1
|
Eltarahony M, Jestrzemski D, Hassan MA. A comprehensive review of recent advancements in microbial-induced mineralization: biosynthesis and mechanism, with potential implementation in various environmental, engineering, and medical sectors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179426. [PMID: 40262217 DOI: 10.1016/j.scitotenv.2025.179426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Biomineralization has garnered profuse attention in multidisciplinary fields. Using this strategy, living things, including eukaryotes or prokaryotes, mediate the uptake of ions from the surrounding environment, followed by assembling and depositing them as greatly configured structures inside the organic matrix. The generated biominerals, including nanomaterials, possess outstanding hierarchical structures that exceed their chemically synthesized counterparts. Despite the significant progress achieved in microbial-mediated mineralization, several key knowledge gaps remain, including mechanisms controlling biomineralization pathways and the impact of environmental factors on mineral morphology, crystallinity, and stability. This review provides a comprehensive description of this biomineralization, which can be categorized into controlled, influenced, and induced biomineralization. Interestingly, we highlighted biologically-induced mineralization approaches, such as photosynthesis, methane oxidation, and nitrogen-based metabolic pathways, and identified various chemical interactions during mineral production following analytical chemistry. This review also extensively delineates updates on application of biominerals across all fields, commencing with the remediation of deleterious pollutants and biominerals exploited in industrial sectors, moving on to using them to reinforce soil, generate biocement for construction, and delving into their utilization in pharmaceutical applications to deliver drugs, repair teeth and bones, and combat cancer and pathogenic microorganisms. Moreover, the review outlines the drawbacks and adequate solutions for biomineralization, particularly CaCO₃-mediated processes, such as the generation of ammonium and nitrate during the CaCO₃ precipitation process and the relatively slow rate of microbial-mediated mineralization. Biomineralization inspired the fabrication of smart biomaterials, which combine biological advantages. Overall, this comprehensive review discusses updated research and highlights potential approaches to future studies.
Collapse
Affiliation(s)
- Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| | - Daniel Jestrzemski
- Institute of Occupational, Social and Environmental Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
2
|
Mondal N, Dutta S, Chatterjee S, Sarkar J, Mondal M, Roy C, Chakraborty R, Ghosh W. Aquificae overcomes competition by archaeal thermophiles, and crowding by bacterial mesophiles, to dominate the boiling vent-water of a Trans-Himalayan sulfur-borax spring. PLoS One 2024; 19:e0310595. [PMID: 39453910 PMCID: PMC11508158 DOI: 10.1371/journal.pone.0310595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 09/02/2024] [Indexed: 10/27/2024] Open
Abstract
Trans-Himalayan hot spring waters rich in boron, chlorine, sodium and sulfur (but poor in calcium and silicon) are known based on PCR-amplified 16S rRNA gene sequence data to harbor high diversities of infiltrating bacterial mesophiles. Yet, little is known about the community structure and functions, primary productivity, mutual interactions, and thermal adaptations of the microorganisms present in the steaming waters discharged by these geochemically peculiar spring systems. We revealed these aspects of a bacteria-dominated microbiome (microbial cell density ~8.5 × 104 mL-1; live:dead cell ratio 1.7) thriving in the boiling (85°C) fluid vented by a sulfur-borax spring called Lotus Pond, situated at 4436 m above the mean sea-level, in the Puga valley of eastern Ladakh, on the Changthang plateau. Assembly, annotation, and population-binning of >15-GB metagenomic sequence illuminated the numeral predominance of Aquificae. While members of this phylum accounted for 80% of all 16S rRNA-encoding reads within the metagenomic dataset, 14% of such reads were attributed to Proteobacteria. Post assembly, only 25% of all protein-coding genes identified were attributable to Aquificae, whereas 41% was ascribed to Proteobacteria. Annotation of metagenomic reads encoding 16S rRNAs, and/or PCR-amplified 16S rRNA genes, identified 163 bacterial genera, out of which 66 had been detected in past investigations of Lotus Pond's vent-water via 16S amplicon sequencing. Among these 66, Fervidobacterium, Halomonas, Hydrogenobacter, Paracoccus, Sulfurihydrogenibium, Tepidimonas, Thermus and Thiofaba (or their close phylogenomic relatives) were presently detected as metagenome-assembled genomes (MAGs). Remarkably, the Hydrogenobacter related MAG alone accounted for ~56% of the entire metagenome, even though only 15 out of the 66 genera consistently present in Lotus Pond's vent-water have strains growing in the laboratory at >45°C, reflecting the continued existence of the mesophiles in the ecosystem. Furthermore, the metagenome was replete with genes crucial for thermal adaptation in the context of Lotus Pond's geochemistry and topography. In terms of sequence similarity, a majority of those genes were attributable to phylogenetic relatives of mesophilic bacteria, while functionally they rendered functions such as encoding heat shock proteins, molecular chaperones, and chaperonin complexes; proteins controlling/modulating/inhibiting DNA gyrase; universal stress proteins; methionine sulfoxide reductases; fatty acid desaturases; different toxin-antitoxin systems; enzymes protecting against oxidative damage; proteins conferring flagellar structure/function, chemotaxis, cell adhesion/aggregation, biofilm formation, and quorum sensing. The Lotus Pond Aquificae not only dominated the microbiome numerically but also acted potentially as the main primary producers of the ecosystem, with chemolithotrophic sulfur oxidation (Sox) being the fundamental bioenergetic mechanism, and reductive tricarboxylic acid (rTCA) cycle the predominant carbon fixation pathway. The Lotus Pond metagenome contained several genes directly or indirectly related to virulence functions, biosynthesis of secondary metabolites including antibiotics, antibiotic resistance, and multi-drug efflux pumping. A large proportion of these genes being attributable to Aquificae, and Proteobacteria (very few were ascribed to Archaea), it could be worth exploring in the future whether antibiosis helped the Aquificae overcome niche overlap with other thermophiles (especially those belonging to Archaea), besides exacerbating the bioenergetic costs of thermal endurance for the mesophilic intruders of the ecosystem.
Collapse
Affiliation(s)
- Nibendu Mondal
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Subhajit Dutta
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Sumit Chatterjee
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Jagannath Sarkar
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Mahamadul Mondal
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Chayan Roy
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Wriddhiman Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
3
|
Podosokorskaya OA, Elcheninov AG, Klyukina AA, Merkel AY. Ignisphaera cupida sp. nov., a hyperthermophilic hydrolytic archaeon from a hot spring of Uzon (Kamchatka), and emended description of the genus Ignisphaera. Syst Appl Microbiol 2024; 47:126541. [PMID: 39084153 DOI: 10.1016/j.syapm.2024.126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
A novel strictly anaerobic hyperthermophilic archaeon, strain 4213-coT, was isolated from a terrestrial hot spring in the Uzon Caldera, Kamchatka (Russian Federation). Coccoid cells were present singly, in pairs, or aggregates, and occasionally were motile. The strain grew at 75-100 °C and within a pH range of 5.4-8.2 with the optimum at 92 °C and pH 6.4-6.7. Strain 4213-coT was a chemoorganoheterotroph, growing on proteinaceous substrates and mono-, di- and polysaccharides (starch, guar gum, xanthan gum). It did not require sodium chloride for growth. The complete genome of strain 4213-coT was 1.74 Mbp in size; its G+C content was 36.18 %. Genome analysis allowed to identify 25 genes encoding glycosidases involved in polysaccharide hydrolysis as well as genes of ADP-forming acetate-CoA ligase, lactate dehydrogenase and two [NiFe] hydrogenases responsible for acetate, lactate and hydrogen formation during fermentation. Moreover gene cluster encoding archaellum subunits was found. According to the phylogenomic analysis strain 4213-coT formed a species-level phylogenetic lineage within Ignisphaera genus. Our phylogenomic analysis also supports the delineation of the Ignisphaera genus into a separate family Ignisphaeraceae, as recently published. Here we propose a novel species Ignisphaera cupida, sp. nov. with type strain 4213-coT (=JCM 39446T=VKM B-3715T=UQM 41593T). Ecogenomic analysis showed that representatives of the Ignisphaera are thermophilic archaea, the majority of them were found in terrestrial hot springs and deep-sea hydrothermal vents. This study allowed a better understanding of physiology and ecology of Ignisphaeraceae - a rather understudied archaeal group.
Collapse
Affiliation(s)
- Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia.
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Alexandra A Klyukina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| |
Collapse
|
4
|
Gregory SP, Mackie JRM, Barnett MJ. Radioactive waste microbiology: predicting microbial survival and activity in changing extreme environments. FEMS Microbiol Rev 2024; 48:fuae001. [PMID: 38216518 PMCID: PMC10853057 DOI: 10.1093/femsre/fuae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/01/2023] [Accepted: 01/11/2024] [Indexed: 01/14/2024] Open
Abstract
The potential for microbial activity to occur within the engineered barrier system (EBS) of a geological disposal facility (GDF) for radioactive waste is acknowledged by waste management organizations as it could affect many aspects of the safety functions of a GDF. Microorganisms within an EBS will be exposed to changing temperature, pH, radiation, salinity, saturation, and availability of nutrient and energy sources, which can limit microbial survival and activity. Some of the limiting conditions are incorporated into GDF designs for safety reasons, including the high pH of cementitious repositories, the limited pore space of bentonite-based repositories, or the high salinity of GDFs in evaporitic geologies. Other environmental conditions such as elevated radiation, temperature, and desiccation, arise as a result of the presence of high heat generating waste (HHGW). Here, we present a comprehensive review of how environmental conditions in the EBS may limit microbial activity, covering HHGW and lower heat generating waste (LHGW) in a range of geological environments. We present data from the literature on the currently recognized limits to life for each of the environmental conditions described above, and nutrient availability to establish the potential for life in these environments. Using examples where each variable has been modelled for a particular GDF, we outline the times and locations when that variable can be expected to limit microbial activity. Finally, we show how this information for multiple variables can be used to improve our understanding of the potential for microbial activity to occur within the EBS of a GDF and, more broadly, to understand microbial life in changing environments exposed to multiple extreme conditions.
Collapse
Affiliation(s)
- Simon P Gregory
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - Jessica R M Mackie
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - Megan J Barnett
- British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, United Kingdom
| |
Collapse
|
5
|
Butterworth SJ, Barton F, Lloyd JR. Extremophilic microbial metabolism and radioactive waste disposal. Extremophiles 2023; 27:27. [PMID: 37839067 PMCID: PMC10577106 DOI: 10.1007/s00792-023-01312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Decades of nuclear activities have left a legacy of hazardous radioactive waste, which must be isolated from the biosphere for over 100,000 years. The preferred option for safe waste disposal is a deep subsurface geological disposal facility (GDF). Due to the very long geological timescales required, and the complexity of materials to be disposed of (including a wide range of nutrients and electron donors/acceptors) microbial activity will likely play a pivotal role in the safe operation of these mega-facilities. A GDF environment provides many metabolic challenges to microbes that may inhabit the facility, including high temperature, pressure, radiation, alkalinity, and salinity, depending on the specific disposal concept employed. However, as our understanding of the boundaries of life is continuously challenged and expanded by the discovery of novel extremophiles in Earth's most inhospitable environments, it is becoming clear that microorganisms must be considered in GDF safety cases to ensure accurate predictions of long-term performance. This review explores extremophilic adaptations and how this knowledge can be applied to challenge our current assumptions on microbial activity in GDF environments. We conclude that regardless of concept, a GDF will consist of multiple extremes and it is of high importance to understand the limits of polyextremophiles under realistic environmental conditions.
Collapse
Affiliation(s)
- Sarah Jane Butterworth
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK
| | - Franky Barton
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| | - Jonathan Richard Lloyd
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Liu N, Liu J, Wang H, Li S, Zhang WX. Microbes team with nanoscale zero-valent iron: A robust route for degradation of recalcitrant pollutants. J Environ Sci (China) 2022; 118:140-146. [PMID: 35305763 DOI: 10.1016/j.jes.2021.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Integrating nanoscale zero-valent iron (nZVI) with biological treatment processes holds the promise of inheriting significant advantages from both environmental nano- and bio-technologies. nZVI and microbes can perform in coalition in direct contact and act simultaneously, or be maintained in separate reactors and operated sequentially. Both modes can generate enhanced performance for wastewater treatment and environmental remediation. nZVI scavenges and eliminates toxic metals, and enhances biodegradability of some recalcitrant contaminants while bioprocesses serve to mineralize organic compounds and further remove impurities from wastewater. This has been demonstrated in a number of recent works that nZVI can substantially augment the performance of conventional biological treatment for wastewaters from textile and nonferrous metal industries. Our recent laboratory and field tests show that COD of the industrial effluents can be reduced to a record-low of 50 ppm. Recent literature on the theory and applications of the nZVI-bio system is highlighted in this mini review.
Collapse
Affiliation(s)
- Nuo Liu
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Liu
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaolin Li
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Nixon SL, Bonsall E, Cockell CS. Limitations of microbial iron reduction under extreme conditions. FEMS Microbiol Rev 2022; 46:6645348. [PMID: 35849069 PMCID: PMC9629499 DOI: 10.1093/femsre/fuac033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 01/09/2023] Open
Abstract
Microbial iron reduction is a widespread and ancient metabolism on Earth, and may plausibly support microbial life on Mars and beyond. Yet, the extreme limits of this metabolism are yet to be defined. To investigate this, we surveyed the recorded limits to microbial iron reduction in a wide range of characterized iron-reducing microorganisms (n = 141), with a focus on pH and temperature. We then calculated Gibbs free energy of common microbially mediated iron reduction reactions across the pH-temperature habitability space to identify thermodynamic limits. Comparing predicted and observed limits, we show that microbial iron reduction is generally reported at extremes of pH or temperature alone, but not when these extremes are combined (with the exception of a small number of acidophilic hyperthermophiles). These patterns leave thermodynamically favourable combinations of pH and temperature apparently unoccupied. The empty spaces could be explained by experimental bias, but they could also be explained by energetic and biochemical limits to iron reduction at combined extremes. Our data allow for a review of our current understanding of the limits to microbial iron reduction at extremes and provide a basis to test more general hypotheses about the extent to which biochemistry establishes the limits to life.
Collapse
Affiliation(s)
- Sophie L Nixon
- Corresponding author: Department of Earth and Environmental Sciences, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK. E-mail:
| | - Emily Bonsall
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
| |
Collapse
|
8
|
Interactions between temperature and energy supply drive microbial communities in hydrothermal sediment. Commun Biol 2021; 4:1006. [PMID: 34433861 PMCID: PMC8387401 DOI: 10.1038/s42003-021-02507-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Temperature and bioavailable energy control the distribution of life on Earth, and interact with each other due to the dependency of biological energy requirements on temperature. Here we analyze how temperature-energy interactions structure sediment microbial communities in two hydrothermally active areas of Guaymas Basin. Sites from one area experience advective input of thermogenically produced electron donors by seepage from deeper layers, whereas sites from the other area are diffusion-dominated and electron donor-depleted. In both locations, Archaea dominate at temperatures >45 °C and Bacteria at temperatures <10 °C. Yet, at the phylum level and below, there are clear differences. Hot seep sites have high proportions of typical hydrothermal vent and hot spring taxa. By contrast, high-temperature sites without seepage harbor mainly novel taxa belonging to phyla that are widespread in cold subseafloor sediment. Our results suggest that in hydrothermal sediments temperature determines domain-level dominance, whereas temperature-energy interactions structure microbial communities at the phylum-level and below. Lagostina et al. show that relative abundances of Bacteria and Archaea in sediments of Guaymas Basin, Gulf of California, are controlled by temperature, while energy flux explains microbial community structure at the phylum-level and below. Hot diffusion-dominated and energy-depleted sediments are dominated by taxa with relatives in cold subseafloor sediments, while hot sediments with high energy supply from fluid seepage are dominated by taxa also found at hydrothermal vents and in hot springs.
Collapse
|
9
|
Ehrlich H, Bailey E, Wysokowski M, Jesionowski T. Forced Biomineralization: A Review. Biomimetics (Basel) 2021; 6:46. [PMID: 34287234 PMCID: PMC8293141 DOI: 10.3390/biomimetics6030046] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/29/2021] [Accepted: 07/02/2021] [Indexed: 12/31/2022] Open
Abstract
Biologically induced and controlled mineralization of metals promotes the development of protective structures to shield cells from thermal, chemical, and ultraviolet stresses. Metal biomineralization is widely considered to have been relevant for the survival of life in the environmental conditions of ancient terrestrial oceans. Similar behavior is seen among extremophilic biomineralizers today, which have evolved to inhabit a variety of industrial aqueous environments with elevated metal concentrations. As an example of extreme biomineralization, we introduce the category of "forced biomineralization", which we use to refer to the biologically mediated sequestration of dissolved metals and metalloids into minerals. We discuss forced mineralization as it is known to be carried out by a variety of organisms, including polyextremophiles in a range of psychrophilic, thermophilic, anaerobic, alkaliphilic, acidophilic, and halophilic conditions, as well as in environments with very high or toxic metal ion concentrations. While much additional work lies ahead to characterize the various pathways by which these biominerals form, forced biomineralization has been shown to provide insights for the progression of extreme biomimetics, allowing for promising new forays into creating the next generation of composites using organic-templating approaches under biologically extreme laboratory conditions relevant to a wide range of industrial conditions.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada
- ICUBE-University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Elizabeth Bailey
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA;
| | - Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
10
|
Archaea: An Agro-Ecological Perspective. Curr Microbiol 2021; 78:2510-2521. [PMID: 34019119 DOI: 10.1007/s00284-021-02537-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Microorganisms inhabiting bulk soil and rhizosphere play an important role in soil biogeochemical cycles leading to enhanced plant growth and productivity. In this context, the role of bacteria is well established, however, not much reports are available about the role archaea plays in this regard. Literature suggests that archaea also play a greater role in nutrient cycling of carbon, nitrogen, sulfur, and other minerals, possess various plant growth promoting attributes, and can impart tolerance to various abiotic stresses (especially osmotic and oxidative) in areas of high salinity, low and high temperatures and hydrogen ion concentrations. Thermoacidophilic archaea have been found to potentially involve in bioleaching of mineral ores and bioremediation of chemical pollutants and aromatic compounds. Looking at immense potential of archaea in promoting plant growth, alleviating abiotic stresses, and remediating contaminated sites, detailed studies are required to establish their role in different ecological processes, and their interactions in rhizosphere with plant and other microflora (bacteria and fungi) in different ecosystems. In this review, a brief discussion on archaea from the agro-ecological point of view is presented.
Collapse
|
11
|
Lithogenic hydrogen supports microbial primary production in subglacial and proglacial environments. Proc Natl Acad Sci U S A 2020; 118:2007051117. [PMID: 33419920 PMCID: PMC7812807 DOI: 10.1073/pnas.2007051117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life in environments devoid of photosynthesis, such as on early Earth or in contemporary dark subsurface ecosystems, is supported by chemical energy. How, when, and where chemical nutrients released from the geosphere fuel chemosynthetic biospheres is fundamental to understanding the distribution and diversity of life, both today and in the geologic past. Hydrogen (H2) is a potent reductant that can be generated when water interacts with reactive components of mineral surfaces such as silicate radicals and ferrous iron. Such reactive mineral surfaces are continually generated by physical comminution of bedrock by glaciers. Here, we show that dissolved H2 concentrations in meltwaters from an iron and silicate mineral-rich basaltic glacial catchment were an order of magnitude higher than those from a carbonate-dominated catchment. Consistent with higher H2 abundance, sediment microbial communities from the basaltic catchment exhibited significantly shorter lag times and faster rates of net H2 oxidation and dark carbon dioxide (CO2) fixation than those from the carbonate catchment, indicating adaptation to use H2 as a reductant in basaltic catchments. An enrichment culture of basaltic sediments provided with H2, CO2, and ferric iron produced a chemolithoautotrophic population related to Rhodoferax ferrireducens with a metabolism previously thought to be restricted to (hyper)thermophiles and acidophiles. These findings point to the importance of physical and chemical weathering processes in generating nutrients that support chemosynthetic primary production. Furthermore, they show that differences in bedrock mineral composition can influence the supplies of nutrients like H2 and, in turn, the diversity, abundance, and activity of microbial inhabitants.
Collapse
|
12
|
Pillot G, Davidson S, Auria R, Combet-Blanc Y, Godfroy A, Liebgott PP. Production of Current by Syntrophy Between Exoelectrogenic and Fermentative Hyperthermophilic Microorganisms in Heterotrophic Biofilm from a Deep-Sea Hydrothermal Chimney. MICROBIAL ECOLOGY 2020; 79:38-49. [PMID: 31079197 DOI: 10.1007/s00248-019-01381-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
To study the role of exoelectrogens within the trophic network of deep-sea hydrothermal vents, we performed successive subcultures of a hyperthermophilic community from a hydrothermal chimney sample on a mix of electron donors in a microbial fuel cell system. Electrode (the electron acceptor) was swapped every week to enable fresh development from spent media as inoculum. The MFC at 80 °C yielded maximum current production increasing from 159 to 247 mA m-2 over the subcultures. The experiments demonstrated direct production of electric current from acetate, pyruvate, and H2 and indirect production from yeast extract and peptone through the production of H2 and acetate from fermentation. The microorganisms found in on-electrode communities were mainly affiliated to exoelectrogenic Archaeoglobales and Thermococcales species, whereas in liquid media, the communities were mainly affiliated to fermentative Bacillales and Thermococcales species. The work shows interactions between fermentative microorganisms degrading complex organic matter into fermentation products that are then used by exoelectrogenic microorganisms oxidizing these reduced compounds while respiring on a conductive support. The results confirmed that with carbon cycling, the syntrophic relations between fermentative microorganisms and exoelectrogens could enable some microbes to survive as biofilm in extremely unstable conditions. Graphical Abstract Schematic representation of cross-feeding between fermentative and exoelectrogenic microbes on the surface of the conductive support. B, Bacillus/Geobacillus spp.; Tc, Thermococcales; Gg, Geoglobus spp.; Py, pyruvate; Ac, acetate.
Collapse
Affiliation(s)
- Guillaume Pillot
- Aix-Marseille Université, IRD, CNRS, MIO, UM110, Marseille, France
- Université du Sud Toulon-Var, IRD, CNRS, MIO, UM 110, La Garde, France
| | - Sylvain Davidson
- Aix-Marseille Université, IRD, CNRS, MIO, UM110, Marseille, France
- Université du Sud Toulon-Var, IRD, CNRS, MIO, UM 110, La Garde, France
| | - Richard Auria
- Aix-Marseille Université, IRD, CNRS, MIO, UM110, Marseille, France
- Université du Sud Toulon-Var, IRD, CNRS, MIO, UM 110, La Garde, France
| | - Yannick Combet-Blanc
- Aix-Marseille Université, IRD, CNRS, MIO, UM110, Marseille, France
- Université du Sud Toulon-Var, IRD, CNRS, MIO, UM 110, La Garde, France
| | - Anne Godfroy
- IFREMER, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes - UMR6197, Ifremer, Université de Bretagne Occidentale, Centre de Brest, CS10070, Plouzané, France
| | - Pierre-Pol Liebgott
- Aix-Marseille Université, IRD, CNRS, MIO, UM110, Marseille, France.
- Université du Sud Toulon-Var, IRD, CNRS, MIO, UM 110, La Garde, France.
- Campus de Luminy, Bâtiment OCEANOMED, Mediterranean Institute of Oceanography, 13288, Marseille Cedex 09, France.
| |
Collapse
|
13
|
Prokaryotic and Mitochondrial Lipids: A Survey of Evolutionary Origins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31502197 DOI: 10.1007/978-3-030-21162-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mitochondria and bacteria share a myriad of properties since it is believed that the powerhouses of the eukaryotic cell have evolved from a prokaryotic origin. Ribosomal RNA sequences, DNA architecture and metabolism are strikingly similar in these two entities. Proteins and nucleic acids have been a hallmark for comparison between mitochondria and prokaryotes. In this chapter, similarities (and differences) between mitochondrial and prokaryotic membranes are addressed with a focus on structure-function relationship of different lipid classes. In order to be suitable for the theme of the book, a special emphasis is reserved to the effects of bioactive sphingolipids, mainly ceramide, on mitochondrial membranes and their roles in initiating programmed cell death.
Collapse
|
14
|
|
15
|
Havig JR, Hamilton TL. Productivity and Community Composition of Low Biomass/High Silica Precipitation Hot Springs: A Possible Window to Earth's Early Biosphere? Life (Basel) 2019; 9:E64. [PMID: 31362401 PMCID: PMC6789502 DOI: 10.3390/life9030064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 07/24/2019] [Indexed: 01/14/2023] Open
Abstract
Terrestrial hot springs have provided a niche space for microbial communities throughout much of Earth's history, and evidence for hydrothermal deposits on the Martian surface suggest this could have also been the case for the red planet. Prior to the evolution of photosynthesis, life in hot springs on early Earth would have been supported though chemoautotrophy. Today, hot spring geochemical and physical parameters can preclude the occurrence of oxygenic phototrophs, providing an opportunity to characterize the geochemical and microbial components. In the absence of the photo-oxidation of water, chemoautotrophy in these hot springs (and throughout Earth's history) relies on the delivery of exogenous electron acceptors and donors such as H2, H2S, and Fe2+. Thus, systems fueled by chemoautotrophy are likely energy substrate-limited and support low biomass communities compared to those where oxygenic phototrophs are prevalent. Low biomass silica-precipitating systems have implications for preservation, especially over geologic time. Here, we examine and compare the productivity and composition of low biomass chemoautotrophic versus photoautotrophic communities in silica-saturated hot springs. Our results indicate low biomass chemoautotrophic microbial communities in Yellowstone National Park are supported primarily by sulfur redox reactions and, while similar in total biomass, show higher diversity in anoxygenic phototrophic communities compared to chemoautotrophs. Our data suggest productivity in Archean terrestrial hot springs may be directly linked to redox substrate availability, and there may be high potential for geochemical and physical biosignature preservation from these communities.
Collapse
Affiliation(s)
- Jeff R Havig
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
16
|
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front Microbiol 2019; 10:780. [PMID: 31037068 PMCID: PMC6476344 DOI: 10.3389/fmicb.2019.00780] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/27/2019] [Indexed: 01/21/2023] Open
Abstract
Prokaryotic life has dominated most of the evolutionary history of our planet, evolving to occupy virtually all available environmental niches. Extremophiles, especially those thriving under multiple extremes, represent a key area of research for multiple disciplines, spanning from the study of adaptations to harsh conditions, to the biogeochemical cycling of elements. Extremophile research also has implications for origin of life studies and the search for life on other planetary and celestial bodies. In this article, we will review the current state of knowledge for the biospace in which life operates on Earth and will discuss it in a planetary context, highlighting knowledge gaps and areas of opportunity.
Collapse
Affiliation(s)
- Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, United States
| | - Heidi S Aronson
- Department of Biology, University of Southern California, Los Angeles, CA, United States
| | - Diana P Bojanova
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jayme Feyhl-Buska
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michael L Wong
- Department of Astronomy - Astrobiology Program, University of Washington, Seattle, WA, United States.,NASA Astrobiology Institute's Virtual Planetary Laboratory, University of Washington, Seattle, WA, United States
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, United States
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Biology, University of Naples "Federico II", Naples, Italy.,Department of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Institute for Biological Resources and Marine Biotechnology, National Research Council of Italy, Ancona, Italy
| |
Collapse
|
17
|
Stewart LC, Houghton K, Carere CR, Power JF, Chambefort I, Stott MB. Interaction between ferruginous clay sediment and an iron-reducing hyperthermophilic Pyrobaculum sp. in a terrestrial hot spring. FEMS Microbiol Ecol 2018; 94:5074396. [DOI: 10.1093/femsec/fiy160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/12/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Lucy C Stewart
- Marine Geoscience, GNS Science, 1 Fairway Dr, Lower Hutt 5010, New Zealand
| | - Karen Houghton
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Science, University of Waikato, 21 Ruakura Rd, Hamilton 3240, New Zealand
| | - Carlo R Carere
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- Department of Chemical and Process Engineering, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| | - Jean F Power
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Science, University of Waikato, 21 Ruakura Rd, Hamilton 3240, New Zealand
| | - Isabelle Chambefort
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
| | - Matthew B Stott
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| |
Collapse
|
18
|
Nishihara A, Haruta S, McGlynn SE, Thiel V, Matsuura K. Nitrogen Fixation in Thermophilic Chemosynthetic Microbial Communities Depending on Hydrogen, Sulfate, and Carbon Dioxide. Microbes Environ 2018; 33:10-18. [PMID: 29367473 PMCID: PMC5877335 DOI: 10.1264/jsme2.me17134] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
The activity of nitrogen fixation measured by acetylene reduction was examined in chemosynthetic microbial mats at 72-75°C in slightly-alkaline sulfidic hot springs in Nakabusa, Japan. Nitrogenase activity markedly varied from sampling to sampling. Nitrogenase activity did not correlate with methane production, but was detected in samples showing methane production levels less than the maximum amount, indicating a possible redox dependency of nitrogenase activity. Nitrogenase activity was not affected by 2-bromo-ethane sulfonate, an inhibitor of methanogenesis. However, it was inhibited by the addition of molybdate, an inhibitor of sulfate reduction and sulfur disproportionation, suggesting the involvement of sulfate-reducing or sulfur-disproportionating organisms. Nitrogenase activity was affected by different O2 concentrations in the gas phase, again supporting the hypothesis of a redox potential dependency, and was decreased by the dispersion of mats with a homogenizer. The loss of activity that occurred from dispersion was partially recovered by the addition of H2, sulfate, and carbon dioxide. These results suggested that the observed activity of nitrogen fixation was related to chemoautotrophic sulfate reducers, and fixation may be active in a limited range of ambient redox potential. Since thermophilic chemosynthetic communities may resemble ancient microbial communities before the appearance of photosynthesis, the present results may be useful when considering the ancient nitrogen cycle on earth.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Shawn E. McGlynn
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyOokayama, Meguro-ku, Tokyo 152–8551Japan
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource ScienceWako-shi 351–0198Japan
- Blue Marble Space Institute of ScienceSeattle, WA 98145–1561USA
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| |
Collapse
|
19
|
Ranawat P, Rawat S. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4105-4133. [PMID: 29238927 DOI: 10.1007/s11356-017-0869-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Metal-tolerant thermophiles are inhabitants of a wide range of extreme habitats like solfatara fields, hot springs, mud holes, hydrothermal vents oozing out from metal-rich ores, hypersaline pools and soil crusts enriched with metals and other elements. The ability to withstand adverse environmental conditions, like high temperature, high metal concentration and sometimes high pH in their niche, makes them an interesting subject for understanding mechanisms behind their ability to deal with multiple duress simultaneously. Metals are essential for biological systems, as they participate in biochemistries that cannot be achieved only by organic molecules. However, the excess concentration of metals can disrupt natural biogeochemical processes and can impose toxicity. Thermophiles counteract metal toxicity via their unique cell wall, metabolic factors and enzymes that carry out metal-based redox transformations, metal sequestration by metallothioneins and metallochaperones as well as metal efflux. Thermophilic metal resistance is heterogeneous at both genetic and physiology levels and may be chromosomally, plasmid or transposon encoded with one or more genes being involved. These effective response mechanisms either individually or synergistically make proliferation of thermophiles in metal-rich habitats possibly. This article presents the state of the art and future perspectives of responses of thermophiles to metals at genetic as well as physiological levels.
Collapse
Affiliation(s)
- Preeti Ranawat
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal), Uttarakhand, India
| | - Seema Rawat
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
20
|
Siliakus MF, van der Oost J, Kengen SWM. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 2017; 21:651-670. [PMID: 28508135 PMCID: PMC5487899 DOI: 10.1007/s00792-017-0939-x] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/29/2017] [Indexed: 12/30/2022]
Abstract
The cytoplasmic membrane of a prokaryotic cell consists of a lipid bilayer or a monolayer that shields the cellular content from the environment. In addition, the membrane contains proteins that are responsible for transport of proteins and metabolites as well as for signalling and energy transduction. Maintenance of the functionality of the membrane during changing environmental conditions relies on the cell's potential to rapidly adjust the lipid composition of its membrane. Despite the fundamental chemical differences between bacterial ester lipids and archaeal ether lipids, both types are functional under a wide range of environmental conditions. We here provide an overview of archaeal and bacterial strategies of changing the lipid compositions of their membranes. Some molecular adjustments are unique for archaea or bacteria, whereas others are shared between the two domains. Strikingly, shared adjustments were predominantly observed near the growth boundaries of bacteria. Here, we demonstrate that the presence of membrane spanning ether-lipids and methyl branches shows a striking relationship with the growth boundaries of archaea and bacteria.
Collapse
Affiliation(s)
- Melvin F Siliakus
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
21
|
Mardanov AV, Beletsky AV, Kadnikov VV, Slobodkin AI, Ravin NV. Genome Analysis of Thermosulfurimonas dismutans, the First Thermophilic Sulfur-Disproportionating Bacterium of the Phylum Thermodesulfobacteria. Front Microbiol 2016; 7:950. [PMID: 27379079 PMCID: PMC4911364 DOI: 10.3389/fmicb.2016.00950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/02/2016] [Indexed: 11/17/2022] Open
Abstract
Thermosulfurimonas dismutans S95T, isolated from a deep-sea hydrothermal vent is the first bacterium of the phylum Thermodesulfobacteria reported to grow by the disproportionation of elemental sulfur, sulfite, or thiosulfate with carbon dioxide as the sole carbon source. In contrast to its phylogenetically close relatives, which are dissimilatory sulfate-reducers, T. dismutans is unable to grow by sulfate respiration. The features of this organism and its 2,1 Mb draft genome sequence are described in this report. Genome analysis revealed that the T. dismutans genome contains the set of genes for dissimilatory sulfate reduction including ATP sulfurylase, the AprA and B subunits of adenosine-5′-phosphosulfate reductase, and dissimilatory sulfite reductase. The oxidation of elemental sulfur to sulfite could be enabled by APS reductase-associated electron transfer complex QmoABC and heterodisulfide reductase. The genome also contains several membrane-linked molybdopterin oxidoreductases that are thought to be involved in sulfur metabolism as subunits of thiosulfate, polysulfide, or tetrathionate reductases. Nitrate could be used as an electron acceptor and reduced to ammonium, as indicated by the presence of periplasmic nitrate and nitrite reductases. Autotrophic carbon fixation is enabled by the Wood–Ljungdahl pathway, and the complete set of genes that is required for nitrogen fixation is also present in T. dismutans. Overall, our results provide genomic insights into energy and carbon metabolism of chemolithoautotrophic sulfur-disproportionating bacterium that could be important primary producer in microbial communities of deep-sea hydrothermal vents.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Alexander I Slobodkin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
22
|
Colman DR, Feyhl-Buska J, Robinson KJ, Fecteau KM, Xu H, Shock EL, Boyd ES. Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs. FEMS Microbiol Ecol 2016; 92:fiw137. [PMID: 27306555 DOI: 10.1093/femsec/fiw137] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2016] [Indexed: 01/29/2023] Open
Abstract
Chemosynthetic sediment and planktonic community composition and sizes, aqueous geochemistry and sediment mineralogy were determined in 15 non-photosynthetic hot springs in Yellowstone National Park (YNP). These data were used to evaluate the hypothesis that differences in the availability of dissolved or mineral substrates in the bulk fluids or sediments within springs coincides with ecologically differentiated microbial communities and their populations. Planktonic and sediment-associated communities exhibited differing ecological characteristics including community sizes, evenness and richness. pH and temperature influenced microbial community composition among springs, but within-spring partitioning of taxa into sediment or planktonic communities was widespread, statistically supported (P < 0.05) and could be best explained by the inferred metabolic strategies of the partitioned taxa. Microaerophilic genera of the Aquificales predominated in many of the planktonic communities. In contrast, taxa capable of mineral-based metabolism such as S(o) oxidation/reduction or Fe-oxide reduction predominated in sediment communities. These results indicate that ecological differentiation within thermal spring habitats is common across a range of spring geochemistry and is influenced by the availability of dissolved nutrients and minerals that can be used in metabolism.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Jayme Feyhl-Buska
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Kirtland J Robinson
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Huifang Xu
- Department of Geosciences, University of Wisconsin, Madison, WI 53706, USA NASA Astrobiology Institute, Mountain View, CA 94035, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Everett L Shock
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA NASA Astrobiology Institute, Mountain View, CA 94035, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA NASA Astrobiology Institute, Mountain View, CA 94035, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
23
|
Fortney NW, He S, Converse BJ, Beard BL, Johnson CM, Boyd ES, Roden EE. Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park. GEOBIOLOGY 2016; 14:255-275. [PMID: 26750514 DOI: 10.1111/gbi.12173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
Chocolate Pots hot springs (CP) is a unique, circumneutral pH, iron-rich, geothermal feature in Yellowstone National Park. Prior research at CP has focused on photosynthetically driven Fe(II) oxidation as a model for mineralization of microbial mats and deposition of Archean banded iron formations. However, geochemical and stable Fe isotopic data have suggested that dissimilatory microbial iron reduction (DIR) may be active within CP deposits. In this study, the potential for microbial reduction of native CP Fe(III) oxides was investigated, using a combination of cultivation dependent and independent approaches, to assess the potential involvement of DIR in Fe redox cycling and associated stable Fe isotope fractionation in the CP hot springs. Endogenous microbial communities were able to reduce native CP Fe(III) oxides, as documented by most probable number enumerations and enrichment culture studies. Enrichment cultures demonstrated sustained DIR driven by oxidation of acetate, lactate, and H2 . Inhibitor studies and molecular analyses indicate that sulfate reduction did not contribute to observed rates of DIR in the enrichment cultures through abiotic reaction pathways. Enrichment cultures produced isotopically light Fe(II) during DIR relative to the bulk solid-phase Fe(III) oxides. Pyrosequencing of 16S rRNA genes from enrichment cultures showed dominant sequences closely affiliated with Geobacter metallireducens, a mesophilic Fe(III) oxide reducer. Shotgun metagenomic analysis of enrichment cultures confirmed the presence of a dominant G. metallireducens-like population and other less dominant populations from the phylum Ignavibacteriae, which appear to be capable of DIR. Gene (protein) searches revealed the presence of heat-shock proteins that may be involved in increased thermotolerance in the organisms present in the enrichments as well as porin-cytochrome complexes previously shown to be involved in extracellular electron transport. This analysis offers the first detailed insight into how DIR may impact the Fe geochemistry and isotope composition of a Fe-rich, circumneutral pH geothermal environment.
Collapse
Affiliation(s)
- N W Fortney
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - S He
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - B J Converse
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - B L Beard
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - C M Johnson
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - E S Boyd
- Department of Microbiology and Immunology, NASA Astrobiology Institute, Montana State University, Bozeman, MT, USA
| | - E E Roden
- Department of Geoscience, NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
24
|
Kojima H, Umezawa K, Fukui M. Caldimicrobium thiodismutans sp. nov., a sulfur-disproportionating bacterium isolated from a hot spring, and emended description of the genus Caldimicrobium. Int J Syst Evol Microbiol 2016; 66:1828-1831. [PMID: 26842785 DOI: 10.1099/ijsem.0.000947] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A novel autotrophic, thermophilic bacterium, strain TF1T, was isolated from a hot spring in Japan. Cells of strain TF1T were motile, Gram-stain-negative, rod-shaped, 1.0-2.0 μm in length and 0.5-0.6 μm in width. Major components in the cellular fatty acid profile were C16:0, C18:0 and anteiso-C17:0. The temperature range for growth was 40-77 °C, and optimum temperature was 75 °C. The pH range for growth was 5.9-9.5, and the optimum pH was 7.5-8.8. Strain TF1T grew chemolithoautotrophically by disproportionation of sulfur, thiosulfate and sulfite. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs to the family Thermodesulfobacteriaceae. The closest cultivated relative was Caldimicrobium rimae DST, with highest 16S rRNA gene sequence similarity of 96%. The genome of strain TF1T consists of one circular chromosome, with a size of 1.8 Mbp and G+C content of 38.30 mol%. On the basis of its phylogenetic and phenotypic properties, strain TF1T (=DSM 29380T=NBRC 110713T) is proposed as the type strain of a novel species, Caldimicrobium thiodismutans sp. nov.
Collapse
Affiliation(s)
- Hisaya Kojima
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Kazuhiro Umezawa
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Manabu Fukui
- The Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
25
|
Iron management and production of electricity by microorganisms. Appl Microbiol Biotechnol 2015; 99:8329-36. [DOI: 10.1007/s00253-015-6897-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|
26
|
Vishnivetskaya TA, Hamilton-Brehm SD, Podar M, Mosher JJ, Palumbo AV, Phelps TJ, Keller M, Elkins JG. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park. MICROBIAL ECOLOGY 2015; 69:333-345. [PMID: 25319238 DOI: 10.1007/s00248-014-0500-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this study, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55-85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.
Collapse
Affiliation(s)
- Tatiana A Vishnivetskaya
- BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat Rev Microbiol 2014; 12:797-808. [DOI: 10.1038/nrmicro3347] [Citation(s) in RCA: 503] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Extracellular electron transfer to Fe(III) oxides by the hyperthermophilic archaeon Geoglobus ahangari via a direct contact mechanism. Appl Environ Microbiol 2013; 79:4694-700. [PMID: 23728807 DOI: 10.1128/aem.01566-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbial reduction of Fe(III) plays an important role in the geochemistry of hydrothermal systems, yet it is poorly understood at the mechanistic level. Here we show that the obligate Fe(III)-reducing archaeon Geoglobus ahangari uses a direct-contact mechanism for the reduction of Fe(III) oxides to magnetite at 85°C. Alleviating the need to directly contact the mineral with the addition of a chelator or the electron shuttle anthraquinone-2,6-disulfonate (AQDS) stimulated Fe(III) reduction. In contrast, entrapment of the oxides within alginate beads to prevent cell contact with the electron acceptor prevented Fe(III) reduction and cell growth unless AQDS was provided. Furthermore, filtered culture supernatant fluids had no effect on Fe(III) reduction, ruling out the secretion of an endogenous mediator too large to permeate the alginate beads. Consistent with a direct contact mechanism, electron micrographs showed cells in intimate association with the Fe(III) mineral particles, which once dissolved revealed abundant curled appendages. The cells also produced several heme-containing proteins. Some of them were detected among proteins sheared from the cell's outer surface and were required for the reduction of insoluble Fe(III) oxides but not for the reduction of the soluble electron acceptor Fe(III) citrate. The results thus support a mechanism in which the cells directly attach and transfer electrons to the Fe(III) oxides using redox-active proteins exposed on the cell surface. This strategy confers on G. ahangari a competitive advantage for accessing and reducing Fe(III) oxides under the extreme physical and chemical conditions of hot ecosystems.
Collapse
|
29
|
Kawaichi S, Ito N, Kamikawa R, Sugawara T, Yoshida T, Sako Y. Ardenticatena maritima gen. nov., sp. nov., a ferric iron- and nitrate-reducing bacterium of the phylum 'Chloroflexi' isolated from an iron-rich coastal hydrothermal field, and description of Ardenticatenia classis nov. Int J Syst Evol Microbiol 2013; 63:2992-3002. [PMID: 23378114 DOI: 10.1099/ijs.0.046532-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel thermophilic, chemoheterotrophic, Gram-negative-staining, multicellular filamentous bacterium, designated strain 110S(T), was isolated from an iron-rich coastal hydrothermal field in Japan. The isolate is facultatively aerobic and chemoheterotrophic. Phylogenetic analysis using 16S rRNA gene sequences nested strain 110S(T) in a novel class-level clone cluster of the phylum 'Chloroflexi'. The isolate grows by dissimilatory iron- and nitrate-reduction under anaerobic conditions, which is the first report of these abilities in the phylum 'Chloroflexi'. The organism is capable of growth with oxygen, ferric iron and nitrate as a possible electron acceptor, has a wide range of growth temperatures, and tolerates higher NaCl concentrations for growth compared to the other isolates in the phylum. Using phenotypic and phylogenetic data, strain 110S(T) (= JCM 17282(T) = NBRC 107679(T) = DSM 23922(T) = KCTC 23289(T) = ATCC BAA-2145(T)) is proposed as the type strain of a novel species in a new genus, Ardenticatena maritima gen. nov., sp. nov. In addition, as strain 110S(T) apparently constitutes a new class of the phylum 'Chloroflexi' with other related uncultivated clone sequences, we propose Ardenticatenia classis nov. and the subordinate taxa Ardenticatenales ord. nov. and Ardenticatenaceae fam. nov.
Collapse
Affiliation(s)
- Satoshi Kawaichi
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Norihiro Ito
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ryoma Kamikawa
- Laboratory of Molecular Evolution of Microbes, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tatsuya Sugawara
- Laboratory of Marine Bioproducts Technology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
30
|
Hamilton-Brehm SD, Gibson RA, Green SJ, Hopmans EC, Schouten S, van der Meer MTJ, Shields JP, Damsté JSS, Elkins JG. Thermodesulfobacterium geofontis sp. nov., a hyperthermophilic, sulfate-reducing bacterium isolated from Obsidian Pool, Yellowstone National Park. Extremophiles 2013; 17:251-63. [DOI: 10.1007/s00792-013-0512-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
|
31
|
Polyextremophiles and the Constraints for Terrestrial Habitability. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Macur RE, Jay ZJ, Taylor WP, Kozubal MA, Kocar BD, Inskeep WP. Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park. GEOBIOLOGY 2013; 11:86-99. [PMID: 23231658 DOI: 10.1111/gbi.12015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 10/08/2012] [Indexed: 06/01/2023]
Abstract
Geothermal and hydrothermal waters often contain high concentrations of dissolved sulfide, which reacts with oxygen (abiotically or biotically) to yield elemental sulfur and other sulfur species that may support microbial metabolism. The primary goal of this study was to elucidate predominant biogeochemical processes important in sulfur biogeochemistry by identifying predominant sulfur species and describing microbial community structure within high-temperature, hypoxic, sulfur sediments ranging in pH from 4.2 to 6.1. Detailed analysis of aqueous species and solid phases present in hypoxic sulfur sediments revealed unique habitats containing high concentrations of dissolved sulfide, thiosulfate, and arsenite, as well as rhombohedral and spherical elemental sulfur and/or sulfide phases such as orpiment, stibnite, and pyrite, as well as alunite and quartz. Results from 16S rRNA gene sequencing show that these sediments are dominated by Crenarchaeota of the orders Desulfurococcales and Thermoproteales. Numerous cultivated representatives of these lineages, as well as the Thermoproteales strain (WP30) isolated in this study, require complex sources of carbon and respire elemental sulfur. We describe a new archaeal isolate (strain WP30) belonging to the order Thermoproteales (phylum Crenarchaeota, 98% identity to Pyrobaculum/Thermoproteus spp. 16S rRNA genes), which was obtained from sulfur sediments using in situ geochemical composition to design cultivation medium. This isolate produces sulfide during growth, which further promotes the formation of sulfide phases including orpiment, stibnite, or pyrite, depending on solution conditions. Geochemical, molecular, and physiological data were integrated to suggest primary factors controlling microbial community structure and function in high-temperature sulfur sediments.
Collapse
Affiliation(s)
- R E Macur
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | | | | | | | | | | |
Collapse
|
33
|
Meyer-Dombard DR, Shock EL, Amend JP. Effects of trace element concentrations on culturing thermophiles. Extremophiles 2012; 16:317-31. [PMID: 22311159 DOI: 10.1007/s00792-012-0432-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
Abstract
The majority of microorganisms in natural environments resist laboratory cultivation. Sometimes referred to as 'unculturable', many phylogenetic groups are known only by fragments of recovered DNA. As a result, the ecological significance of whole branches of the 'tree of life' remains a mystery; this is particularly true when regarding genetic material retrieved from extreme environments. Geochemically relevant media have been used to improve the success of culturing Archaea and Bacteria, but these efforts have focused primarily on optimizing pH, alkalinity, major ions, carbon sources, and electron acceptor-donor pairs. Here, we cultured thermophilic microorganisms from 'Sylvan Spring' (Yellowstone National Park, USA) on media employing different trace element solutions, including one that mimicked the source fluid of the inocula. The growth medium that best simulated trace elements found in 'Sylvan Spring' produced a more diverse and faster growing mixed culture than media containing highly elevated trace element concentrations. The elevated trace element medium produced fewer phylotypes and inhibited growth. Trace element concentrations appear to influence growth conditions in extreme environments. Incorporating geochemical data into cultivation attempts may improve culturing success.
Collapse
Affiliation(s)
- D R Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | | | |
Collapse
|
34
|
Slobodkin AI, Reysenbach AL, Slobodkina GB, Baslerov RV, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA. Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2011; 62:2565-2571. [PMID: 22199218 DOI: 10.1099/ijs.0.034397-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An extremely thermophilic, anaerobic, chemolithoautotrophic bacterium (strain S95(T)) was isolated from a deep-sea hydrothermal vent chimney located on the Eastern Lau Spreading Center, Pacific Ocean, at a depth of 1910 m. Cells of strain S95(T) were oval to short Gram-negative rods, 0.5-0.6 µm in diameter and 1.0-1.5 µm in length, growing singly or in pairs. Cells were motile with a single polar flagellum. The temperature range for growth was 50-92 °C, with an optimum at 74 °C. The pH range for growth was 5.5-8.0, with an optimum at pH 7.0. Growth of strain S95(T) was observed at NaCl concentrations ranging from 1.5 to 3.5% (w/v). Strain S95(T) grew anaerobically with elemental sulfur as an energy source and bicarbonate/CO(2) as a carbon source. Elemental sulfur was disproportionated to sulfide and sulfate. Growth was enhanced in the presence of poorly crystalline iron(III) oxide (ferrihydrite) as a sulfide-scavenging agent. Strain S95(T) was also able to grow by disproportionation of thiosulfate and sulfite. Sulfate was not used as an electron acceptor. Analysis of the 16S rRNA gene sequence revealed that the isolate belongs to the phylum Thermodesulfobacteria. On the basis of its physiological properties and results of phylogenetic analyses, it is proposed that the isolate represents the sole species of a new genus, Thermosulfurimonas dismutans gen. nov., sp. nov.; S95(T) (=DSM 24515(T)=VKM B-2683(T)) is the type strain of the type species. This is the first description of a thermophilic micro-organism that disproportionates elemental sulfur.
Collapse
Affiliation(s)
- A I Slobodkin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312 Moscow, Russia
| | - A-L Reysenbach
- Department of Biology and Center for Life in Extreme Environments, Portland State University, PO Box 751, Portland, OR 97207-0751, USA
| | - G B Slobodkina
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312 Moscow, Russia
| | - R V Baslerov
- Bioengineering Center, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/1, 117312 Moscow, Russia
| | - N A Kostrikina
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312 Moscow, Russia
| | - I D Wagner
- Department of Biology and Center for Life in Extreme Environments, Portland State University, PO Box 751, Portland, OR 97207-0751, USA
| | - E A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-letiya Oktyabrya 7/2, 117312 Moscow, Russia
| |
Collapse
|
35
|
Peacock AD, Hedrick DB, Long PE, Nevin KP, Resch CT, Lovley DR, White DC. Field-scale uranium (VI) bioimmobilization monitored by lipid biomarkers and 13C-acetate incorporation. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/rem.20301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Akerman NH, Price RE, Pichler T, Amend JP. Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system. GEOBIOLOGY 2011; 9:436-445. [PMID: 21884364 DOI: 10.1111/j.1472-4669.2011.00291.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The hydrothermally influenced sediments of Tutum Bay, Ambitle Island, Papua New Guinea, are ideal for investigating the chemolithotrophic activities of micro-organisms involved in arsenic cycling because hydrothermal vents there expel fluids with arsenite (As(III)) concentrations as high as 950 μg L(-1) . These hot (99 °C), slightly acidic (pH ~6), chemically reduced, shallow-sea vent fluids mix with colder, oxidized seawater to create steep gradients in temperature, pH, and concentrations of As, N, Fe, and S redox species. Near the vents, iron oxyhydroxides precipitate with up to 6.2 wt% arsenate (As(V)). Here, chemical analyses of sediment porewaters from 10 sites along a 300-m transect were combined with standard Gibbs energies to evaluate the energy yields (-ΔG(r)) from 19 potential chemolithotrophic metabolisms, including As(V) reduction, As(III) oxidation, Fe(III) reduction, and Fe(II) oxidation reactions. The 19 reactions yielded 2-94 kJ mol(-1) e(-) , with aerobic oxidation of sulphide and arsenite the two most exergonic reactions. Although anaerobic As(V) reduction and Fe(III) reduction were among the least exergonic reactions investigated, they are still potential net metabolisms. Gibbs energies of the arsenic redox reactions generally correlate linearly with pH, increasing with increasing pH for As(III) oxidation and decreasing with increasing pH for As(V) reduction. The calculated exergonic energy yields suggest that micro-organisms could exploit diverse energy sources in Tutum Bay, and examples of micro-organisms known to use these chemolithotrophic metabolic strategies are discussed. Energy modeling of redox reactions can help target sampling sites for future microbial collection and cultivation studies.
Collapse
Affiliation(s)
- N H Akerman
- Department of Earth and Planetary Sciences, Washington University, St Louis, Missouri, USA.
| | | | | | | |
Collapse
|
37
|
Yang T, Lyons S, Aguilar C, Cuhel R, Teske A. Microbial communities and chemosynthesis in yellowstone lake sublacustrine hydrothermal vent waters. Front Microbiol 2011; 2:130. [PMID: 21716640 PMCID: PMC3116135 DOI: 10.3389/fmicb.2011.00130] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/26/2011] [Indexed: 11/13/2022] Open
Abstract
Five sublacustrine thermal spring locations from 1 to 109 m water depth in Yellowstone Lake were surveyed by 16S ribosomal RNA gene sequencing in relation to their chemical composition and dark CO(2) fixation rates. They harbor distinct chemosynthetic bacterial communities, depending on temperature (16-110°C) and electron donor supply (H(2)S <1 to >100 μM; NH(3) <0.5 to >10 μM). Members of the Aquificales, most closely affiliated with the genus Sulfurihydrogenibium, are the most frequently recovered bacterial 16S rRNA gene phylotypes in the hottest samples; the detection of these thermophilic sulfur-oxidizing autotrophs coincided with maximal dark CO(2) fixation rates reaching near 9 μM C h(-1) at temperatures of 50-60°C. Vents at lower temperatures yielded mostly phylotypes related to the mesophilic gammaproteobacterial sulfur oxidizer Thiovirga. In contrast, cool vent water with low chemosynthetic activity yielded predominantly phylotypes related to freshwater Actinobacterial clusters with a cosmopolitan distribution.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
38
|
Zhang Y, Arends JBA, Van de Wiele T, Boon N. Bioreactor technology in marine microbiology: from design to future application. Biotechnol Adv 2011; 29:312-21. [PMID: 21251973 DOI: 10.1016/j.biotechadv.2011.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/02/2010] [Accepted: 01/09/2011] [Indexed: 11/19/2022]
Abstract
Marine micro-organisms have been playing highly diverse roles over evolutionary time: they have defined the chemistry of the oceans and atmosphere. During the last decades, the bioreactors with novel designs have become an important tool to study marine microbiology and ecology in terms of: marine microorganism cultivation and deep-sea bioprocess characterization; unique bio-chemical product formation and intensification; marine waste treatment and clean energy generation. In this review we briefly summarize the current status of the bioreactor technology applied in marine microbiology and the critical parameters to take into account during the reactor design. Furthermore, when we look at the growing population, as well as, the pollution in the coastal areas of the world, it is urgent to find sustainable practices that beneficially stimulate both the economy and the natural environment. Here we outlook a few possibilities where innovative bioreactor technology can be applied to enhance energy generation and food production without harming the local marine ecosystem.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | |
Collapse
|
39
|
|
40
|
Vick TJ, Dodsworth JA, Costa KC, Shock EL, Hedlund BP. Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. GEOBIOLOGY 2010; 8:140-154. [PMID: 20002204 DOI: 10.1111/j.1472-4669.2009.00228.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A culture-independent community census was combined with chemical and thermodynamic analyses of three springs located within the Long Valley Caldera, Little Hot Creek (LHC) 1, 3, and 4. All three springs were approximately 80 degrees C, circumneutral, apparently anaerobic and had similar water chemistries. 16S rRNA gene libraries constructed from DNA isolated from spring sediment revealed moderately diverse but highly novel microbial communities. Over half of the phylotypes could not be grouped into known taxonomic classes. Bacterial libraries from LHC1 and LHC3 were predominantly species within the phyla Aquificae and Thermodesulfobacteria, while those from LHC4 were dominated by candidate phyla, including OP1 and OP9. Archaeal libraries from LHC3 contained large numbers of Archaeoglobales and Desulfurococcales, while LHC1 and LHC4 were dominated by Crenarchaeota unaffiliated with known orders. The heterogeneity in microbial populations could not easily be attributed to measurable differences in water chemistry, but may be determined by availability of trace amounts of oxygen to the spring sediments. Thermodynamic modeling predicted the most favorable reactions to be sulfur and nitrate respirations, yielding 40-70 kJ mol(-1) e(-) transferred; however, levels of oxygen at or below our detection limit could result in aerobic respirations yielding up to 100 kJ mol(-1) e(-) transferred. Important electron donors are predicted to be H(2), H(2)S, S(0), Fe(2+) and CH(4), all of which yield similar energies when coupled to a given electron acceptor. The results indicate that springs associated with the Long Valley Caldera contain microbial populations that show some similarities both to springs in Yellowstone and springs in the Great Basin.
Collapse
Affiliation(s)
- T J Vick
- University of Nevada, Las Vegas, USA
| | | | | | | | | |
Collapse
|
41
|
Steinsbu BO, Thorseth IH, Nakagawa S, Inagaki F, Lever MA, Engelen B, Øvreås L, Pedersen RB. Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. Int J Syst Evol Microbiol 2010; 60:2745-2752. [PMID: 20061497 DOI: 10.1099/ijs.0.016105-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel thermophilic and lithoautotrophic sulfate-reducing archaeon was isolated from black rust formed on the steel surface of a borehole observatory (CORK 1026B) retrieved during IODP Expedition 301 on the eastern flank of Juan de Fuca Ridge, eastern Pacific Ocean. Cells of the strain were lobe-shaped or triangular. The optimum temperature, pH and NaCl concentration for growth were 75°C, pH 7 and 2 % (w/v), respectively. The isolate was strictly anaerobic, growing lithoautotrophically on H(2) and CO(2) using sulfate, sulfite or thiosulfate as electron acceptors. Lactate and pyruvate could serve as alternative energy and carbon sources. The G+C content of the genomic DNA was 42 mol%. Phylogenetic analyses of the 16S rRNA gene indicated that the isolate was closely related to members of the family Archaeoglobaceae, with sequence similarities of 90.3-94.4 %. Physiological and molecular properties showed that the isolate represents a novel species of the genus Archaeoglobus. The name Archaeoglobus sulfaticallidus sp. nov. is proposed; the type strain is PM70-1(T) (=DSM 19444(T)=JCM 14716(T)).
Collapse
Affiliation(s)
- Bjørn O Steinsbu
- Department of Earth Science, University of Bergen, Allégaten 41, N-5007 Bergen, Norway.,Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Ingunn H Thorseth
- Department of Earth Science, University of Bergen, Allégaten 41, N-5007 Bergen, Norway.,Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Satoshi Nakagawa
- Subground Animalcule Retrieval (SUGAR) Program, Extremobiosphere Research Center (XBR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Fumio Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783-8502, Japan
| | - Mark A Lever
- Department of Marine Sciences, University of North Carolina at Chapel Hill, 12-7 Venable Hall CB #3300, Chapel Hill, North Carolina 27599, USA
| | - Bert Engelen
- Institut für Chemie und Biologie Des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, D-26111 Oldenburg, Germany
| | - Lise Øvreås
- Department of Biology, University of Bergen, Jahnebakken 5, N-5007 Bergen, Norway.,Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Rolf B Pedersen
- Department of Earth Science, University of Bergen, Allégaten 41, N-5007 Bergen, Norway.,Centre for Geobiology, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
42
|
Synchrotron Infrared Spectromicroscopy for Studying Chemistry of Microbial Activity in Geologic Materials. SYNCHROTRON-BASED TECHNIQUES IN SOILS AND SEDIMENTS 2010. [DOI: 10.1016/s0166-2481(10)34004-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Teske A. Grand challenges in extreme microbiology. Front Microbiol 2010; 1:111. [PMID: 21687725 PMCID: PMC3109857 DOI: 10.3389/fmicb.2010.00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/07/2010] [Indexed: 11/13/2022] Open
|
44
|
Kimura H, Mori K, Nashimoto H, Hattori S, Yamada K, Koba K, Yoshida N, Kato K. Biomass production and energy source of thermophiles in a Japanese alkaline geothermal pool. Environ Microbiol 2009; 12:480-9. [PMID: 19878264 DOI: 10.1111/j.1462-2920.2009.02089.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microbial biomass production has been measured to investigate the contribution of planktonic bacteria to fluxations in dissolved organic matter in marine and freshwater environments, but little is known about biomass production of thermophiles inhabiting geothermal and hydrothermal regions. The biomass production of thermophiles inhabiting an 85 degrees C geothermal pool was measured by in situ cultivation using diffusion chambers. The thermophiles' growth rates ranged from 0.43 to 0.82 day(-1), similar to those of planktonic bacteria in marine and freshwater habitats. Biomass production was estimated based on cellular carbon content measured directly from the thermophiles inhabiting the geothermal pool, which ranged from 5.0 to 6.1 microg C l(-1) h(-1). This production was 2-75 times higher than that of planktonic bacteria in other habitats, because the cellular carbon content of the thermophiles was much higher. Quantitative PCR and phylogenetic analysis targeting 16S rRNA genes revealed that thermophilic H2-oxidizing bacteria closely related to Calderobacterium and Geothermobacterium were dominant in the geothermal pool. Chemical analysis showed the presence of H2 in gases bubbling from the bottom of the geothermal pool. These results strongly suggested that H2 plays an important role as a primary energy source of thermophiles in the geothermal pool.
Collapse
Affiliation(s)
- Hiroyuki Kimura
- Department of Geosciences, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Alain K, Postec A, Grinsard E, Lesongeur F, Prieur D, Godfroy A. Thermodesulfatator atlanticus sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 2009; 60:33-38. [PMID: 19648352 DOI: 10.1099/ijs.0.009449-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, strictly anaerobic, thermophilic, sulfate-reducing bacterium, designated strain AT1325(T), was isolated from a deep-sea hydrothermal vent at the Rainbow site on the Mid-Atlantic Ridge. This strain was subjected to a polyphasic taxonomic analysis. Cells were Gram-negative motile rods (approximately 2.4 x 0.6 microm) with a single polar flagellum. Strain AT1325(T) grew at 55-75 degrees C (optimum, 65-70 degrees C), at pH 5.5-8.0 (optimum, 6.5-7.5) and in the presence of 1.5-4.5 % (w/v) NaCl (optimum, 2.5 %). Cells grew chemolithoautotrophically with H2 as an energy source and SO4(2-) as an electron acceptor. Alternatively, the novel isolate was able to use methylamine, peptone or yeast extract as carbon sources. The dominant fatty acids (>5 % of the total) were C(16 : 0), C(18 : 1)omega7c, C(18 : 0) and C(19 : 0) cyclo omega8c. The G+C content of the genomic DNA of strain AT1325(T) was 45.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences placed strain AT1325(T) within the family Thermodesulfobacteriaceae, in the bacterial domain. Comparative 16S rRNA gene sequence analysis indicated that strain AT1325(T) belonged to the genus Thermodesulfatator, sharing 97.8 % similarity with the type strain of Thermodesulfatator indicus, the unique representative species of this genus. On the basis of the data presented, it is suggested that strain AT1325(T) represents a novel species of the genus Thermodesulfatator, for which the name Thermodesulfatator atlanticus sp. nov. is proposed. The type strain is AT1325(T) (=DSM 21156(T)=JCM 15391(T)).
Collapse
Affiliation(s)
- Karine Alain
- UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, IUEM, Technopôle Brest-Iroise, F-29280 Plouzané, France
| | - Anne Postec
- UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, IUEM, Technopôle Brest-Iroise, F-29280 Plouzané, France
| | - Elodie Grinsard
- UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, IUEM, Technopôle Brest-Iroise, F-29280 Plouzané, France
| | - Françoise Lesongeur
- UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, IUEM, Technopôle Brest-Iroise, F-29280 Plouzané, France
| | - Daniel Prieur
- UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, IUEM, Technopôle Brest-Iroise, F-29280 Plouzané, France
| | - Anne Godfroy
- UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, IUEM, Technopôle Brest-Iroise, F-29280 Plouzané, France
| |
Collapse
|
46
|
Greene AC, Patel BKC, Yacob S. Geoalkalibacter subterraneus sp. nov., an anaerobic Fe(III)- and Mn(IV)-reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter. Int J Syst Evol Microbiol 2009; 59:781-5. [PMID: 19329606 DOI: 10.1099/ijs.0.001537-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic Fe(III)-reducing bacterium, designated strain Red1(T), was isolated from the production water of the Redwash oilfield, USA. The cells were motile rods (1-5x0.5-0.6 microm) that stained Gram-negative and possessed polar flagella. Strain Red1(T) obtained energy from the reduction of Fe(III), Mn(IV), nitrate, elemental sulfur and trimethylamine N-oxide in the presence of a wide range of electron donors, including a variety of organic acids, alcohols, biological extracts and hydrogen. Strain Red1(T) was incapable of fermentative growth. The novel isolate grew optimally at 40 degrees C (temperature range for growth, 30-50 degrees C) and at pH 7 (pH range, 6-9) with 2 % (w/v) NaCl (NaCl range, 0.1-10 %, w/v). The DNA G+C content was 52.5 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Red1(T) was a member of the order Desulfuromonadales within the class Deltaproteobacteria and most closely related to Geoalkalibacter ferrihydriticus Z-0531(T) (95.8 %), Desulfuromonas palmitatis SDBY1(T) (92.5 %) and 'Desulfuromonas michiganensis' BB1 (92.4 %). On the basis of phenotypic and phylogenetic differences, the novel strain is proposed to represent a novel species, Geoalkalibacter subterraneus sp. nov. (type strain Red1(T)=JCM 15104(T)=KCTC 5626(T)).
Collapse
Affiliation(s)
- Anthony C Greene
- School of Biomolecular and Physical Sciences, Griffith University, Brisbane, Queensland 4111, Australia.
| | | | | |
Collapse
|
47
|
Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Tourova TP, Kolganova TV, Spring S, Bonch-Osmolovskaya EA. Caldimicrobium rimae gen. nov., sp. nov., an extremely thermophilic, facultatively lithoautotrophic, anaerobic bacterium from the Uzon Caldera, Kamchatka. Int J Syst Evol Microbiol 2009; 59:1040-4. [DOI: 10.1099/ijs.0.006072-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Abstract
Although the ability of some microorganisms to grow without O(2) has long been recognized, the application of new methodologies has greatly expanded the known diversity and potential of anaerobic microorganisms and processes. In particular, anaerobic techniques that permit the successful cultivation of microorganisms on solid media have opened new avenues for the study of the physiology and metabolic potential of many new microorganisms using molecular, genomic, and proteomic tools. One technique above all has proven instrumental for anaerobic studies over the years: the use of the anaerobic chamber. This unit gives a brief description of the methods used for the cultivation of anaerobic microorganisms, and describes in detail the principles and applications of anaerobic chambers, with special emphasis on vinyl glove boxes. The methodologies described in this unit should provide the interested but inexperienced investigator with the basic tools to successfully cultivate anaerobic microorganisms and study anaerobic processes.
Collapse
|
49
|
Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP. Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 2009; 13:447-59. [PMID: 19247786 DOI: 10.1007/s00792-009-0230-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 02/04/2009] [Indexed: 11/24/2022]
Abstract
A coordinated study of water chemistry, sediment mineralogy, and sediment microbial community was conducted on four >73 degrees C springs in the northwestern Great Basin. Despite generally similar chemistry and mineralogy, springs with short residence time (approximately 5-20 min) were rich in reduced chemistry, whereas springs with long residence time (>1 day) accumulated oxygen and oxidized nitrogen species. The presence of oxygen suggested that aerobic metabolisms prevail in the water and surface sediment. However, Gibbs free energy calculations using empirical chemistry data suggested that several inorganic electron donors were similarly favorable. Analysis of 298 bacterial 16S rDNAs identified 36 species-level phylotypes, 14 of which failed to affiliate with cultivated phyla. Highly represented phylotypes included Thermus, Thermotoga, a member of candidate phylum OP1, and two deeply branching Chloroflexi. The 276 archaeal 16S rDNAs represented 28 phylotypes, most of which were Crenarchaeota unrelated to the Thermoprotei. The most abundant archaeal phylotype was closely related to "Candidatus Nitrosocaldus yellowstonii", suggesting a role for ammonia oxidation in primary production; however, few other phylotypes could be linked with energy calculations because phylotypes were either related to chemoorganotrophs or were unrelated to known organisms.
Collapse
Affiliation(s)
- Kyle C Costa
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | | | | | | | | | | |
Collapse
|
50
|
Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production. Appl Environ Microbiol 2008; 74:4277-84. [PMID: 18515480 DOI: 10.1128/aem.02901-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Pelobacter species are closely related to Geobacter species, recent studies suggested that Pelobacter carbinolicus may reduce Fe(III) via a different mechanism because it lacks the outer-surface c-type cytochromes that are required for Fe(III) reduction by Geobacter sulfurreducens. Investigation into the mechanisms for Fe(III) reduction demonstrated that P. carbinolicus had growth yields on both soluble and insoluble Fe(III) consistent with those of other Fe(III)-reducing bacteria. Comparison of whole-genome transcript levels during growth on Fe(III) versus fermentative growth demonstrated that the greatest apparent change in gene expression was an increase in transcript levels for four contiguous genes. These genes encode two putative periplasmic thioredoxins; a putative outer-membrane transport protein; and a putative NAD(FAD)-dependent dehydrogenase with homology to disulfide oxidoreductases in the N terminus, rhodanese (sulfurtransferase) in the center, and uncharacterized conserved proteins in the C terminus. Unlike G. sulfurreducens, transcript levels for cytochrome genes did not increase in P. carbinolicus during growth on Fe(III). P. carbinolicus could use sulfate as the sole source of sulfur during fermentative growth, but required elemental sulfur or sulfide for growth on Fe(III). The increased expression of genes potentially involved in sulfur reduction, coupled with the requirement for sulfur or sulfide during growth on Fe(III), suggests that P. carbinolicus reduces Fe(III) via an indirect mechanism in which (i) elemental sulfur is reduced to sulfide and (ii) the sulfide reduces Fe(III) with the regeneration of elemental sulfur. This contrasts with the direct reduction of Fe(III) that has been proposed for Geobacter species.
Collapse
|