1
|
Parkhill SL, Johnson EO. Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery. Biochem J 2024; 481:839-864. [PMID: 38958473 PMCID: PMC11346456 DOI: 10.1042/bcj20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.
Collapse
Affiliation(s)
- Susannah L. Parkhill
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
- Department of Chemistry, Imperial College, London, U.K
- Department of Chemistry, King's College London, London, U.K
| |
Collapse
|
2
|
Lin J, Wang X, Liu T, Teng Y, Cui W. Diffusion-Based Generative Network for de Novo Synthetic Promoter Design. ACS Synth Biol 2024; 13:1513-1522. [PMID: 38613497 DOI: 10.1021/acssynbio.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Computer-aided promoter design is a major development trend in synthetic promoter engineering. Various deep learning models have been used to evaluate or screen synthetic promoters, but there have been few works on de novo promoter design. To explore the potential ability of generative models in promoter design, we established a diffusion-based generative model for promoter design in Escherichia coli. The model was completely driven by sequence data and could study the essential characteristics of natural promoters, thus generating synthetic promoters similar to natural promoters in structure and component. We also improved the calculation method of FID indicator, using a convolution layer to extract the feature matrix of the promoter sequence instead. As a result, we got an FID equal to 1.37, which meant synthetic promoters have a distribution similar to that of natural ones. Our work provides a fresh approach to de novo promoter design, indicating that a completely data-driven generative model is feasible for promoter design.
Collapse
Affiliation(s)
- Jianfeng Lin
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin Wang
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Tuoyu Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wei Cui
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Dorau R, Liu J, Solem C, Jensen PR. Metabolic Engineering of Lactic Acid Bacteria. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Balasubramanian S, Chen J, Wigneswaran V, Bang-Berthelsen CH, Jensen PR. Droplet-Based Microfluidic High Throughput Screening of Corynebacterium glutamicum for Efficient Heterologous Protein Production and Secretion. Front Bioeng Biotechnol 2021; 9:668513. [PMID: 34026744 PMCID: PMC8137953 DOI: 10.3389/fbioe.2021.668513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
With emerging interests in heterologous production of proteins such as antibodies, growth factors, nanobodies, high-quality protein food ingredients, etc. the demand for efficient production hosts increases. Corynebacterium glutamicum is an attractive industrial host with great secretion capacity to produce therapeutics. It lacks extracellular protease and endotoxin activities and easily achieves high cell density. Therefore, this study focuses on improving protein production and secretion in C. glutamicum with the use of droplet-based microfluidic (DBM) high throughput screening. A library of C. glutamicum secreting β-glucosidase was generated using chemical mutagenesis coupled with DBM screening of 200,000 mutants in just 20 min. Among 100 recovered mutants, 16 mutants exhibited enhanced enzyme secretion capacity, 13 of which had unique mutation profiles. Whole-genome analysis showed that approximately 50–150 SNVs had occurred on the chromosome per mutant. Functional enrichment analysis of genes with non-synonymous mutations showed overrepresentation of genes involved in protein synthesis and secretion relevant biological processes, such as DNA and ribosome RNA synthesis, protein secretion and energy turnover. Two mutants JCMT1 and JCMT8 exhibited the highest secretion with a six and a fivefold increase in the β-glucosidase activity in the supernatant, respectively, relative to the reference strain JC0190. After plasmid curing, a new plasmid with the gene encoding α-amylase was cloned into these two mutants. The new strains SB024 and SB025 also exhibited a five and a sixfold increase in α-amylase activity in the supernatant, respectively, relative to the reference strain SB023. The results demonstrate how DBM screening can serve as a powerful development tool to improve cell factories for the production and secretion of heterologous proteins.
Collapse
Affiliation(s)
- Suvasini Balasubramanian
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Vinoth Wigneswaran
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Claus Heiner Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Van Brempt M, Clauwaert J, Mey F, Stock M, Maertens J, Waegeman W, De Mey M. Predictive design of sigma factor-specific promoters. Nat Commun 2020; 11:5822. [PMID: 33199691 PMCID: PMC7670410 DOI: 10.1038/s41467-020-19446-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
To engineer synthetic gene circuits, molecular building blocks are developed which can modulate gene expression without interference, mutually or with the host's cell machinery. As the complexity of gene circuits increases, automated design tools and tailored building blocks to ensure perfect tuning of all components in the network are required. Despite the efforts to develop prediction tools that allow forward engineering of promoter transcription initiation frequency (TIF), such a tool is still lacking. Here, we use promoter libraries of E. coli sigma factor 70 (σ70)- and B. subtilis σB-, σF- and σW-dependent promoters to construct prediction models, capable of both predicting promoter TIF and orthogonality of the σ-specific promoters. This is achieved by training a convolutional neural network with high-throughput DNA sequencing data from fluorescence-activated cell sorted promoter libraries. This model functions as the base of the online promoter design tool (ProD), providing tailored promoters for tailored genetic systems.
Collapse
Affiliation(s)
- Maarten Van Brempt
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Jim Clauwaert
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000, Ghent, Belgium
| | - Friederike Mey
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Michiel Stock
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000, Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Willem Waegeman
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
6
|
Li X, Chu J, Jensen PR. The Expression of NOX From Synthetic Promoters Reveals an Important Role of the Redox Status in Regulating Secondary Metabolism of Saccharopolyspora erythraea. Front Bioeng Biotechnol 2020; 8:818. [PMID: 32766231 PMCID: PMC7379104 DOI: 10.3389/fbioe.2020.00818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Redox cofactors play a pivotal role in primary cellular metabolism, whereas the clear link between redox status and secondary metabolism is still vague. In this study we investigated effects of redox perturbation on the production of erythromycin in Saccharopolyspora erythraea by expressing the water-forming NADH oxidase (NOX) from Streptococcus pneumonia at different levels with synthetic promoters. The expression of NOX reduced the intracellular [NADH]/[NAD+] ratio significantly in S. erythraea which resulted in an increased production of erythromycin by 19∼29% and this increment rose to 60% as more oxygen was supplied. In contrast, the lower redox ratio resulted in a decreased production of another secondary metabolite, the reddish pigment 7-O-rahmnosyl flaviolin. The metabolic shifts of secondary metabolism results in a higher NADH availability which compensates for its oxidization via NOX. The expression of the erythromycin biosynthesis gene cluster (BGC) in the NOX-expression strains was upregulated as the activity of diguanylate cyclase was inhibited moderately by NADH. This study also suggested that lower intracellular [NADH]/[NAD+] ratio benefits the biosynthesis of erythromycin by potentially affecting the biosynthesis of the secondary messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), which may stimulate the positive regulation of erythromycin BGC via BldD. The present work provides a basis for future cofactor manipulation in S. erythraea to improve the industrial production of erythromycin.
Collapse
Affiliation(s)
- Xiaobo Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Peter R Jensen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Mar MJ, Andersen JM, Kandasamy V, Liu J, Solem C, Jensen PR. Synergy at work: linking the metabolism of two lactic acid bacteria to achieve superior production of 2-butanol. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:45. [PMID: 32180827 PMCID: PMC7065357 DOI: 10.1186/s13068-020-01689-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The secondary alcohol 2-butanol has many important applications, e.g., as a solvent. Industrially, it is usually made by sulfuric acid-catalyzed hydration of butenes. Microbial production of 2-butanol has also been attempted, however, with little success as witnessed by the low titers and yields reported. Two important reasons for this, are the growth-hampering effect of 2-butanol on microorganisms, and challenges associated with one of the key enzymes involved in its production, namely diol dehydratase. RESULTS We attempt to link the metabolism of an engineered Lactococcus lactis strain, which possesses all enzyme activities required for fermentative production of 2-butanol from glucose, except for diol dehydratase, which acts on meso-2,3-butanediol (mBDO), with that of a Lactobacillus brevis strain which expresses a functional dehydratase natively. We demonstrate growth-coupled production of 2-butanol by the engineered L. lactis strain, when co-cultured with L. brevis. After fine-tuning the co-culture setup, a titer of 80 mM (5.9 g/L) 2-butanol, with a high yield of 0.58 mol/mol is achieved. CONCLUSIONS Here, we demonstrate that it is possible to link the metabolism of two bacteria to achieve redox-balanced production of 2-butanol. Using a simple co-cultivation setup, we achieved the highest titer and yield from glucose in a single fermentation step ever reported. The data highlight the potential that lies in harnessing microbial synergies for producing valuable compounds.
Collapse
Affiliation(s)
- Mette J. Mar
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Joakim M. Andersen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Vijayalakshmi Kandasamy
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Jianming Liu
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| | - Peter R. Jensen
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
9
|
Gaudu P, Yamamoto Y, Jensen PR, Hammer K, Lechardeur D, Gruss A. Genetics of Lactococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0035-2018. [PMID: 31298208 PMCID: PMC10957224 DOI: 10.1128/microbiolspec.gpp3-0035-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the best characterized species among the lactococci, and among the most consumed food-fermenting bacteria worldwide. Thanks to their importance in industrialized food production, lactococci are among the lead bacteria understood for fundamental metabolic pathways that dictate growth and survival properties. Interestingly, lactococci belong to the Streptococcaceae family, which includes food, commensal and virulent species. As basic metabolic pathways (e.g., respiration, metal homeostasis, nucleotide metabolism) are now understood to underlie virulence, processes elucidated in lactococci could be important for understanding pathogen fitness and synergy between bacteria. This chapter highlights major findings in lactococci and related bacteria, and covers five themes: distinguishing features of lactococci, metabolic capacities including the less known respiration metabolism in Streptococcaceae, factors and pathways modulating stress response and fitness, interbacterial dialogue via metabolites, and novel applications in health and biotechnology.
Collapse
Affiliation(s)
| | - Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Aomori Japan
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karin Hammer
- DTU Bioengineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | |
Collapse
|
10
|
Hatti-Kaul R, Chen L, Dishisha T, Enshasy HE. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiol Lett 2018; 365:5087731. [DOI: 10.1093/femsle/fny213] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rajni Hatti-Kaul
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Lu Chen
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Tarek Dishisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Hesham El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81 310 Skudai, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria, Egypt
| |
Collapse
|
11
|
Abstract
The judicious choice of promoter to drive gene expression remains one of the most important considerations for synthetic biology applications. Constitutive promoter sequences isolated from nature are often used in laboratory settings or small-scale commercial production streams, but unconventional microbial chassis for new synthetic biology applications require well-characterized, robust and orthogonal promoters. This review provides an overview of the opportunities and challenges for synthetic promoter discovery and design, including molecular methodologies, such as saturation mutagenesis of flanking regions and mutagenesis by error-prone PCR, as well as the less familiar use of computational and statistical analyses for de novo promoter design.
Collapse
|
12
|
Moses T, Mehrshahi P, Smith AG, Goossens A. Synthetic biology approaches for the production of plant metabolites in unicellular organisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4057-4074. [PMID: 28449101 DOI: 10.1093/jxb/erx119] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthetic biology is the repurposing of biological systems for novel objectives and applications. Through the co-ordinated and balanced expression of genes, both native and those introduced from other organisms, resources within an industrial chassis can be siphoned for the commercial production of high-value commodities. This developing interdisciplinary field has the potential to revolutionize natural product discovery from higher plants, by providing a diverse array of tools, technologies, and strategies for exploring the large chemically complex space of plant natural products using unicellular organisms. In this review, we emphasize the key features that influence the generation of biorefineries and highlight technologies and strategic solutions that can be used to overcome engineering pitfalls with rational design. Also presented is a succinct guide to assist the selection of unicellular chassis most suited for the engineering and subsequent production of the desired natural product, in order to meet the global demand for plant natural products in a safe and sustainable manner.
Collapse
Affiliation(s)
- Tessa Moses
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
13
|
Bosma EF, Forster J, Nielsen AT. Lactobacilli and pediococci as versatile cell factories - Evaluation of strain properties and genetic tools. Biotechnol Adv 2017; 35:419-442. [PMID: 28396124 DOI: 10.1016/j.biotechadv.2017.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB), with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable economically feasible bio-based production of chemicals and fuels in a biorefinery, the choice of product, substrate and production organism is important. Currently, the most frequently used production hosts include Escherichia coli and Saccharomyces cerevisiae, but promising examples are available of alternative hosts such as LAB. Particularly lactobacilli and pediococci can offer benefits such as thermotolerance, an extended substrate range and increased tolerance to stresses such as low pH or high alcohol concentrations. This review will evaluate the properties and metabolism of these organisms, and provide an overview of their current biotechnological applications and metabolic engineering. We substantiate the review by including experimental results from screening various lactobacilli and pediococci for transformability, growth temperature range and ability to grow under biotechnologically relevant stress conditions. Since availability of efficient genetic engineering tools is a crucial prerequisite for industrial strain development, genetic tool development is extensively discussed. A range of genetic tools exist for Lactococcus lactis, but for other species of LAB like lactobacilli and pediococci such tools are less well developed. Whereas lactobacilli and pediococci have a long history of use in food and beverage fermentation, their use as platform organisms for production purposes is rather new. By harnessing their properties such as thermotolerance and stress resistance, and by using emerging high-throughput genetic tools, these organisms are very promising as versatile cell factories for biorefinery applications.
Collapse
Affiliation(s)
- Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
14
|
Butanol is cytotoxic to Lactococcus lactis while ethanol and hexanol are cytostatic. Microbiology (Reading) 2017; 163:453-461. [DOI: 10.1099/mic.0.000441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Mehrotra R, Renganaath K, Kanodia H, Loake GJ, Mehrotra S. Towards combinatorial transcriptional engineering. Biotechnol Adv 2017; 35:390-405. [PMID: 28300614 DOI: 10.1016/j.biotechadv.2017.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 01/31/2023]
Abstract
The modular nature of the transcriptional unit makes it possible to design robust modules with predictable input-output characteristics using a ‘parts- off a shelf’ approach. Customized regulatory circuits composed of multiple such transcriptional units have immense scope for application in diverse fields of basic and applied research. Synthetic transcriptional engineering seeks to construct such genetic cascades. Here, we discuss the three principle strands of transcriptional engineering: promoter and transcriptional factor engineering, and programming inducibilty into synthetic modules. In this context, we review the scope and limitations of some recent technologies that seek to achieve these ends. Our discussion emphasizes a requirement for rational combinatorial engineering principles and the promise this approach holds for the future development of this field.
Collapse
Affiliation(s)
- Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India.
| | - Kaushik Renganaath
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| | - Harsh Kanodia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, United Kingdom
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani 333031, Rajasthan, India
| |
Collapse
|
16
|
Sun J, Alper H. Synthetic Biology: An Emerging Approach for Strain Engineering. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jie Sun
- Department of Chemical Engineering; The University of Texas at Austin; 200 E Dean Keeton Street Stop C0400, Austin TX 78712 USA
| | - Hal Alper
- Department of Chemical Engineering; The University of Texas at Austin; 200 E Dean Keeton Street Stop C0400, Austin TX 78712 USA
| |
Collapse
|
17
|
Wigneswaran V, Nielsen KF, Sternberg C, Jensen PR, Folkesson A, Jelsbak L. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440. Microb Cell Fact 2016; 15:181. [PMID: 27776509 PMCID: PMC5075983 DOI: 10.1186/s12934-016-0581-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although a transition toward sustainable production of chemicals is needed, the physiochemical properties of certain biochemicals such as biosurfactants make them challenging to produce in conventional bioreactor systems. Alternative production platforms such as surface-attached biofilm populations could potentially overcome these challenges. Rhamnolipids are a group of biosurfactants highly relevant for industrial applications. However, they are mainly produced by the opportunistic pathogen Pseudomonas aeruginosa using hydrophobic substrates such as plant oils. As the biosynthesis is tightly regulated in P. aeruginosa a heterologous production of rhamnolipids in a safe organism can relive the production from many of these limitations and alternative substrates could be used. RESULTS In the present study, heterologous production of biosurfactants was investigated using rhamnolipids as the model compound in biofilm encased Pseudomonas putida KT2440. The rhlAB operon from P. aeruginosa was introduced into P. putida to produce mono-rhamnolipids. A synthetic promoter library was used in order to bypass the normal regulation of rhamnolipid synthesis and to provide varying expression levels of the rhlAB operon resulting in different levels of rhamnolipid production. Biosynthesis of rhamnolipids in P. putida decreased bacterial growth rate but stimulated biofilm formation by enhancing cell motility. Continuous rhamnolipid production in a biofilm was achieved using flow cell technology. Quantitative and structural investigations of the produced rhamnolipids were made by ultra performance liquid chromatography combined with high resolution mass spectrometry (HRMS) and tandem HRMS. The predominant rhamnolipid congener produced by the heterologous P. putida biofilm was mono-rhamnolipid with two C10 fatty acids. CONCLUSION This study shows a successful application of synthetic promoter library in P. putida KT2440 and a heterologous biosynthesis of rhamnolipids in biofilm encased cells without hampering biofilm capabilities. These findings expands the possibilities of cultivation setups and paves the way for employing biofilm flow systems as production platforms for biochemicals, which as a consequence of physiochemical properties are troublesome to produce in conventional fermenter setups, or for production of compounds which are inhibitory or toxic to the production organisms.
Collapse
Affiliation(s)
- Vinoth Wigneswaran
- Department of Systems Biology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Kristian Fog Nielsen
- Department of Systems Biology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Claus Sternberg
- Department of Systems Biology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anders Folkesson
- National Veterinary Institute, Technical University of Denmark, 1870, Frederiksberg C, Denmark
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
18
|
Liu J, Chan SHJ, Brock-Nannestad T, Chen J, Lee SY, Solem C, Jensen PR. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol. Metab Eng 2016; 36:57-67. [DOI: 10.1016/j.ymben.2016.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/10/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
19
|
Abstract
The bacteriophage λ Red homologous recombination system has been studied over the past 50 years as a model system to define the mechanistic details of how organisms exchange DNA segments that share extended regions of homology. The λ Red system proved useful as a system to study because recombinants could be easily generated by co-infection of genetically marked phages. What emerged from these studies was the recognition that replication of phage DNA was required for substantial Red-promoted recombination in vivo, and the critical role that double-stranded DNA ends play in allowing the Red proteins access to the phage DNA chromosomes. In the past 16 years, however, the λ Red recombination system has gained a new notoriety. When expressed independently of other λ functions, the Red system is able to promote recombination of linear DNA containing limited regions of homology (∼50 bp) with the Escherichia coli chromosome, a process known as recombineering. This review explains how the Red system works during a phage infection, and how it is utilized to make chromosomal modifications of E. coli with such efficiency that it changed the nature and number of genetic manipulations possible, leading to advances in bacterial genomics, metabolic engineering, and eukaryotic genetics.
Collapse
Affiliation(s)
- Kenan C Murphy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
20
|
Myronovskyi M, Luzhetskyy A. Native and engineered promoters in natural product discovery. Nat Prod Rep 2016; 33:1006-19. [DOI: 10.1039/c6np00002a] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transcriptional activation of biosynthetic gene clusters.
Collapse
Affiliation(s)
- Maksym Myronovskyi
- Helmholtz-Institute for Pharmaceutical Research Saarland
- 66123 Saarbrücken
- Germany
| | - Andriy Luzhetskyy
- Helmholtz-Institute for Pharmaceutical Research Saarland
- 66123 Saarbrücken
- Germany
- Department of Pharmaceutical Biotechnology
- Saarland University
| |
Collapse
|
21
|
|
22
|
|
23
|
A New Type of YumC-Like Ferredoxin (Flavodoxin) Reductase Is Involved in Ribonucleotide Reduction. mBio 2015; 6:e01132-15. [PMID: 26507228 PMCID: PMC4626851 DOI: 10.1128/mbio.01132-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The trxB2 gene, which is annotated as a thioredoxin reductase, was found to be essential for growth of Lactococcus lactis in the presence of oxygen. The corresponding protein (TrxB2) showed a high similarity with Bacillus subtilis YumC (E value = 4.0E−88), and YumC was able to fully complement the ΔtrxB2 mutant phenotype. YumC represents a novel type of ferredoxin (flavodoxin) reductase (FdR) with hitherto-unknown biological function. We adaptively evolved the ΔtrxB2 mutant under aerobic conditions to find suppressor mutations that could help elucidate the involvement of TrxB2 in aerobic growth. Genome sequencing of two independent isolates, which were able to grow as well as the wild-type strain under aerated conditions, revealed the importance of mutations in nrdI, encoding a flavodoxin involved in aerobic ribonucleotide reduction. We suggest a role for TrxB2 in nucleotide metabolism, where the flavodoxin (NrdI) serves as its redox partner, and we support this hypothesis by showing the beneficial effect of deoxynucleosides on aerobic growth of the ΔtrxB2 mutant. Finally, we demonstrate, by heterologous expression, that the TrxB2 protein functionally can substitute for YumC in B. subtilis but that the addition of deoxynucleosides cannot compensate for the lethal phenotype displayed by the B. subtilisyumC knockout mutant. Ferredoxin (flavodoxin) reductase (FdR) is involved in many important reactions in both eukaryotes and prokaryotes, such as photosynthesis, nitrate reduction, etc. The recently identified bacterial YumC-type FdR belongs to a novel type, the biological function of which still remains elusive. We found that the YumC-like FdR (TrxB2) is essential for aerobic growth of Lactococcus lactis. We suggest that the YumC-type FdR is involved in the ribonucleotide reduction by the class Ib ribonucleotide reductase, which represents the workhorse for the bioconversion of nucleotides to deoxynucleotides in many prokaryotes and eukaryotic pathogens under aerobic conditions. As the partner of the flavodoxin (NrdI), the key FdR is missing in the current model describing the class Ib system in Escherichia coli. With this study, we have established a role for this novel type of FdR and in addition found the missing link needed to explain how ribonucleotide reduction is carried out under aerobic conditions.
Collapse
|
24
|
Zucca S, Pasotti L, Politi N, Casanova M, Mazzini G, Cusella De Angelis MG, Magni P. Multi-Faceted Characterization of a Novel LuxR-Repressible Promoter Library for Escherichia coli. PLoS One 2015; 10:e0126264. [PMID: 26010244 PMCID: PMC4444344 DOI: 10.1371/journal.pone.0126264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/31/2015] [Indexed: 11/18/2022] Open
Abstract
The genetic elements regulating the natural quorum sensing (QS) networks of several microorganisms are widely used in synthetic biology to control the behaviour of single cells and engineered bacterial populations via ad-hoc constructed synthetic circuits. A number of novel engineering-inspired biological functions have been implemented and model systems have also been constructed to improve the knowledge on natural QS systems. Synthetic QS-based parts, such as promoters, have been reported in literature, to provide biological components with functions that are not present in nature, like modified induction logic or activation/repression by additional molecules. In this work, a library of promoters that can be repressed by the LuxR protein in presence of the QS autoinducer N-3-oxohexanoyl-L-homoserine lactone (AHL) was reported for Escherichia coli, to expand the toolkit of genetic parts that can be used to engineer novel synthetic QS-based systems. The library was constructed via polymerase chain reaction with highly constrained degenerate oligonucleotides, designed according to the consensus -35 and -10 sequences of a previously reported constitutive promoter library of graded strength, to maximize the probability of obtaining functional clones. All the promoters have a lux box between the -35 and -10 regions, to implement a LuxR-repressible behaviour. Twelve unique library members of graded strength (about 100-fold activity range) were selected to form the final library and they were characterized in several genetic contexts, such as in different plasmids, via different reporter genes, in presence of a LuxR expression cassette in different positions and in response to different AHL concentrations. The new obtained regulatory parts and corresponding data can be exploited by synthetic biologists to implement an artificial AHL-dependent repression of transcription in genetic circuits. The target transcriptional activity can be selected among the available library members to meet the design specifications of the biological system.
Collapse
Affiliation(s)
- Susanna Zucca
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Pavia, Italy
- Centro di Ingegneria Tissutale, Università degli Studi di Pavia, Pavia, Italy
| | - Lorenzo Pasotti
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Pavia, Italy
- Centro di Ingegneria Tissutale, Università degli Studi di Pavia, Pavia, Italy
| | - Nicolò Politi
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Pavia, Italy
- Centro di Ingegneria Tissutale, Università degli Studi di Pavia, Pavia, Italy
| | - Michela Casanova
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Pavia, Italy
- Centro di Ingegneria Tissutale, Università degli Studi di Pavia, Pavia, Italy
| | | | | | - Paolo Magni
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Pavia, Italy
- Centro di Ingegneria Tissutale, Università degli Studi di Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
25
|
Liu P, Zhu X, Tan Z, Zhang X, Ma Y. Construction of Escherichia Coli Cell Factories for Production of Organic Acids and Alcohols. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:107-40. [PMID: 25577396 DOI: 10.1007/10_2014_294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Production of bulk chemicals from renewable biomass has been proved to be sustainable and environmentally friendly. Escherichia coli is the most commonly used host strain for constructing cell factories for production of bulk chemicals since it has clear physiological and genetic characteristics, grows fast in minimal salts medium, uses a wide range of substrates, and can be genetically modified easily. With the development of metabolic engineering, systems biology, and synthetic biology, a technology platform has been established to construct E. coli cell factories for bulk chemicals production. In this chapter, we will introduce this technology platform, as well as E. coli cell factories successfully constructed for production of organic acids and alcohols.
Collapse
Affiliation(s)
- Pingping Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Zaigao Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Area, Tianjin, 300308, China.
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
26
|
Advances and computational tools towards predictable design in biological engineering. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:369681. [PMID: 25161694 PMCID: PMC4137594 DOI: 10.1155/2014/369681] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/09/2014] [Indexed: 11/21/2022]
Abstract
The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids) when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated.
Collapse
|
27
|
Sohoni SV, Fazio A, Workman CT, Mijakovic I, Lantz AE. Synthetic promoter library for modulation of actinorhodin production in Streptomyces coelicolor A3(2). PLoS One 2014; 9:e99701. [PMID: 24963940 DOI: 10.1371/journal.pone.0099701] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/16/2014] [Indexed: 01/28/2023] Open
Abstract
The objective of this study was the application of the synthetic promoter library (SPL) technology for modulation of actinorhodin production in Streptomyces coelicolor A3(2). The SPL technology was used to optimize the expression of a pathway specific positive transcriptional regulator ActII orf4, which activates the transcription of the S. coelicolor actinorhodin biosynthetic gene cluster. The native actII orf4 promoter was replaced with synthetic promoters, generating a S. coelicolor library with a broad range of expression levels of actII orf4. The resulting library was screened based on the yield of actinorhodin. Selected strains were further physiologically characterized. One of the strains from the library, ScoSPL20, showed considerably higher yield of actinorhodin and final actinorhodin titer, compared to S. coelicolor wild type and S. coelicolor with actII orf4 expressed from a strong constitutive promoter. ScoSPL20 demonstrated exceptional productivity despite having a comparatively weak expression from the promoter. Interestingly, the ScoSPL20 promoter was activated at a much earlier stage of growth compared to the wild type, demonstrating the advantage of fine-tuning and temporal tuning of gene expression in metabolic engineering. Transcriptome studies were performed in exponential and actinorhodin-producing phase of growth to compare gene expression between ScoSPL20 and the wild type. To our knowledge, this is the first successful application of the SPL technology for secondary metabolite production in filamentous bacteria.
Collapse
Affiliation(s)
- Sujata Vijay Sohoni
- Department of Systems Biology, Denmark Technical University, Kongens Lyngby, Denmark
| | - Alessandro Fazio
- Department of Systems Biology, Denmark Technical University, Kongens Lyngby, Denmark
| | - Christopher T Workman
- Department of Systems Biology, Denmark Technical University, Kongens Lyngby, Denmark
| | - Ivan Mijakovic
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anna Eliasson Lantz
- Department of Systems Biology, Denmark Technical University, Kongens Lyngby, Denmark
| |
Collapse
|
28
|
Rytter JV, Helmark S, Chen J, Lezyk MJ, Solem C, Jensen PR. Synthetic promoter libraries for Corynebacterium glutamicum. Appl Microbiol Biotechnol 2014; 98:2617-23. [DOI: 10.1007/s00253-013-5481-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 02/01/2023]
|
29
|
From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 2013; 31:764-88. [DOI: 10.1016/j.biotechadv.2013.03.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 11/21/2022]
|
30
|
Ang J, Harris E, Hussey BJ, Kil R, McMillen DR. Tuning response curves for synthetic biology. ACS Synth Biol 2013; 2:547-67. [PMID: 23905721 PMCID: PMC3805330 DOI: 10.1021/sb4000564] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 01/07/2023]
Abstract
Synthetic biology may be viewed as an effort to establish, formalize, and develop an engineering discipline in the context of biological systems. The ability to tune the properties of individual components is central to the process of system design in all fields of engineering, and synthetic biology is no exception. A large and growing number of approaches have been developed for tuning the responses of cellular systems, and here we address specifically the issue of tuning the rate of response of a system: given a system where an input affects the rate of change of an output, how can the shape of the response curve be altered experimentally? This affects a system's dynamics as well as its steady-state properties, both of which are critical in the design of systems in synthetic biology, particularly those with multiple components. We begin by reviewing a mathematical formulation that captures a broad class of biological response curves and use this to define a standard set of varieties of tuning: vertical shifting, horizontal scaling, and the like. We then survey the experimental literature, classifying the results into our defined categories, and organizing them by regulatory level: transcriptional, post-transcriptional, and post-translational.
Collapse
Affiliation(s)
- Jordan Ang
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Edouard Harris
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Brendan J. Hussey
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Richard Kil
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - David R. McMillen
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
31
|
Oxidative stress at high temperatures in Lactococcus lactis due to an insufficient supply of Riboflavin. Appl Environ Microbiol 2013; 79:6140-7. [PMID: 23913422 DOI: 10.1128/aem.01953-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis MG1363 was found to be unable to grow at temperatures above 37°C in a defined medium without riboflavin, and the cause was identified to be dissolved oxygen introduced during preparation of the medium. At 30°C, growth was unaffected by dissolved oxygen and oxygen was consumed quickly. Raising the temperature to 37°C resulted in severe growth inhibition and only slow removal of dissolved oxygen. Under these conditions, an abnormally low intracellular ratio of [ATP] to [ADP] (1.4) was found (normally around 5), which indicates that the cells are energy limited. By adding riboflavin to the medium, it was possible to improve growth and oxygen consumption at 37°C, and this also normalized the [ATP]-to-[ADP] ratio. A codon-optimized redox-sensitive green fluorescent protein (GFP) was introduced into L. lactis and revealed a more oxidized cytoplasm at 37°C than at 30°C. These results indicate that L. lactis suffers from heat-induced oxidative stress at increased temperatures. A decrease in intracellular flavin adenine dinucleotide (FAD), which is derived from riboflavin, was observed with increasing growth temperature, but the presence of riboflavin made the decrease smaller. The drop was accompanied by a decrease in NADH oxidase and pyruvate dehydrogenase activities, both of which depend on FAD as a cofactor. By overexpressing the riboflavin transporter, it was possible to improve FAD biosynthesis, which resulted in increased NADH oxidase and pyruvate dehydrogenase activities and improved fitness at high temperatures in the presence of oxygen.
Collapse
|
32
|
Siegl T, Tokovenko B, Myronovskyi M, Luzhetskyy A. Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng 2013; 19:98-106. [PMID: 23876413 DOI: 10.1016/j.ymben.2013.07.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 06/02/2013] [Accepted: 07/11/2013] [Indexed: 11/29/2022]
Abstract
We developed a synthetic promoter library for actinomycetes based on the -10 and -35 consensus sequences of the constitutive and widely used ermEp1 promoter. The sequences located upstream, in between and downstream of these consensus sequences were randomised using degenerate primers and cloned into an integrative plasmid upstream of the gusA reporter gene. Using this system, we created promoters with strengths ranging from 2% to 319% compared with ermEp1. The strongest synthetic promoter was used in a proof-of-principle approach to achieve the overexpression of a natural type III polyketide synthase. We observed high correlation between the number of gusA reporter gene RNA-Seq reads and the GusA reporter protein activity, indicating that GusA is indeed a transcription-level reporter system.
Collapse
Affiliation(s)
- Theresa Siegl
- Albert-Ludwigs-University of Freiburg, Pharmaceutical Biology and Biotechnology, Stefan-Meier-st. 19, Freiburg 79104, Germany
| | | | | | | |
Collapse
|
33
|
Yim SS, An SJ, Kang M, Lee J, Jeong KJ. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol Bioeng 2013; 110:2959-69. [PMID: 23633298 DOI: 10.1002/bit.24954] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/26/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022]
Abstract
Corynebacterium glutamicum is an important industrial organism that is widely used in the production of amino acids, nucleotides and vitamins. To extend its product spectrum and improve productivity, C. glutamicum needs to undergo further engineering, including the development of applicable promoter system. Here, we isolated new promoters from the fully synthetic promoter library consisting of 70-bp random sequences in C. glutamicum. Using green fluorescent protein (GFP) as a reporter, highly fluorescent cells were screened from the library by fluorescent activated cell sorting (FACS). Twenty potential promoters of various strengths were isolated and characterized through extensive analysis of DNA sequences and mRNA transcripts. Among 20 promoters, 6 promoters which have different strengths were selected and their activities were successfully demonstrated using two model proteins (antibody fragment and endoxylanase). Finally, the strongest promoter (P(H36)) was employed for the secretory production of endoxylanase in fed-batch cultivation, achieving production levels of 746 mg/L in culture supernatant. This is the first report of synthetic promoters constructed in C. glutamicum, and our screening strategy together with the use of synthetic promoters of various strengths will contribute to the future engineering of C. glutamicum.
Collapse
Affiliation(s)
- Sung Sun Yim
- Department of Chemical and Biomolecular Engineering, KAIST, 335 Gwahagno, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | | | | | | | | |
Collapse
|
34
|
Kim HJ, Turner TL, Jin YS. Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals. Biotechnol Adv 2013; 31:976-85. [PMID: 23562845 DOI: 10.1016/j.biotechadv.2013.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 12/25/2022]
Abstract
Recent advances in metabolic engineering have enabled microbial factories to compete with conventional processes for producing fuels and chemicals. Both rational and combinatorial approaches coupled with synthetic and systematic tools play central roles in metabolic engineering to create and improve a selected microbial phenotype. Compared to knowledge-based rational approaches, combinatorial approaches exploiting biological diversity and high-throughput screening have been demonstrated as more effective tools for improving various phenotypes of interest. In particular, identification of unprecedented targets to rewire metabolic circuits for maximizing yield and productivity of a target chemical has been made possible. This review highlights general principles and the features of the combinatorial approaches using various libraries to implement desired phenotypes for strain improvement. In addition, recent applications that harnessed the combinatorial approaches to produce biofuels and biochemicals will be discussed.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL 61801, USA
| | | | | |
Collapse
|
35
|
Ryssel M, Duan Z, Siegumfeldt H. In situ examination of cell growth and death of Lactococcus lactis. FEMS Microbiol Lett 2013; 343:82-8. [PMID: 23516965 DOI: 10.1111/1574-6968.12134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 11/29/2022] Open
Abstract
This study enables in situ studying of the growth and death of a large number of individual cells in a solid matrix. A wild type of Lactococcus lactis and several mutants with varying expression of GuaB was investigated. Large variability in the final size of individual microcolonies arising from clonal cells was observed. However, when growth was averaged over 16 locations in a specimen, the SEM was small and notable differences could be observed between the investigated strains, where mutants with lower expression of GuaB had a slower growth rate. The results show that the slow-growing mutants exhibited a lower fraction of dead cells, which indicate that slow-growing mutants are slightly more robust than the faster-growing strains. The large variability in the final size of individual microcolonies arising from clonal cells was quite surprising. We suggest that the control of the size of a microcolony is, at least partially, related to the actual microcolony depended on phenotypic heterogeneity. These findings are important to consider whenever a solid medium with discrete microcolonies is investigated.
Collapse
Affiliation(s)
- Mia Ryssel
- Department of Food Science, Food Microbiology, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | | | | |
Collapse
|
36
|
Abstract
Lactic acid bacteria (LAB) are known for their high tolerance toward organic acids and alcohols (R. S. Gold, M. M. Meagher, R. Hutkins, and T. Conway, J. Ind. Microbiol. 10:45-54, 1992) and could potentially serve as platform organisms for production of these compounds. In this study, we attempted to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed fermentation product was obtained by further inactivating the phosphotransacetylase (PTA) and the native alcohol dehydrogenase (ADHE).
Collapse
|
37
|
Functional Analysis and Randomization of the Nisin-Inducible Promoter for Tuning Gene Expression in Lactococcus lactis. Curr Microbiol 2013; 66:548-54. [DOI: 10.1007/s00284-013-0312-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
38
|
Weenink T, Ellis T. Creation and characterization of component libraries for synthetic biology. Methods Mol Biol 2013; 1073:51-60. [PMID: 23996439 DOI: 10.1007/978-1-62703-625-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Large numbers of well-described components are essential for advanced synthetic biology and model-guided design of pathways and regulatory networks. Here a method is presented for the creation of libraries of novel control elements. From these libraries, parts with well-defined properties can be selected and used in construction of finely tuned synthetic systems. The example of the PFY1 promoter in S. cerevisiae is used to describe library creation using degenerate synthetic oligos and the circular polymerase extension cloning (CPEC) method. Additionally the workflow of screening the raw library for functional parts is included to provide a full overview of the process of creating and characterizing a component library for synthetic biology.
Collapse
Affiliation(s)
- Tim Weenink
- Centre for Synthetic Biology and Innovation, Imperial College London, London, UK
| | | |
Collapse
|
39
|
Boyle NR, Gill RT. Tools for genome-wide strain design and construction. Curr Opin Biotechnol 2012; 23:666-71. [DOI: 10.1016/j.copbio.2012.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 01/21/2012] [Accepted: 01/23/2012] [Indexed: 11/25/2022]
|
40
|
Blazeck J, Alper HS. Promoter engineering: Recent advances in controlling transcription at the most fundamental level. Biotechnol J 2012; 8:46-58. [DOI: 10.1002/biot.201200120] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/25/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022]
|
41
|
Beena Divya J, Kulangara Varsha K, Madhavan Nampoothiri K, Ismail B, Pandey A. Probiotic fermented foods for health benefits. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100179] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
42
|
Guo T, Kong J, Zhang L, Zhang C, Hu S. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis. PLoS One 2012; 7:e36296. [PMID: 22558426 PMCID: PMC3338672 DOI: 10.1371/journal.pone.0036296] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/30/2012] [Indexed: 01/08/2023] Open
Abstract
Lactococcus lactis is a well-studied bacterium widely used in dairy fermentation and capable of producing metabolites with organoleptic and nutritional characteristics. For fine tuning of the distribution of glycolytic flux at the pyruvate branch from lactate to diacetyl and balancing the production of the two metabolites under aerobic conditions, a constitutive promoter library was constructed by randomizing the promoter sequence of the H2O-forming NADH oxidase gene in L. lactis. The library consisted of 30 promoters covering a wide range of activities from 7,000 to 380,000 relative fluorescence units using a green fluorescent protein as reporter. Eleven typical promoters of the library were selected for the constitutive expression of the H2O-forming NADH oxidase gene in L. lactis, and the NADH oxidase activity increased from 9.43 to 58.17-fold of the wild-type strain in small steps of activity change under aerobic conditions. Meanwhile, the lactate yield decreased from 21.15±0.08 mM to 9.94±0.07 mM, and the corresponding diacetyl production increased from 1.07±0.03 mM to 4.16±0.06 mM with the intracellular NADH/NAD+ ratios varying from 0.711±0.005 to 0.383±0.003. The results indicated that the reduced pyruvate to lactate flux was rerouted to the diacetyl with an almost linear flux variation via altered NADH/NAD+ ratios. Therefore, we provided a novel strategy to precisely control the pyruvate distribution for fine tuning of the lactate and diacetyl production through promoter engineering in L. lactis. Interestingly, the increased H2O-forming NADH oxidase activity led to 76.95% lower H2O2 concentration in the recombinant strain than that of the wild-type strain after 24 h of aerated cultivation. The viable cells were significantly elevated by four orders of magnitude within 28 days of storage at 4°C, suggesting that the increased enzyme activity could eliminate H2O2 accumulation and prolong cell survival.
Collapse
Affiliation(s)
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
- * E-mail:
| | | | | | | |
Collapse
|
43
|
van Ooyen J, Noack S, Bott M, Reth A, Eggeling L. Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 2012; 109:2070-81. [DOI: 10.1002/bit.24486] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/15/2012] [Accepted: 02/22/2012] [Indexed: 01/25/2023]
|
44
|
|
45
|
Abstract
Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression levels using libraries of synthetic promoters now exist.
Collapse
Affiliation(s)
- Tore Dehli
- Center for Systems Microbiology, Department of Systems Biology, Technical University of Denmark, Matematiktorvet 301/242, 2800, Lyngby, Denmark,
| | | | | |
Collapse
|
46
|
Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization. Appl Microbiol Biotechnol 2011; 93:2455-62. [DOI: 10.1007/s00253-011-3752-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 11/06/2011] [Accepted: 11/21/2011] [Indexed: 12/21/2022]
|
47
|
GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol 2011; 77:3600-8. [PMID: 21498769 DOI: 10.1128/aem.02843-10] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A library of engineered promoters of various strengths is a useful genetic tool that enables the fine-tuning and precise control of gene expression across a continuum of broad expression levels. The methylotrophic yeast Pichia pastoris is a well-established expression host with a large academic and industrial user base. To facilitate manipulation of gene expression spanning a wide dynamic range in P. pastoris, we created a functional promoter library through mutagenesis of the constitutive GAP promoter. Using yeast-enhanced green fluorescent protein (yEGFP) as the reporter, 33 mutants were chosen to form the functional promoter library. The 33 mutants spanned an activity range between ∼0.6% and 19.6-fold of the wild-type promoter activity with an almost linear fluorescence intensity distribution. After an extensive characterization of the library, the broader applicability of the results obtained with the yEGFP reporter was confirmed using two additional reporters (β-galactosidase and methionine adenosyltransferase [MAT]) at the transcription and enzyme activity levels. Furthermore, the utility of the promoter library was tested by investigating the influence of heterologous MAT gene expression levels on cell growth and S-adenosylmethionine (SAM) production. The extensive characterization of the promoter strength enabled identification of the optimal MAT activity (around 1.05 U/mg of protein) to obtain maximal volumetric SAM production. The promoter library permits precise control of gene expression and quantitative assessment that correlates gene expression level with physiologic parameters. Thus, it is a useful toolbox for both basic and applied research in P. pastoris.
Collapse
|
48
|
Redding-Johanson AM, Batth TS, Chan R, Krupa R, Szmidt HL, Adams PD, Keasling JD, Soon Lee T, Mukhopadhyay A, Petzold CJ. Targeted proteomics for metabolic pathway optimization: Application to terpene production. Metab Eng 2011; 13:194-203. [DOI: 10.1016/j.ymben.2010.12.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/15/2010] [Accepted: 12/20/2010] [Indexed: 12/18/2022]
|
49
|
Alsing A, Pedersen M, Sneppen K, Hammer K. Key players in the genetic switch of bacteriophage TP901-1. Biophys J 2011; 100:313-21. [PMID: 21244827 DOI: 10.1016/j.bpj.2010.12.3681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022] Open
Abstract
After infection of a sensitive host temperate phages may enter either a lytic or a lysogenic pathway leading to new phage assembly or silencing as a prophage, respectively. The decision about which pathway to enter is centered in the genetic switch of the phage. In this work, we explore the bistable genetic switch of bacteriophage TP901-1 through experiments and statistical mechanical modeling. We examine the activity of the lysogenic promoter P(R) at different concentrations of the phage repressor, CI, and compare the effect of CI on P(R) in the presence or absence of the phage-encoded MOR protein expressed from the lytic promoter P(L). We find that the presence of large amounts of MOR prevents repression of the P(R) promoter, verifying that MOR works as an antirepressor. We compare our experimental data with simulations based on previous mathematical formulations of this switch. Good agreement between data and simulations verify the model of CI repression of P(R). By including MOR in the simulations, we are able to discard a model that assumes that CI and MOR do not interact before binding together at the DNA to repress P(R). The second model of Pr repression assumes the formation of a CI:MOR complex in the cytoplasm. We suggest that a CI:MOR complex may exist in different forms that either prevent or invoke P(R) repression, introducing a new twist on mixed feedback systems.
Collapse
Affiliation(s)
- Anne Alsing
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
50
|
Muñoz-Márquez ME, Ponce-Rivas E. Effect of pfkA chromosomal interruption on growth, sporulation, and production of organic acids in Bacillus subtilis. J Basic Microbiol 2010; 50:232-40. [PMID: 20473954 DOI: 10.1002/jobm.200900236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phosphofructokinase (Pfk) plays a key role in the regulation of carbohydrate metabolism. Its activity can be used as an indicator of glycolytic flux in a microorganism. We have cloned and characterized the pfkA gene from Bacillus subtilis, which encodes the enzyme phosphofructokinase. This gene was insertionally inactivated at the chromosomal level in a wild type strain and in strains lacking the PEP:sugar phosphotranferase system (PTS). Although the pykA gene is immediately downstream of the pfkA gene, forming a constitutive operon in B. subtilis, the pyruvate kinase activity was not altered in the pfkA mutant. The inactivation of the pfkA gene had a strong impact on the growth of the B. subtilis wild type strain and PTS mutants in Spizizen's minimal media and Schaeffer's sporulation media. Pfk inactivation was also reflected by the timing and percentage of sporulation of the wild type and PTS mutants in sporulation media as well as in the production of organic by-products (pyruvate, lactate, and acetate).
Collapse
|