1
|
Ma D, Du G, Fang H, Li R, Zhang D. Advances and prospects in microbial production of biotin. Microb Cell Fact 2024; 23:135. [PMID: 38735926 PMCID: PMC11089781 DOI: 10.1186/s12934-024-02413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Biotin, serving as a coenzyme in carboxylation reactions, is a vital nutrient crucial for the natural growth, development, and overall well-being of both humans and animals. Consequently, biotin is widely utilized in various industries, including feed, food, and pharmaceuticals. Despite its potential advantages, the chemical synthesis of biotin for commercial production encounters environmental and safety challenges. The burgeoning field of synthetic biology now allows for the creation of microbial cell factories producing bio-based products, offering a cost-effective alternative to chemical synthesis for biotin production. This review outlines the pathway and regulatory mechanism involved in biotin biosynthesis. Then, the strategies to enhance biotin production through both traditional chemical mutagenesis and advanced metabolic engineering are discussed. Finally, the article explores the limitations and future prospects of microbial biotin production. This comprehensive review not only discusses strategies for biotin enhancement but also provides in-depth insights into systematic metabolic engineering approaches aimed at boosting biotin production.
Collapse
Affiliation(s)
- Donghan Ma
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Rong Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Castillo-Hair SM, Fujita M, Igoshin OA, Tabor JJ. An Engineered B. subtilis Inducible Promoter System with over 10 000-Fold Dynamic Range. ACS Synth Biol 2019; 8:1673-1678. [PMID: 31181163 DOI: 10.1021/acssynbio.8b00469] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacillus subtilis is the leading model Gram-positive bacterium, and a widely used chassis for industrial protein production. However, B. subtilis research is limited by a lack of inducible promoter systems with low leakiness and high dynamic range. Here, we engineer an inducible promoter system based on the T7 RNA Polymerase (T7 RNAP), the lactose repressor LacI, and the chimeric promoter PT7lac, integrated as a single copy in the B. subtilis genome. In the absence of IPTG, LacI strongly represses T7 RNAP and PT7lac and minimizes leakiness. Addition of IPTG derepresses PT7lac and simultaneously induces expression of T7RNAP, which results in very high output expression. Using green fluorescent and β-galactosidase reporter proteins, we estimate that this LacI-T7 system can regulate expression with a dynamic range of over 10 000, by far the largest reported for an inducible B. subtilis promoter system. Furthermore, LacI-T7 responds to similar IPTG concentrations and with similar kinetics as the widely used Phy-spank IPTG-inducible system, which we show has a dynamic range of at most 300 in a similar genetic context. Due to its superior performance, our LacI-T7 system should have broad applications in fundamental B. subtilis biology studies and biotechnology.
Collapse
Affiliation(s)
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United States
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Center for Theoretical Biophysics, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey J. Tabor
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Reetz MT. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts? Acc Chem Res 2019; 52:336-344. [PMID: 30689339 DOI: 10.1021/acs.accounts.8b00582] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transition metal catalysts mediate a wide variety of chemo-, stereo-, and regioselective transformations, and therefore play a pivotal role in modern synthetic organic chemistry. Steric and electronic effects of ligands provide organic chemists with an exceedingly useful tool. More than four decades ago, chemists began to think about a different approach, namely, embedding achiral ligand/metal moieties covalently or noncovalently in protein hosts with formation of artificial metalloenzymes. While structurally fascinating, this approach led in each case only to a single (bio)catalyst, with its selectivity and activity being a matter of chance. In order to solve this fundamental problem, my group proposed in 2000-2002 the idea of directed evolution of artificial metalloenzymes. In earlier studies, we had already demonstrated that directed evolution of enzymes constitutes a viable method for enhancing and inverting the stereoselectivity of enzymes as catalysts in organic chemistry. We speculated that it should also be possible to manipulate selectivity and activity of artificial metalloenzymes, which would provide organic chemists with a tool for optimizing essentially any transition metal catalyzed reaction type. In order to put this vision into practice, we first turned to the Whitesides system for artificial metalloenzyme formation, comprising a biotinylated diphosphine/Rh moiety, which is anchored noncovalently to avidin or streptavidin. Following intensive optimization, proof of principle was finally demonstrated in 2006, which opened the door to a new research area. This personal Account critically assesses these early studies as well as subsequent efforts from my group focusing on different protein scaffolds, and includes briefly some of the most important current contributions of other groups. Two primary messages emerge: First, since organic chemists continue to be extremely good at designing and implementing man-made transition metal catalysts, often on a large scale, those scientists that are active in the equally intriguing field of directed evolution of artificial metalloenzymes should be moderate when generalizing claims. All factors required for a truly viable catalytic system need to be considered, especially activity and ease of upscaling. Second, the most exciting and thus far very rare cases of directed evolution of artificial metalloenzymes are those that focus on selective transformations that are not readily possible using state of the art transition metal catalysts.
Collapse
Affiliation(s)
- Manfred T. Reetz
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim Germany
| |
Collapse
|
4
|
Chua LH, Tan SC, Liew MW. Process intensification of core streptavidin production through high-cell-density cultivation of recombinant E. coli and a temperature-based refolding method. J Biotechnol 2018; 276-277:34-41. [DOI: 10.1016/j.jbiotec.2018.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
5
|
Lakowitz A, Godard T, Biedendieck R, Krull R. Mini review: Recombinant production of tailored bio-pharmaceuticals in different Bacillus strains and future perspectives. Eur J Pharm Biopharm 2017; 126:27-39. [PMID: 28606596 DOI: 10.1016/j.ejpb.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023]
Abstract
Bio-pharmaceuticals like antibodies, hormones and growth factors represent about one-fifth of commercial pharmaceuticals. Host candidates of growing interest for recombinant production of these proteins are strains of the genus Bacillus, long being established for biotechnological production of homologous and heterologous proteins. Bacillus strains benefit from development of efficient expression systems in the last decades and emerge as major industrial workhorses for recombinant proteins due to easy cultivation, non-pathogenicity and their ability to secrete recombinant proteins directly into extracellular medium allowing cost-effective downstream processing. Their broad product portfolio of pharmaceutically relevant recombinant proteins described in research include antibody fragments, growth factors, interferons and interleukins, insulin, penicillin G acylase, streptavidin and different kinases produced in various cultivation systems like microtiter plates, shake flasks and bioreactor systems in batch, fed-batch and continuous mode. To further improve production and secretion performance of Bacillus, bottlenecks and limiting factors concerning proteases, chaperones, secretion machinery or feedback mechanisms can be identified on different cell levels from genomics and transcriptomics via proteomics to metabolomics and fluxomics. For systematical identification of recurring patterns characteristic of given regulatory systems and key genetic targets, systems biology and omics-technology provide suitable and promising approaches, pushing Bacillus further towards industrial application for recombinant pharmaceutical protein production.
Collapse
Affiliation(s)
- Antonia Lakowitz
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Thibault Godard
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Rebekka Biedendieck
- Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Institute of Microbiology, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-List-Straβe 35a, 38106 Braunschweig, Germany; Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany.
| |
Collapse
|
6
|
Müller JM, Bruhn S, Flaschel E, Friehs K, Risse JM. GAP promoter-based fed-batch production of highly bioactive core streptavidin byPichia pastoris. Biotechnol Prog 2016; 32:855-64. [DOI: 10.1002/btpr.2283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/02/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Jakob Michael Müller
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Simon Bruhn
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Erwin Flaschel
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Karl Friehs
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Joe Max Risse
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| |
Collapse
|
7
|
Constitutive production and efficient secretion of soluble full-length streptavidin by an Escherichia coli ‘leaky mutant’. J Biotechnol 2016; 221:91-100. [DOI: 10.1016/j.jbiotec.2016.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 11/22/2022]
|
8
|
Müller JM, Risse JM, Friehs K, Flaschel E. Model-based development of an assay for the rapid detection of biotin-blocked binding sites of streptavidin. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jakob M. Müller
- Chair of Fermentation Engineering; Faculty of Technology; Bielefeld University; Bielefeld Germany
| | - Joe M. Risse
- Chair of Fermentation Engineering; Faculty of Technology; Bielefeld University; Bielefeld Germany
| | - Karl Friehs
- Chair of Fermentation Engineering; Faculty of Technology; Bielefeld University; Bielefeld Germany
| | - Erwin Flaschel
- Chair of Fermentation Engineering; Faculty of Technology; Bielefeld University; Bielefeld Germany
| |
Collapse
|
9
|
Shao H, Cao Q, Zhao H, Tan X, Feng H. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus. J GEN APPL MICROBIOL 2015; 61:124-31. [DOI: 10.2323/jgam.61.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Huanhuan Shao
- Key Laboratory of Bio-Resource & Eco-Environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology & Biotechnology, College of Life Sciences, Sichuan University
| | - Qinghua Cao
- Key Laboratory of Bio-Resource & Eco-Environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology & Biotechnology, College of Life Sciences, Sichuan University
| | - Hongyan Zhao
- Key Laboratory of Bio-Resource & Eco-Environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology & Biotechnology, College of Life Sciences, Sichuan University
| | - Xuemei Tan
- Key Laboratory of Bio-Resource & Eco-Environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology & Biotechnology, College of Life Sciences, Sichuan University
| | - Hong Feng
- Key Laboratory of Bio-Resource & Eco-Environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology & Biotechnology, College of Life Sciences, Sichuan University
| |
Collapse
|
10
|
|
11
|
Wu SC, Wong SL. Structure-guided design of an engineered streptavidin with reusability to purify streptavidin-binding peptide tagged proteins or biotinylated proteins. PLoS One 2013; 8:e69530. [PMID: 23874971 PMCID: PMC3712923 DOI: 10.1371/journal.pone.0069530] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/13/2013] [Indexed: 12/13/2022] Open
Abstract
Development of a high-affinity streptavidin-binding peptide (SBP) tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin and SBP with streptavidin were explored. Loop3-4 which serves as a mobile lid for the biotin binding pocket in streptavidin is in the closed state with biotin binding. In contrast, this loop is in the open state with SBP binding. Replacement of glycine-48 with a bulkier residue (threonine) in this loop selectively reduces the biotin binding affinity (Kd) from 4 × 10(-14) M to 4.45 × 10(-10) M without affecting the SBP binding affinity. Introduction of a second mutation (S27A) to the first mutein (G48T) results in the development of a novel engineered streptavidin SAVSBPM18 which could be recombinantly produced in the functional form from Bacillus subtilis via secretion. To form an intact binding pocket for tight binding of SBP, two diagonally oriented subunits in a tetrameric streptavidin are required. It is vital for SAVSBPM18 to be stably in the tetrameric state in solution. This was confirmed using an HPLC/Laser light scattering system. SAVSBPM18 retains high binding affinity to SBP but has reversible biotin binding capability. The SAVSBPM18 matrix can be applied to affinity purify SBP-tagged proteins or biotinylated molecules to homogeneity with high recovery in a reusable manner. A mild washing step is sufficient to regenerate the matrix which can be reused for multiple rounds. Other applications including development of automated protein purification systems, lab-on-a-chip micro-devices, reusable biosensors, bioreactors and microarrays, and strippable detection agents for various blots are possible.
Collapse
Affiliation(s)
- Sau-Ching Wu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Sui-Lam Wong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Toĭmentseva AA, Akhmetova AI, Karimova MR, Niamsurén C, Ponomareva IO, Shagimardanova EI, Rizvanov AA, Sharipova MR. [Bacillus pumilus strains with inactivated genes for extracellular serine proteinases]. Microbiology (Reading) 2013; 82:59-68. [PMID: 23718049 DOI: 10.1134/s0026261713010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Ying Q, Zhang C, Guo F, Wang S, Bie X, Lu F, Lu Z. Secreted Expression of a Hyperthermophilic α-Amylase Gene from Thermococcus sp. HJ21 in Bacillus subtilis. J Mol Microbiol Biotechnol 2013; 22:392-8. [DOI: 10.1159/000346215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Development of fed-batch strategies for the production of streptavidin by Streptomyces avidinii based on power input and oxygen supply studies. J Biotechnol 2013; 163:325-32. [DOI: 10.1016/j.jbiotec.2012.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022]
|
15
|
Development of a tetrameric streptavidin mutein with reversible biotin binding capability: engineering a mobile loop as an exit door for biotin. PLoS One 2012; 7:e35203. [PMID: 22536357 PMCID: PMC3334968 DOI: 10.1371/journal.pone.0035203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/10/2012] [Indexed: 12/01/2022] Open
Abstract
A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop3–4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop3–4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop7–8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop7–8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (koff of 4.28×10−4 s−1 and Kd of 1.9×10−8 M) make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible.
Collapse
|
16
|
Kakeshita H, Kageyama Y, Endo K, Tohata M, Ara K, Ozaki K, Nakamura K. Secretion of biologically-active human interferon-β by Bacillus subtilis. Biotechnol Lett 2011; 33:1847-52. [DOI: 10.1007/s10529-011-0636-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/20/2011] [Indexed: 12/20/2022]
|
17
|
Kakeshita H, Kageyama Y, Ara K, Ozaki K, Nakamura K. Propeptide of Bacillus subtilis amylase enhances extracellular production of human interferon-α in Bacillus subtilis. Appl Microbiol Biotechnol 2010; 89:1509-17. [DOI: 10.1007/s00253-010-2954-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 11/28/2022]
|
18
|
|
19
|
Morello E, Bermúdez-Humarán LG, Llull D, Solé V, Miraglio N, Langella P, Poquet I. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 2008; 14:48-58. [PMID: 17957110 DOI: 10.1159/000106082] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The use of Gram-positive bacteria for heterologous protein production proves to be a useful choice due to easy protein secretion and purification. The lactic acid bacterium Lactococcus lactis emerges as an attractive alternative to the Gram-positive model Bacillus subtilis. Here, we review recent work on the expression and secretion systems available for heterologous protein secretion in L. lactis, including promoters, signal peptides and mutant host strains known to overcome some bottlenecks of the process. Among the tools developed in our laboratory, inactivation of HtrA, the unique housekeeping protease at the cell surface, or complementation of the Sec machinery with B. subtilis SecDF accessory protein each result in the increase in heterologous protein yield. Furthermore, our lactococcal expression/secretion system, using both P(Zn)zitR, an expression cassette tightly controlled by environmental zinc, and a consensus signal peptide, SP(Exp4), allows efficient production and secretion of the staphylococcal nuclease, as evidenced by protein yields (protein amount/biomass) comparable to those obtained using NICE or P170 expression systems under similar laboratory conditions. Finally, the toolbox we are developing should contribute to enlarge the use of L. lactis as a protein cell factory.
Collapse
Affiliation(s)
- E Morello
- Unité des Bactéries Lactiques et pathogènes Opportunistes (UBLO), INRA, Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Directed Evolution of Stereoselective Hybrid Catalysts. TOP ORGANOMETAL CHEM 2008. [DOI: 10.1007/3418_2008_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Reetz MT, Rentzsch M, Pletsch A, Maywald M, Maiwald P, Peyralans JJP, Maichele A, Fu Y, Jiao N, Hollmann F, Mondière R, Taglieber A. Directed evolution of enantioselective hybrid catalysts: a novel concept in asymmetric catalysis. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.03.177] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Westers H, Westers L, Darmon E, van Dijl JM, Quax WJ, Zanen G. The CssRS two-component regulatory system controls a general secretion stress response in Bacillus subtilis. FEBS J 2006; 273:3816-27. [PMID: 16911528 DOI: 10.1111/j.1742-4658.2006.05389.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillus species are valuable producers of industrial enzymes and biopharmaceuticals, because they can secrete large quantities of high-quality proteins directly into the growth medium. This requires the concerted action of quality control factors, such as folding catalysts and 'cleaning proteases'. The expression of two important cleaning proteases, HtrA and HtrB, of Bacillus subtilis is controlled by the CssRS two-component regulatory system. The induced CssRS-dependent expression of htrA and htrB has been defined as a protein secretion stress response, because it can be triggered by high-level production of secreted alpha-amylases. It was not known whether translocation of these alpha-amylases across the membrane is required to trigger a secretion stress response or whether other secretory proteins can also activate this response. These studies show for the first time that the CssRS-dependent response is a general secretion stress response which can be triggered by both homologous and heterologous secretory proteins. As demonstrated by high-level production of a nontranslocated variant of the alpha-amylase, AmyQ, membrane translocation of secretory proteins is required to elicit this general protein secretion stress response. Studies with two other secretory reporter proteins, lipase A of B. subtilis and human interleukin-3, show that the intensity of the protein secretion stress response only partly reflects the production levels of the respective proteins. Importantly, degradation of human interleukin-3 by extracellular proteases has a major impact on the production level, but only a minor effect on the intensity of the secretion stress response.
Collapse
Affiliation(s)
- Helga Westers
- Department of Pharmaceutical Biology, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Reetz MT, Peyralans JJP, Maichele A, Fu Y, Maywald M. Directed evolution of hybrid enzymes: Evolving enantioselectivity of an achiral Rh-complex anchored to a protein. Chem Commun (Camb) 2006:4318-20. [PMID: 17047853 DOI: 10.1039/b610461d] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of utilizing the methods of directed evolution for tuning the enantioselectivity of synthetic achiral metal-ligand centers anchored to proteins has been implemented experimentally for the first time.
Collapse
Affiliation(s)
- Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany.
| | | | | | | | | |
Collapse
|
24
|
Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2006; 72:211-22. [PMID: 16791589 DOI: 10.1007/s00253-006-0465-8] [Citation(s) in RCA: 661] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/28/2022]
Abstract
During the proteomics period, the growth in the use of recombinant proteins has increased greatly in the recent years. Bacterial systems remain most attractive due to low cost, high productivity, and rapid use. However, the rational choice of the adequate promoter system and host for a specific protein of interest remains difficult. This review gives an overview of the most commonly used systems: As hosts, Bacillus brevis, Bacillus megaterium, Bacillus subtilis, Caulobacter crescentus, other strains, and, most importantly, Escherichia coli BL21 and E. coli K12 and their derivatives are presented. On the promoter side, the main features of the l-arabinose inducible araBAD promoter (PBAD), the lac promoter, the l-rhamnose inducible rhaP BAD promoter, the T7 RNA polymerase promoter, the trc and tac promoter, the lambda phage promoter p L , and the anhydrotetracycline-inducible tetA promoter/operator are summarized.
Collapse
Affiliation(s)
- Kay Terpe
- IBA GmbH, 37079, Göttingen, Germany.
| |
Collapse
|
25
|
Nguyen HD, Nguyen QA, Ferreira RC, Ferreira LCS, Tran LT, Schumann W. Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid 2005; 54:241-8. [PMID: 16005967 DOI: 10.1016/j.plasmid.2005.05.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 05/04/2005] [Accepted: 05/12/2005] [Indexed: 11/28/2022]
Abstract
A series of plasmid-based expression vectors have been constructed allowing stable intracellular expression of recombinant proteins in Bacillus subtilis strains. These expression vectors are based on the recently described Escherichia coli-B. subtilis shuttle vector pMTLBS72 which replicates as theta circles. Besides the weak constitutive promoter P(lepA), we inserted three different controllable promoters: P(gsiB) which can be induced by heat and acid shock, and by ethanol, P(xylA) and P(spac) which respond to the addition of xylose and IPTG, respectively. The versatility of these expression vectors was demonstrated by fusing their promoters to a reporter gene and by overexpression of the HtpG protein with three of them. All recombinant vectors exhibited full structural stability.
Collapse
Affiliation(s)
- Hoang Duc Nguyen
- Institute of Genetics, University of Bayreuth, D-95440 Bayreuth, Germany; Vietnam National University-Ho Chi Minh City, College of Natural Sciences, Faculty of Biology, Ho Chi Minh City, Viet Nam
| | | | | | | | | | | |
Collapse
|
26
|
Kim JH, Lee CS, Kim BG. Spore-displayed streptavidin: a live diagnostic tool in biotechnology. Biochem Biophys Res Commun 2005; 331:210-4. [PMID: 15845380 DOI: 10.1016/j.bbrc.2005.03.144] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Indexed: 11/18/2022]
Abstract
Streptavidin, which is one of the most widely used proteins in biotechnological application field and is active only in tetrameric form, was surface expressed on the surface of Bacillus subtilis spore. Spore coat protein of B. subtilis, CotG, was used as an anchoring motif to display streptavidin. FACS using anti-streptavidin antibody was used for the verification of surface localization of expressed CotG-streptavidin fusion protein. FACS and dot-blot were used for the verification of biological activity of displayed streptavidin with FITC-labeled biotin.
Collapse
Affiliation(s)
- June-Hyung Kim
- Institute of Molecular Biology and Genetics, School of Chemical Engineering, Seoul National University, Republic of Korea
| | | | | |
Collapse
|
27
|
Westers L, Westers H, Quax WJ. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:299-310. [PMID: 15546673 DOI: 10.1016/j.bbamcr.2004.02.011] [Citation(s) in RCA: 322] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/13/2004] [Accepted: 02/16/2004] [Indexed: 11/17/2022]
Abstract
Bacillus subtilis is a rod-shaped, Gram-positive soil bacterium that secretes numerous enzymes to degrade a variety of substrates, enabling the bacterium to survive in a continuously changing environment. These enzymes are produced commercially and this production represents about 60% of the industrial-enzyme market. Unfortunately, the secretion of heterologous proteins, originating from Gram-negative bacteria or from eukaryotes, is often severely hampered. Several bottlenecks in the B. subtilis secretion pathway, such as poor targeting to the translocase, degradation of the secretory protein, and incorrect folding, have been revealed. Nevertheless, research into the mechanisms and control of the secretion pathways will lead to improved Bacillus protein secretion systems and broaden the applications as industrial production host. This review focuses on studies that aimed at optimizing B. subtilis as cell factory for commercially interesting heterologous proteins.
Collapse
Affiliation(s)
- Lidia Westers
- Department of Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
28
|
Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can J Microbiol 2004; 50:1-17. [PMID: 15052317 DOI: 10.1139/w03-076] [Citation(s) in RCA: 679] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacillus species continue to be dominant bacterial workhorses in microbial fermentations. Bacillus subtilis (natto) is the key microbial participant in the ongoing production of the soya-based traditional natto fermentation, and some Bacillus species are on the Food and Drug Administration's GRAS (generally regarded as safe) list. The capacity of selected Bacillus strains to produce and secrete large quantities (20-25 g/L) of extracellular enzymes has placed them among the most important industrial enzyme producers. The ability of different species to ferment in the acid, neutral, and alkaline pH ranges, combined with the presence of thermophiles in the genus, has lead to the development of a variety of new commercial enzyme products with the desired temperature, pH activity, and stability properties to address a variety of specific applications. Classical mutation and (or) selection techniques, together with advanced cloning and protein engineering strategies, have been exploited to develop these products. Efforts to produce and secrete high yields of foreign recombinant proteins in Bacillus hosts initially appeared to be hampered by the degradation of the products by the host proteases. Recent studies have revealed that the slow folding of heterologous proteins at the membrane-cell wall interface of Gram-positive bacteria renders them vulnerable to attack by wall-associated proteases. In addition, the presence of thiol-disulphide oxidoreductases in B. subtilis may be beneficial in the secretion of disulphide-bond-containing proteins. Such developments from our understanding of the complex protein translocation machinery of Gram-positive bacteria should allow the resolution of current secretion challenges and make Bacillus species preeminent hosts for heterologous protein production. Bacillus strains have also been developed and engineered as industrial producers of nucleotides, the vitamin riboflavin, the flavor agent ribose, and the supplement poly-gamma-glutamic acid. With the recent characterization of the genome of B. subtilis 168 and of some related strains, Bacillus species are poised to become the preferred hosts for the production of many new and improved products as we move through the genomic and proteomic era.
Collapse
|
29
|
Streit WR, Entcheva P. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biotechnol 2003; 61:21-31. [PMID: 12658511 DOI: 10.1007/s00253-002-1186-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Revised: 10/31/2002] [Accepted: 10/31/2002] [Indexed: 11/30/2022]
Abstract
Biotin (vitamin H) is one of the most fascinating cofactors involved in central pathways in pro- and eukaryotic cell metabolism. Since its original discovery in 1901, research has led to the discovery of the complete biotin biosynthesis pathways in many different microbes and much work has been done on the highly intriguing and complex biochemistry of biotin biosynthesis. While humans and animals require several hundred micrograms of biotin per day, most microbes, plants and fungi appear to be able to synthesize the cofactor themselves. Biotin is added to many food, feed and cosmetic products, creating a world market of 10-30 t/year. However, the majority of the biotin sold is synthesized in a chemical process. Since the chemical synthesis is linked with a high environmental burden, much effort has been put into the development of biotin-overproducing microbes. A summary of biotin biosynthesis and its biological role is presented; and current strategies for the improvement of microbial biotin production using modern biotechnological techniques are discussed.
Collapse
Affiliation(s)
- W R Streit
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany.
| | | |
Collapse
|