corynebacterium. The system consists of two types of plasmids: (i) a non-replicative integrative plasmid that contains the transposing mini-Mu(LR) unit bracketed by the L/R Mu ends or the mini-Mu(LER) unit, which additionally contains the enhancer element, E, and (ii) an integration helper plasmid that expresses the transposition factor genes for MuA and MuB. Efficient transposition in the C. glutamicum chromosome (≈ 2 × 10−4 per cell) occurred mainly through the replicative pathway via cointegrate formation followed by possible resolution. Optimizing the E location in the mini-Mu unit significantly increased the efficiency of Mu-driven intramolecular transposition–amplification in C. glutamicum as well as in gram-negative bacteria. The new C. glutamicum genome modification strategy that was developed allows the consequent independent integration/amplification/fixation of target genes at high copy numbers. After integration/amplification of the first mini-Mu(LER) unit in the C. glutamicum chromosome, the E-element, which is bracketed by lox-like sites, is excised by Cre-mediated fashion, thereby fixing the truncated mini-Mu(LR) unit in its position for the subsequent integration/amplification of new mini-Mu(LER) units. This strategy was demonstrated using the genes for the citrine and green fluorescent proteins, yECitrine and yEGFP, respectively.
Collapse
Affiliation(s)
- Natalya V Gorshkova
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545
| | - Juliya S Lobanova
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545
| | - Irina L Tokmakova
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545
| | - Sergey V Smirnov
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545
| | - Valerii Z Akhverdyan
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545
| | - Alexander A Krylov
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545
| | - Sergey V Mashko
- Ajinomoto-Genetika Research Institute, 1-st Dorozhny proezd, 1-1, Moscow, Russian Federation, 117545.
| |
Collapse
|
13
|
Abstract
Archaea constitute the third domain of life, but studies on their physiology and other features have lagged behind bacteria and eukarya, largely due to the challenging biology of archaea and concomitant difficulties in methods development. The use of genome-wide en masse insertion mutagenesis is one of the most efficient means to discover the genes behind various biological functions, and such a methodology is described in this chapter for a model archaeon Haloferax volcanii. The strategy successfully employs efficient in vitro transposition in combination with gene targeting in vivo via homologous recombination. The methodology is general and should be transferable to other archaeal species.
Collapse
Affiliation(s)
- Saija Kiljunen
- Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
- Department of Bacteriology and Immunology, Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Maria I Pajunen
- Department of Bacteriology and Immunology, Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Harri Savilahti
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland.
| |
Collapse
|
14
|
Abstract
Phage Mu is the paradigm of a growing family of bacteriophages that infect a wide range of bacterial species and replicate their genome by replicative transposition. This molecular process, which is used by other mobile genetic elements to move within genomes, involves the profound rearrangement of the host genome [chromosome(s) and plasmid(s)] and can be exploited for the genetic analysis of the host bacteria and the in vivo cloning of host genes. In this chapter we review Mu-derived constructs that optimize the phage as a series of genetic tools that could inspire the development of similarly efficient tools from other transposable phages for a large spectrum of bacteria.
Collapse
|
15
|
Applications of the Bacteriophage Mu In Vitro Transposition Reaction and Genome Manipulation via Electroporation of DNA Transposition Complexes. Methods Mol Biol 2018; 1681:279-286. [PMID: 29134602 DOI: 10.1007/978-1-4939-7343-9_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The capacity of transposable elements to insert into the genomes has been harnessed during the past decades to various in vitro and in vivo applications. This chapter describes in detail the general protocols and principles applicable for the Mu in vitro transposition reaction as well as the assembly of DNA transposition complexes that can be electroporated into bacterial cells to accomplish efficient gene delivery. These techniques with their modifications potentiate various gene and genome modification applications, which are discussed briefly here, and the reader is referred to the original publications for further details.
Collapse
|
16
|
Gratia JP. Genetic recombinational events in prokaryotes and their viruses: insight into the study of evolution and biodiversity. Antonie van Leeuwenhoek 2017; 110:1493-1514. [DOI: 10.1007/s10482-017-0916-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
|
17
|
Abstract
DNA transposons are defined segments of DNA that are able to move from one genomic location to another. Movement is facilitated by one or more proteins, called the transposase, typically encoded by the mobile element itself. Here, we first provide an overview of the classification of such mobile elements in a variety of organisms. From a mechanistic perspective, we have focused on one particular group of DNA transposons that encode a transposase with a DD(E/D) catalytic domain that is topologically similar to RNase H. For these, a number of three-dimensional structures of transpososomes (transposase-nucleic acid complexes) are available, and we use these to describe the basics of their mechanisms. The DD(E/D) group, in addition to being the largest and most common among all DNA transposases, is the one whose members have been used for a wide variety of genomic applications. Therefore, a second focus of the article is to provide a nonexhaustive overview of transposon applications. Although several non-transposon-based approaches to site-directed genome modifications have emerged in the past decade, transposon-based applications are highly relevant when integration specificity is not sought. In fact, for many applications, the almost-perfect randomness and high frequency of integration make transposon-based approaches indispensable.
Collapse
Affiliation(s)
- Alison B. Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fred Dyda
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
18
|
Pulkkinen E, Haapa-Paananen S, Turakainen H, Savilahti H. A set of mini-Mu transposons for versatile cloning of circular DNA and novel dual-transposon strategy for increased efficiency. Plasmid 2016; 86:46-53. [PMID: 27387339 DOI: 10.1016/j.plasmid.2016.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 12/22/2022]
Abstract
Mu transposition-based cloning of DNA circles employs in vitro transposition reaction to deliver both the plasmid origin of replication and a selectable marker into the target DNA of interest. We report here the construction of a platform for the purpose that contains ten mini-Mu transposons with five different replication origins, enabling a variety of research approaches for the discovery and study of circular DNA. We also demonstrate that the simultaneous use of two transposons, one with the origin of replication and the other with selectable marker, is beneficial as it improves the cloning efficiency by reducing the fraction of autointegration-derived plasmid clones. The constructed transposons now provide a set of new tools for the studies on DNA circles and widen the applicability of Mu transposition based approaches to clone circular DNA from various sources.
Collapse
Affiliation(s)
- Elsi Pulkkinen
- Division of Genetics and Physiology, Department of Biology, University of Turku, Vesilinnantie 5, FI-20500 Turku, Finland
| | - Saija Haapa-Paananen
- Division of Genetics and Physiology, Department of Biology, University of Turku, Vesilinnantie 5, FI-20500 Turku, Finland
| | - Hilkka Turakainen
- Institute of Biotechnology, Viikki Biocenter, P.O. Box 56, Viikinkaari 9, FI-00014, University of Helsinki, Helsinki, Finland
| | - Harri Savilahti
- Division of Genetics and Physiology, Department of Biology, University of Turku, Vesilinnantie 5, FI-20500 Turku, Finland; Institute of Biotechnology, Viikki Biocenter, P.O. Box 56, Viikinkaari 9, FI-00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
19
|
Deb SS, Reshamwala SMS, Lali AM. A series of template plasmids for Escherichia coli genome engineering. J Microbiol Methods 2016; 125:49-57. [PMID: 27071533 DOI: 10.1016/j.mimet.2016.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/16/2022]
Abstract
Metabolic engineering strategies often employ multi-copy episomal vectors to overexpress genes. However, chromosome-based overexpression is preferred as it avoids the use of selective pressure and reduces metabolic burden on the cell. We have constructed a series of template plasmids for λ Red-mediated Escherichia coli genome engineering. The template plasmids allow construction of genome integrating cassettes that can be used to integrate single copies of DNA sequences at predetermined sites or replace promoter regions. The constructed cassettes provide flexibility in terms of expression levels achieved and antibiotics used for selection, as well as allowing construction of marker-free strains. The modular design of the template plasmids allows replacement of genetic parts to construct new templates. Gene integration and promoter replacement using the template plasmids are illustrated.
Collapse
Affiliation(s)
- Shalini S Deb
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| | - Shamlan M S Reshamwala
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India.
| | - Arvind M Lali
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India; Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| |
Collapse
|
20
|
Trombert A. Recombinant lactic acid bacteria as delivery vectors of heterologous antigens: the future of vaccination? Benef Microbes 2016; 6:313-24. [PMID: 25245573 DOI: 10.3920/bm2014.0068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED Lactic acid bacteria (LABs) are good candidates for the development of new oral vaccines and are attractive alternatives to attenuated pathogens. This review focuses on the use of wild-type and recombinant lactococci and lactobacilli with emphasis on their molecular design, immunomodulation and treatment of bacterial infections. The majority of studies related to recombinant LABs have focused on Lactococcus lactis, however, molecular tools have been successfully used for Lactobacillus spp. RESEARCH Recombinant lactobacilli and lactococci have several health benefits, such as immunomodulation, restoration of the microbiota, synthesis of antimicrobial substances and inhibition of virulence factors. In addition, protective immune responses that are well tolerated are induced by the expression of heterologous antigens from recombinant probiotics.
Collapse
Affiliation(s)
- A Trombert
- Center for Genomics and Bioinformatics, Faculty of Science, Universidad Mayor, Camino La Piramide 5750, Huechuraba, Santiago, Chile
| |
Collapse
|
21
|
Abstract
Transposable phage Mu has played a major role in elucidating the mechanism of movement of mobile DNA elements. The high efficiency of Mu transposition has facilitated a detailed biochemical dissection of the reaction mechanism, as well as of protein and DNA elements that regulate transpososome assembly and function. The deduced phosphotransfer mechanism involves in-line orientation of metal ion-activated hydroxyl groups for nucleophilic attack on reactive diester bonds, a mechanism that appears to be used by all transposable elements examined to date. A crystal structure of the Mu transpososome is available. Mu differs from all other transposable elements in encoding unique adaptations that promote its viral lifestyle. These adaptations include multiple DNA (enhancer, SGS) and protein (MuB, HU, IHF) elements that enable efficient Mu end synapsis, efficient target capture, low target specificity, immunity to transposition near or into itself, and efficient mechanisms for recruiting host repair and replication machineries to resolve transposition intermediates. MuB has multiple functions, including target capture and immunity. The SGS element promotes gyrase-mediated Mu end synapsis, and the enhancer, aided by HU and IHF, participates in directing a unique topological architecture of the Mu synapse. The function of these DNA and protein elements is important during both lysogenic and lytic phases. Enhancer properties have been exploited in the design of mini-Mu vectors for genetic engineering. Mu ends assembled into active transpososomes have been delivered directly into bacterial, yeast, and human genomes, where they integrate efficiently, and may prove useful for gene therapy.
Collapse
|
22
|
MuA-mediated in vitro cloning of circular DNA: transpositional autointegration and the effect of MuB. Mol Genet Genomics 2016; 291:1181-91. [DOI: 10.1007/s00438-016-1175-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/21/2016] [Indexed: 11/26/2022]
|
23
|
Kiljunen S, Pajunen MI, Dilks K, Storf S, Pohlschroder M, Savilahti H. Generation of comprehensive transposon insertion mutant library for the model archaeon, Haloferax volcanii, and its use for gene discovery. BMC Biol 2014; 12:103. [PMID: 25488358 PMCID: PMC4300041 DOI: 10.1186/s12915-014-0103-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/26/2014] [Indexed: 12/04/2022] Open
Abstract
Background Archaea share fundamental properties with bacteria and eukaryotes. Yet, they also possess unique attributes, which largely remain poorly characterized. Haloferax volcanii is an aerobic, moderately halophilic archaeon that can be grown in defined media. It serves as an excellent archaeal model organism to study the molecular mechanisms of biological processes and cellular responses to changes in the environment. Studies on haloarchaea have been impeded by the lack of efficient genetic screens that would facilitate the identification of protein functions and respective metabolic pathways. Results Here, we devised an insertion mutagenesis strategy that combined Mu in vitro DNA transposition and homologous-recombination-based gene targeting in H. volcanii. We generated an insertion mutant library, in which the clones contained a single genomic insertion. From the library, we isolated pigmentation-defective and auxotrophic mutants, and the respective insertions pinpointed a number of genes previously known to be involved in carotenoid and amino acid biosynthesis pathways, thus validating the performance of the methodologies used. We also identified mutants that had a transposon insertion in a gene encoding a protein of unknown or putative function, demonstrating that novel roles for non-annotated genes could be assigned. Conclusions We have generated, for the first time, a random genomic insertion mutant library for a halophilic archaeon and used it for efficient gene discovery. The library will facilitate the identification of non-essential genes behind any specific biochemical pathway. It represents a significant step towards achieving a more complete understanding of the unique characteristics of halophilic archaea. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0103-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saija Kiljunen
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland.
| | - Maria I Pajunen
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland. .,Current address: Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Kieran Dilks
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Stefanie Storf
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Harri Savilahti
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland.
| |
Collapse
|
24
|
Pulkkinen E, Haapa-Paananen S, Savilahti H. An assay to monitor the activity of DNA transposition complexes yields a general quality control measure for transpositional recombination reactions. Mob Genet Elements 2014; 4:1-8. [PMID: 26442171 PMCID: PMC4590003 DOI: 10.4161/21592543.2014.969576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/22/2014] [Accepted: 09/01/2014] [Indexed: 12/20/2022] Open
Abstract
Transposon-based technologies have many applications in molecular biology and can be used for gene delivery into prokaryotic and eukaryotic cells. Common transpositional activity measurement assays suitable for many types of transposons would be beneficial, as diverse transposon systems could be compared for their performance attributes. Therefore, we developed a general-purpose assay to enable and standardize the activity measurement for DNA transposition complexes (transpososomes), using phage Mu transposition as a test platform. This assay quantifies transpositional recombination efficiency and is based on an in vitro transposition reaction with a target plasmid carrying a lethal ccdB gene. If transposition targets ccdB, this gene becomes inactivated, enabling plasmid-receiving Escherichia coli cells to survive and to be scored as colonies on selection plates. The assay was validated with 3 mini-Mu transposons varying in size and differing in their marker gene constitution. Tests with different amounts of transposon DNA provided a linear response and yielded a 10-fold operational range for the assay. The colony formation capacity was linearly correlated with the competence status of the E.coli cells, enabling normalization of experimental data obtained with different batches of recipient cells. The developed assay can now be used to directly compare transpososome activities with all types of mini-Mu transposons, regardless of their aimed use. Furthermore, the assay should be directly applicable to other transposition-based systems with a functional in vitro reaction, and it provides a dependable quality control measure that previously has been lacking but is highly important for the evaluation of current and emerging transposon-based applications.
Collapse
Affiliation(s)
- Elsi Pulkkinen
- Division of Genetics and Physiology; Department of Biology; University of Turku; Turku, Finland
| | - Saija Haapa-Paananen
- Division of Genetics and Physiology; Department of Biology; University of Turku; Turku, Finland
| | - Harri Savilahti
- Division of Genetics and Physiology; Department of Biology; University of Turku; Turku, Finland
| |
Collapse
|
25
|
Rasila TS, Vihinen M, Paulin L, Haapa-Paananen S, Savilahti H. Flexibility in MuA transposase family protein structures: functional mapping with scanning mutagenesis and sequence alignment of protein homologues. PLoS One 2012; 7:e37922. [PMID: 22666413 PMCID: PMC3362531 DOI: 10.1371/journal.pone.0037922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/26/2012] [Indexed: 12/13/2022] Open
Abstract
MuA transposase protein is a member of the retroviral integrase superfamily (RISF). It catalyzes DNA cleavage and joining reactions via an initial assembly and subsequent structural transitions of a protein-DNA complex, known as the Mu transpososome, ultimately attaching transposon DNA to non-specific target DNA. The transpososome functions as a molecular DNA-modifying machine and has been used in a wide variety of molecular biology and genetics/genomics applications. To analyze structure-function relationships in MuA action, a comprehensive pentapeptide insertion mutagenesis was carried out for the protein. A total of 233 unique insertion variants were generated, and their activity was analyzed using a quantitative in vivo DNA transposition assay. The results were then correlated with the known MuA structures, and the data were evaluated with regard to the protein domain function and transpososome development. To complement the analysis with an evolutionary component, a protein sequence alignment was produced for 44 members of MuA family transposases. Altogether, the results pinpointed those regions, in which insertions can be tolerated, and those where insertions are harmful. Most insertions within the subdomains Iγ, IIα, IIβ, and IIIα completely destroyed the transposase function, yet insertions into certain loop/linker regions of these subdomains increased the protein activity. Subdomains Iα and IIIβ were largely insertion-tolerant. The comprehensive structure-function data set will be useful for designing MuA transposase variants with improved properties for biotechnology/genomics applications, and is informative with regard to the function of RISF proteins in general.
Collapse
Affiliation(s)
- Tiina S. Rasila
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Mauno Vihinen
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- BioMediTech, Tampere, Finland
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lars Paulin
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Saija Haapa-Paananen
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Harri Savilahti
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
26
|
Application of the bacteriophage Mu-driven system for the integration/amplification of target genes in the chromosomes of engineered Gram-negative bacteria--mini review. Appl Microbiol Biotechnol 2011; 91:857-71. [PMID: 21698377 PMCID: PMC3145075 DOI: 10.1007/s00253-011-3416-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/24/2011] [Accepted: 05/24/2011] [Indexed: 11/04/2022]
Abstract
The advantages of phage Mu transposition-based systems for the chromosomal editing of plasmid-less strains are reviewed. The cis and trans requirements for Mu phage-mediated transposition, which include the L/R ends of the Mu DNA, the transposition factors MuA and MuB, and the cis/trans functioning of the E element as an enhancer, are presented. Mini-Mu(LR)/(LER) units are Mu derivatives that lack most of the Mu genes but contain the L/R ends or a properly arranged E element in cis to the L/R ends. The dual-component system, which consists of an integrative plasmid with a mini-Mu and an easily eliminated helper plasmid encoding inducible transposition factors, is described in detail as a tool for the integration/amplification of recombinant DNAs. This chromosomal editing method is based on replicative transposition through the formation of a cointegrate that can be resolved in a recombination-dependent manner. (E-plus)- or (E-minus)-helpers that differ in the presence of the trans-acting E element are used to achieve the proper mini-Mu transposition intensity. The systems that have been developed for the construction of stably maintained mini-Mu multi-integrant strains of Escherichia coli and Methylophilus methylotrophus are described. A novel integration/amplification/fixation strategy is proposed for consecutive independent replicative transpositions of different mini-Mu(LER) units with “excisable” E elements in methylotrophic cells.
Collapse
|
27
|
Pajunen MI, Rasila TS, Happonen LJ, Lamberg A, Haapa-Paananen S, Kiljunen S, Savilahti H. Universal platform for quantitative analysis of DNA transposition. Mob DNA 2010; 1:24. [PMID: 21110848 PMCID: PMC3003695 DOI: 10.1186/1759-8753-1-24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/26/2010] [Indexed: 01/16/2023] Open
Abstract
Background Completed genome projects have revealed an astonishing diversity of transposable genetic elements, implying the existence of novel element families yet to be discovered from diverse life forms. Concurrently, several better understood transposon systems have been exploited as efficient tools in molecular biology and genomics applications. Characterization of new mobile elements and improvement of the existing transposition technology platforms warrant easy-to-use assays for the quantitative analysis of DNA transposition. Results Here we developed a universal in vivo platform for the analysis of transposition frequency with class II mobile elements, i.e., DNA transposons. For each particular transposon system, cloning of the transposon ends and the cognate transposase gene, in three consecutive steps, generates a multifunctional plasmid, which drives inducible expression of the transposase gene and includes a mobilisable lacZ-containing reporter transposon. The assay scores transposition events as blue microcolonies, papillae, growing within otherwise whitish Escherichia coli colonies on indicator plates. We developed the assay using phage Mu transposition as a test model and validated the platform using various MuA transposase mutants. For further validation and to illustrate universality, we introduced IS903 transposition system components into the assay. The developed assay is adjustable to a desired level of initial transposition via the control of a plasmid-borne E. coli arabinose promoter. In practice, the transposition frequency is modulated by varying the concentration of arabinose or glucose in the growth medium. We show that variable levels of transpositional activity can be analysed, thus enabling straightforward screens for hyper- or hypoactive transposase mutants, regardless of the original wild-type activity level. Conclusions The established universal papillation assay platform should be widely applicable to a variety of mobile elements. It can be used for mechanistic studies to dissect transposition and provides a means to screen or scrutinise transposase mutants and genes encoding host factors. In succession, improved versions of transposition systems should yield better tools for molecular biology and offer versatile genome modification vehicles for many types of studies, including gene therapy and stem cell research.
Collapse
Affiliation(s)
- Maria I Pajunen
- Division of Genetics and Physiology, Department of Biology, Vesilinnantie 5, FIN-20014 University of Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Wei XX, Shi ZY, Li ZJ, Cai L, Wu Q, Chen GQ. A mini-Mu transposon-based method for multiple DNA fragment integration into bacterial genomes. Appl Microbiol Biotechnol 2010; 87:1533-41. [DOI: 10.1007/s00253-010-2674-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
|
29
|
Generation of single-copy transposon insertions in Clostridium perfringens by electroporation of phage mu DNA transposition complexes. Appl Environ Microbiol 2009; 75:2638-42. [PMID: 19270116 DOI: 10.1128/aem.02214-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposon mutagenesis is a tool that is widely used for the identification of genes involved in the virulence of bacteria. Until now, transposon mutagenesis in Clostridium perfringens has been restricted to the use of Tn916-based methods with laboratory reference strains. This system yields primarily multiple transposon insertions in a single genome, thus compromising its use for the identification of virulence genes. The current study describes a new protocol for transposon mutagenesis in C. perfringens, which is based on the bacteriophage Mu transposition system. The protocol was successfully used to generate a single-insertion mutant library both for a laboratory strain and for a field isolate. Thus, it can be used as a tool in large-scale screening to identify virulence genes of C. perfringens.
Collapse
|
30
|
Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal Biochem 2009; 388:71-80. [PMID: 19454214 DOI: 10.1016/j.ab.2009.02.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 11/21/2022]
Abstract
Random mutagenesis methods constitute a valuable protein modification toolbox with applications ranging from protein engineering to directed protein evolution studies. Although a variety of techniques are currently available, the field is lacking studies that would directly compare the performance parameters and operational range of different methods. In this study, we have scrutinized several of the most commonly used random mutagenesis techniques by critically evaluating popular error-prone polymerase chain reaction (PCR) protocols as well as hydroxylamine and a mutator Escherichia coli strain mutagenesis methods. Relative mutation frequencies were analyzed using a reporter plasmid that allowed direct comparison of the methods. Error-prone PCR methods yielded the highest mutation rates and the widest operational ranges, whereas the chemical and biological methods generated a low level of mutations and exhibited a narrow range of operation. The repertoire of transitions versus transversions varied among the methods, suggesting the use of a combination of methods for high-diversity full-scale mutagenesis. Using the parameters defined in this study, the evaluated mutagenesis methods can be used for controlled mutagenesis, where the intended average frequency of induced mutations can be adjusted to a desirable level.
Collapse
|
31
|
Wu Z, Xuanyuan Z, Li R, Jiang D, Li C, Xu H, Bai Y, Zhang X, Turakainen H, Saris P, Savilahti H, Qiao M. Mu transposition complex mutagenesis inLactococcus lactis- identification of genes affecting nisin production. J Appl Microbiol 2009; 106:41-8. [DOI: 10.1111/j.1365-2672.2008.03962.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Paatero AO, Turakainen H, Happonen LJ, Olsson C, Palomäki T, Pajunen MI, Meng X, Otonkoski T, Tuuri T, Berry C, Malani N, Frilander MJ, Bushman FD, Savilahti H. Bacteriophage Mu integration in yeast and mammalian genomes. Nucleic Acids Res 2008; 36:e148. [PMID: 18953026 PMCID: PMC2602771 DOI: 10.1093/nar/gkn801] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/09/2008] [Accepted: 10/10/2008] [Indexed: 11/14/2022] Open
Abstract
Genomic parasites have evolved distinctive lifestyles to optimize replication in the context of the genomes they inhabit. Here, we introduced new DNA into eukaryotic cells using bacteriophage Mu DNA transposition complexes, termed 'transpososomes'. Following electroporation of transpososomes and selection for marker gene expression, efficient integration was verified in yeast, mouse and human genomes. Although Mu has evolved in prokaryotes, strong biases were seen in the target site distributions in eukaryotic genomes, and these biases differed between yeast and mammals. In Saccharomyces cerevisiae transposons accumulated outside of genes, consistent with selection against gene disruption. In mouse and human cells, transposons accumulated within genes, which previous work suggests is a favorable location for efficient expression of selectable markers. Naturally occurring transposons and viruses in yeast and mammals show related, but more extreme, targeting biases, suggesting that they are responding to the same pressures. These data help clarify the constraints exerted by genome structure on genomic parasites, and illustrate the wide utility of the Mu transpososome technology for gene transfer in eukaryotic cells.
Collapse
Affiliation(s)
- Anja O. Paatero
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hilkka Turakainen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lotta J. Happonen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Cia Olsson
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Tiina Palomäki
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Maria I. Pajunen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Xiaojuan Meng
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Timo Otonkoski
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Timo Tuuri
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charles Berry
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Nirav Malani
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Mikko J. Frilander
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Frederic D. Bushman
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Harri Savilahti
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, Biomedicum Stem Cell Center, Biomedicum Helsinki, University of Helsinki, Helsinki, Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Program in Developmental Biology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Hospital for Children and Adolescents, University of Helsinki, Family Federation of Finland, Helsinki, Finland and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
33
|
Hoeller BM, Reiter B, Abad S, Graze I, Glieder A. Random tag insertions by Transposon Integration mediated Mutagenesis (TIM). J Microbiol Methods 2008; 75:251-7. [DOI: 10.1016/j.mimet.2008.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 06/17/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
|
34
|
Suzuki N, Inui M, Yukawa H. Random genome deletion methods applicable to prokaryotes. Appl Microbiol Biotechnol 2008; 79:519-26. [PMID: 18491037 DOI: 10.1007/s00253-008-1512-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/16/2008] [Accepted: 04/19/2008] [Indexed: 11/28/2022]
Abstract
Through their enabling of simultaneous identification of multiple non-essential genes in a genome, large-segment genome deletion methods are an increasingly popular approach to minimize and tailor microbial genomes for specific functions. At present, difficulties in identifying target regions for deletion are a result of inadequate knowledge to define gene essentiality. Furthermore, with the majority of predicted open reading frames of completely sequenced genomes still annotated as putative genes, essential or important genes are found scattered throughout the genomes, limiting the size of non-essential segments that can be safely deleted in a single sweep. Recently described large-segment random genome deletion methods that utilize transposons enable the generation of random deletion strains, analysis of which makes identification of non-essential genes less tedious. Such and other efforts to determine the minimum genome content necessary for cell survival continue to accumulate important information that should help improve our understanding of genome function and evolution. This review presents an assessment of technological advancements of random genome deletion methods in prokaryotes to date.
Collapse
Affiliation(s)
- Nobuaki Suzuki
- Microbiology Research Group, Research Institute of Innovative Technology for the Earth (RITE), Kizugawa, Kyoto, Japan
| | | | | |
Collapse
|
35
|
Fluorescent reference strains of bacteria by chromosomal integration of a modified green fluorescent protein gene. Appl Microbiol Biotechnol 2007; 77:1287-95. [PMID: 17994234 DOI: 10.1007/s00253-007-1253-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 10/18/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
Abstract
Fluorescent reference strains of bacteria carrying a stable chromosomally integrated single copy of the gfp gene have been developed. A modified version of the gfp gene has been generated by mutagenesis and expressed under the control of the bacteriophage lambda promoter P(L). A cassette comprising bacteriophage Mu transposon arms flanking the modified gfp gene and regulatory regions was irreversibly integrated as an in-vitro-assembled transposition complex into the genomes of Escherichia coli and Salmonella spp. The modified green fluorescent protein (GFP) protein retained the fluorescence excitation and emission wavelengths of wild-type GFP. However, it fluoresced more brightly in E. coli and Salmonella compared to wild-type GFP, presumably due to improved protein maturation. Fluorescent E. coli and Salmonella strains carrying the gfp gene cassette were easily differentiated from their respective non-fluorescent parental strains on various growth media by visualization under UV light. The bacterial strains produced by this method remained viable and stably fluorescent when incorporated into a matrix for delivery of exact numbers of viable bacterial cells for use as quality control agents in microbiological procedures.
Collapse
|
36
|
Pajunen M, Turakainen H, Poussu E, Peränen J, Vihinen M, Savilahti H. High-precision mapping of protein protein interfaces: an integrated genetic strategy combining en masse mutagenesis and DNA-level parallel analysis on a yeast two-hybrid platform. Nucleic Acids Res 2007; 35:e103. [PMID: 17702760 PMCID: PMC2018616 DOI: 10.1093/nar/gkm563] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Understanding networks of protein–protein interactions constitutes an essential component on a path towards comprehensive description of cell function. Whereas efficient techniques are readily available for the initial identification of interacting protein partners, practical strategies are lacking for the subsequent high-resolution mapping of regions involved in protein–protein interfaces. We present here a genetic strategy to accurately map interacting protein regions at amino acid precision. The system is based on parallel construction, sampling and analysis of a comprehensive insertion mutant library. The methodology integrates Mu in vitro transposition-based random pentapeptide mutagenesis of proteins, yeast two-hybrid screening and high-resolution genetic footprinting. The strategy is general and applicable to any interacting protein pair. We demonstrate the feasibility of the methodology by mapping the region in human JFC1 that interacts with Rab8A, and we show that the association is mediated by the Slp homology domain 1.
Collapse
Affiliation(s)
- Maria Pajunen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Institute of Medical Technology, University of Tampere, Research Unit, Tampere University Hospital, Tampere and Division of Genetics and Physiology, Department of Biology, University of Turku, Finland
| | - Hilkka Turakainen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Institute of Medical Technology, University of Tampere, Research Unit, Tampere University Hospital, Tampere and Division of Genetics and Physiology, Department of Biology, University of Turku, Finland
| | - Eini Poussu
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Institute of Medical Technology, University of Tampere, Research Unit, Tampere University Hospital, Tampere and Division of Genetics and Physiology, Department of Biology, University of Turku, Finland
| | - Johan Peränen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Institute of Medical Technology, University of Tampere, Research Unit, Tampere University Hospital, Tampere and Division of Genetics and Physiology, Department of Biology, University of Turku, Finland
| | - Mauno Vihinen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Institute of Medical Technology, University of Tampere, Research Unit, Tampere University Hospital, Tampere and Division of Genetics and Physiology, Department of Biology, University of Turku, Finland
| | - Harri Savilahti
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Institute of Medical Technology, University of Tampere, Research Unit, Tampere University Hospital, Tampere and Division of Genetics and Physiology, Department of Biology, University of Turku, Finland
- *To whom correspondence should be addressed. +358 9 191 59516+358 9 191 59366
| |
Collapse
|
37
|
Tu Quoc PH, Genevaux P, Pajunen M, Savilahti H, Georgopoulos C, Schrenzel J, Kelley WL. Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus. Infect Immun 2006; 75:1079-88. [PMID: 17158901 PMCID: PMC1828571 DOI: 10.1128/iai.01143-06] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus produces biofilm and this mode of colonization facilitates infections that are often difficult to treat and engender high morbidity and mortality. We have exploited bacteriophage Mu transposition methods to create an insertional mutant library in a highly biofilm-forming S. aureus clinical isolate. Our screen identified 38 insertions in 23 distinct genes together with one intergenic region that significantly reduced biofilm formation. Nineteen insertions were mapped in loci not previously known to affect biofilm in this organism. These include insertions in codY, srrA, mgrA, and fmtA, a putative DEAD-box helicase, two members of the zinc-metallo-beta lactamase/beta-CASP family, and a hypothetical protein with a GGDEF motif. Fifteen insertions occurred in the icaADBC operon, which produces intercellular adhesion antigen (PIA) and is important for biofilm formation in many strains of S. aureus and Staphylococcus epidermidis. Obtaining a high proportion of independent Em-Mu disruptions in icaADBC demonstrated both the importance of PIA for biofilm formation in this clinical strain and the strong validation of the screening procedure that concomitantly uncovered additional mutants. All non-ica mutants were further analyzed by immunoblotting and biochemical fractionation for perturbation of PIA and wall teichoic acid. PIA levels were diminished in the majority of non-ica insertional mutants. Three mutant strains were chosen and were functionally complemented for restored biofilm formation by transformation with plasmids carrying the cloned wild-type gene under the control of a xylose-inducible promoter. This is a comprehensive collection of biofilm-defective mutants that underscores the multifactorial genetic program underlying the establishment of biofilm in this insidious pathogen.
Collapse
Affiliation(s)
- Patrick H Tu Quoc
- Division of Infectious Diseases, University Hospital of Geneva, 24 rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland
| | | | | | | | | | | | | |
Collapse
|
38
|
Saariaho AH, Savilahti H. Characteristics of MuA transposase-catalyzed processing of model transposon end DNA hairpin substrates. Nucleic Acids Res 2006; 34:3139-49. [PMID: 16757579 PMCID: PMC1475752 DOI: 10.1093/nar/gkl405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacteriophage Mu uses non-replicative transposition for integration into the host's chromosome and replicative transposition for phage propagation. Biochemical and structural comparisons together with evolutionary considerations suggest that the Mu transposition machinery might share functional similarities with machineries of the systems that are known to employ a hairpin intermediate during the catalytic steps of transposition. Model transposon end DNA hairpin substrates were used in a minimal-component in vitro system to study their proficiency to promote Mu transpososome assembly and subsequent MuA-catalyzed chemical reactions leading to the strand transfer product. MuA indeed was able to assemble hairpin substrates into a catalytically competent transpososome, open the hairpin ends and accurately join the opened ends to the target DNA. The hairpin opening and transposon end cleavage reactions had identical metal ion preferences, indicating similar conformations within the catalytic center for these reactions. Hairpin length influenced transpososome assembly as well as catalysis: longer loops were more efficient in these respects. In general, MuA's proficiency to utilize different types of hairpin substrates indicates a certain degree of flexibility within the transposition machinery core. Overall, the results suggest that non-replicative and replicative transposition systems may structurally and evolutionarily be more closely linked than anticipated previously.
Collapse
Affiliation(s)
| | - Harri Savilahti
- To whom correspondence should be addressed. Tel: +358 9 19159516; Fax: +358 9 19159366;
| |
Collapse
|
39
|
von Nandelstadh P, Grönholm M, Moza M, Lamberg A, Savilahti H, Carpén O. Actin-organising properties of the muscular dystrophy protein myotilin. Exp Cell Res 2005; 310:131-9. [PMID: 16122733 DOI: 10.1016/j.yexcr.2005.06.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 06/28/2005] [Accepted: 06/29/2005] [Indexed: 12/27/2022]
Abstract
Myotilin is a sarcomeric Z-disc protein that binds F-actin directly and bundles actin filaments, although it does not contain a conventional actin-binding domain. Expression of mutant myotilin leads to sarcomeric alterations in the dominantly inherited limb-girdle muscular dystrophy 1A and in myofibrillar myopathy/desmin-related myopathy. Together, with previous in vitro studies, this indicates that myotilin has an important function in the assembly and maintenance of Z-discs. This study characterises further the interaction between myotilin and actin. Functionally important regions in myotilin were identified by actin pull-down and yeast two-hybrid assays and with a novel strategy that combines in vitro DNA transposition-based peptide insertion mutagenesis with phenotype analysis in yeast cells. The shortest fragment to bind actin was the second Ig domain together with a short C-terminal sequence. Concerted action of the first and second Ig domain was, however, necessary for the functional activity of myotilin, as verified by analysis of transposon mutants, actin binding and phenotypic effect in mammalian cells. Furthermore, the Ig domains flanked with N- and C-terminal regions were needed for actin-bundling, indicating that the mere actin-binding sequence was insufficient for the actin-regulating activity. None of the four known disease-associated mutations altered the actin-organising ability. These results, together with previous studies in titin and kettin, identify the Ig domain as an actin-binding unit.
Collapse
Affiliation(s)
- Pernilla von Nandelstadh
- Department of Anatomy and Neuroscience Program, P.O. Box 63, Biomedicum, University of Helsinki, Finland; Department of Pathology, Helsinki University Hospital, 00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
40
|
Bertram R, Köstner M, Müller J, Ramos JV, Hillen W. Integrative elements for Bacillus subtilis yielding tetracycline-dependent growth phenotypes. Nucleic Acids Res 2005; 33:e153. [PMID: 16221969 PMCID: PMC1253839 DOI: 10.1093/nar/gni154] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We describe the construction and application of elements for random insertion of promoter containing DNA into the genome of Bacillus subtilis. The outward-facing promoter of these integrative elements termed InsTet(G+) is inducible by tetracycline so that conditional mutants are generated. We constructed three InsTet(G+) variants using different regulatory windows. In the first, the regulator gene tetR is located within the element, allowing one-step mutagenesis. The second contains tetR in the chromosome and yields the best regulation efficiency. The third exploits xylose-dependent tetR expression from a plasmid, enabling induction of TetR synthesis so that distinct expression levels of an affected gene can be adjusted. We have obtained mutant strains with all three variants. For some of them, growth can be modulated by the presence of effectors. Most growth defects occur in the presence of inducers, presumably due to regulated expression of antisense RNA.
Collapse
Affiliation(s)
| | | | | | | | - Wolfgang Hillen
- To whom correspondence should be addressed. Tel: +49 9131 85 28081; Fax: +49 9131 85 28082;
| |
Collapse
|
41
|
Poussu E, Jäntti J, Savilahti H. A gene truncation strategy generating N- and C-terminal deletion variants of proteins for functional studies: mapping of the Sec1p binding domain in yeast Mso1p by a Mu in vitro transposition-based approach. Nucleic Acids Res 2005; 33:e104. [PMID: 16006618 PMCID: PMC1174911 DOI: 10.1093/nar/gni102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage Mu in vitro transposition constitutes a versatile tool in molecular biology, with applications ranging from engineering of single genes or proteins to modification of genome segments or entire genomes. A new strategy was devised on the basis of Mu transposition that via a few manipulation steps simultaneously generates a nested set of gene constructions encoding deletion variants of proteins. C-terminal deletions are produced using a mini-Mu transposon that carries translation stop signals close to each transposon end. Similarly, N-terminal deletions are generated using a transposon with appropriate restriction sites, which allows deletion of the 5'-distal part of the gene. As a proof of principle, we produced a set of plasmid constructions encoding both C- and N-terminally truncated variants of yeast Mso1p and mapped its Sec1p-interacting region. The most important amino acids for the interaction in Mso1p are located between residues T46 and N78, with some weaker interactions possibly within the region E79-N105. This general-purpose gene truncation strategy is highly efficient and produces, in a single reaction series, a comprehensive repertoire of gene constructions encoding protein deletion variants, valuable in many types of functional studies. Importantly, the methodology is applicable to any protein-encoding gene cloned in an appropriate vector.
Collapse
Affiliation(s)
| | - Jussi Jäntti
- VTT BiotechnologyPO Box 1500, FI-02044, VTT, Finland
| | - Harri Savilahti
- To whom correspondence should be addressed. Tel: +358 9 19159516; Fax: +358 9 19159366.
| |
Collapse
|
42
|
Laasik E, Ojarand M, Pajunen M, Savilahti H, Mäe A. Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis. FEMS Microbiol Lett 2005; 243:93-9. [PMID: 15668006 DOI: 10.1016/j.femsle.2004.11.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 11/23/2004] [Accepted: 11/25/2004] [Indexed: 11/23/2022] Open
Abstract
As in Erwinia carotovora subsp. carotovora the regulation details of the main virulence factors, encoding extracellular enzymes that degrade the plant cell wall, is only rudimentally understood, we performed a genetic screen to identify novel candidate genes involved in the process. Initially, we used Mu transpososome-mediated mutagenesis approach to generate a comprehensive transposon insertion mutant library of ca. 10000 clones and screened the clones for the loss of extracellular enzyme production. Extracellular enzymes production was abolished by mutations in the chromosomal helEcc, trkAEcc yheLEcc, glsEcc, igaAEcc and cysQEcc genes. The findings reported here demonstrate that we have isolated six new representatives that belong to the pool of genes modulating the production of virulence factors in E. carotovora.
Collapse
Affiliation(s)
- Eve Laasik
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| | | | | | | | | |
Collapse
|
43
|
Saariaho AH, Lamberg A, Elo S, Savilahti H. Functional comparison of the transposition core machineries of phage Mu and Haemophilus influenzae Mu-like prophage Hin-Mu reveals interchangeable components. Virology 2005; 331:6-19. [PMID: 15582649 DOI: 10.1016/j.virol.2004.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 11/23/2003] [Accepted: 09/16/2004] [Indexed: 11/16/2022]
Abstract
Bacteriophage Mu uses DNA transposition for propagation and is a model for transposition studies in general. Recent identification of Mu-like prophages within bacterial genomes offers new material for evolutionary and comparative functional studies. One such prophage, Hin-Mu of Haemophilus influenzae Rd, was studied for its transpositional properties. The components of its transposition core machinery, the encoded transposase (MuA(Hin)) and the transposase binding sites, were evaluated for functional properties by sequence comparisons and DNase I footprinting. Transpositional activity of Hin-Mu was examined by in vitro assays directly assessing the assembly and catalytic function of the transposition core machinery. The Hin-Mu components readily assembled catalytically competent protein-DNA complexes, transpososomes. Thus, Hin-Mu encodes a functional transposase and contains critical transposase binding sites. Despite marked sequence differences, components of the Hin-Mu and Mu transposition core machineries are partially interchangeable, reflecting both conservation and flexibility in the functionally important regions within the transpososome structure.
Collapse
Affiliation(s)
- Anna-Helena Saariaho
- Institute of Biotechnology, Program in Cellular Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 56, Viikinkaari 9, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
44
|
Shan Z, Xu H, Shi X, Yu Y, Yao H, Zhang X, Bai Y, Gao C, Saris PEJ, Qiao M. Identification of two new genes involved in twitching motility in Pseudomonas aeruginosa. Microbiology (Reading) 2004; 150:2653-2661. [PMID: 15289561 DOI: 10.1099/mic.0.27131-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mu transposition complexes were used for transposon mutagenesis ofPseudomonas aeruginosastrain PA68. Mu DNA transposition complexes were assembled with MuA transposase and an artificial mini-Mu transposonin vitro, and introduced intoPseudomonas aeruginosaby electroporation. Eight mutants deficient in twitching motility were isolated. Southern blotting confirmed that the insertions had occurred as single events. DNA sequencing of the region flanking the insertion in the twitching-motility mutants revealed that the mini-Mu transposon had inserted into six different genes,PAO171,PA1822,PAO413,PA4959,PA4551andPA5040. Four of these have previously been proven to be needed for twitching motility, whereas thePA1822andPA0171genes have not previously been shown to be required for twitching motility. The twitching-motility defect in thePA1822mutant was partially complemented by providing thePA1822genein trans, and the defect in thePA0171mutant was fully complemented whenPA0171was provided. APA0171mutant and aPA1822mutant were constructed by gene replacement in theP. aeruginosaPAO1 strain. These mutants were deficient in twitching motility, showing that both thePA1822and thePA0171gene are involved in twitching motility.
Collapse
Affiliation(s)
- Zhiying Shan
- The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
- Institute for Molecular Biology, Nankai University, Tianjin, People's Republic of China
| | - Haijin Xu
- Institute for Molecular Biology, Nankai University, Tianjin, People's Republic of China
| | - Xingqi Shi
- Institute for Molecular Biology, Nankai University, Tianjin, People's Republic of China
| | - Yan Yu
- Institute for Molecular Biology, Nankai University, Tianjin, People's Republic of China
| | - Hongming Yao
- Institute for Molecular Biology, Nankai University, Tianjin, People's Republic of China
| | - Xiuming Zhang
- Institute for Molecular Biology, Nankai University, Tianjin, People's Republic of China
| | - Yanling Bai
- Institute for Molecular Biology, Nankai University, Tianjin, People's Republic of China
| | - Caichang Gao
- Institute for Molecular Biology, Nankai University, Tianjin, People's Republic of China
| | - Per E J Saris
- Department of Applied Chemistry and Microbiology, Fin-00014 University of Helsinki, Finland
| | - Mingqiang Qiao
- Department of Applied Chemistry and Microbiology, Fin-00014 University of Helsinki, Finland
- Institute for Molecular Biology, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
45
|
Abstract
Transposons are mobile genetic elements that can relocate from one genomic location to another. As well as modulating gene expression and contributing to genome plasticity and evolution, transposons are remarkably diverse molecular tools for both whole-genome and single-gene studies in bacteria, yeast, and other microorganisms. Efficient but simple in vitro transposition reactions now allow the mutational analysis of previously recalcitrant microorganisms. Transposon-based signature-tagged mutagenesis and genetic footprinting strategies have pinpointed essential genes and genes that are crucial for the infectivity of a variety of human and other pathogens. Individual proteins and protein complexes can be dissected by transposon-mediated scanning linker mutagenesis. These and other transposon-based approaches have reaffirmed the usefulness of these elements as simple yet highly effective mutagens for both functional genomic and proteomic studies of microorganisms.
Collapse
Affiliation(s)
- Finbarr Hayes
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, PO Box 88, Manchester M60 1QD, England.
| |
Collapse
|
46
|
Abstract
In the past few years, in vivo technologies have emerged that, due to their efficiency and simplicity, may one day replace standard genetic engineering techniques. Constructs can be made on plasmids or directly on the Escherichia coli chromosome from PCR products or synthetic oligonucleotides by homologous recombination. This is possible because bacteriophage-encoded recombination functions efficiently recombine sequences with homologies as short as 35 to 50 base pairs. This technology, termed recombineering, is providing new ways to modify genes and segments of the chromosome. This review describes not only recombineering and its applications, but also summarizes homologous recombination in E. coli and early uses of homologous recombination to modify the bacterial chromosome. Finally, based on the premise that phage-mediated recombination functions act at replication forks, specific molecular models are proposed.
Collapse
Affiliation(s)
- Donald L Court
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|
47
|
Vilen H, Aalto JM, Kassinen A, Paulin L, Savilahti H. A direct transposon insertion tool for modification and functional analysis of viral genomes. J Virol 2003; 77:123-34. [PMID: 12477817 PMCID: PMC140628 DOI: 10.1128/jvi.77.1.123-134.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Advances in DNA transposition technology have recently generated efficient tools for various types of functional genetic analyses. We demonstrate here the power of the bacteriophage Mu-derived in vitro DNA transposition system for modification and functional characterization of a complete bacterial virus genome. The linear double-stranded DNA genome of Escherichia coli bacteriophage PRD1 was studied by insertion mutagenesis with reporter mini-Mu transposons that were integrated in vitro into isolated genomic DNA. After introduction into bacterial cells by electroporation, recombinant transposon-containing virus clones were identified by autoradiography or visual blue-white screening employing alpha-complementation of E. coli beta-galactosidase. Additionally, a modified transposon with engineered NotI sites at both ends was used to introduce novel restriction sites into the phage genome. Analysis of the transposon integration sites in the genomes of viable recombinant phage generated a functional map, collectively indicating genes and genomic regions essential and nonessential for virus propagation. Moreover, promoterless transposons defined the direction of transcription within several insert-tolerant genomic regions. These strategies for the analysis of viral genomes are of a general nature and therefore may be applied to functional genomics studies in all prokaryotic and eukaryotic cell viruses.
Collapse
Affiliation(s)
- Heikki Vilen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|