1
|
Ravagnan G, Schmid J. Promising non-model microbial cell factories obtained by genome reduction. Front Bioeng Biotechnol 2024; 12:1427248. [PMID: 39161352 PMCID: PMC11330790 DOI: 10.3389/fbioe.2024.1427248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 08/21/2024] Open
Abstract
The development of sustainable processes is the most important basis to realize the shift from the fossil-fuel based industry to bio-based production. Non-model microbes represent a great resource due to their advantageous traits and unique repertoire of bioproducts. However, most of these microbes require modifications to improve their growth and production capacities as well as robustness in terms of genetic stability. For this, genome reduction is a valuable and powerful approach to meet industry requirements and to design highly efficient production strains. Here, we provide an overview of various genome reduction approaches in prokaryotic microorganisms, with a focus on non-model organisms, and highlight the example of a successful genome-reduced model organism chassis. Furthermore, we discuss the advances and challenges of promising non-model microbial chassis.
Collapse
Affiliation(s)
| | - Jochen Schmid
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Yue X, Sheng D, Zhuo L, Li YZ. Genetic manipulation and tools in myxobacteria for the exploitation of secondary metabolism. ENGINEERING MICROBIOLOGY 2023; 3:100075. [PMID: 39629250 PMCID: PMC11610982 DOI: 10.1016/j.engmic.2023.100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 12/07/2024]
Abstract
Myxobacteria are famous for their capacity for social behavior and natural product biosynthesis. The unique sociality of myxobacteria is not only an intriguing scientific topic but also the main limiting factor for their manipulation. After more than half a century of research, a series of genetic techniques for myxobacteria have been developed, rendering these mysterious bacteria manipulable. Here, we review the advances in genetic manipulation of myxobacteria, with a particular focus on the exploitation of secondary metabolism. We emphasize the necessity and urgency of constructing the myxobacterial chassis for synthetic biology research and the exploitation of untapped secondary metabolism.
Collapse
Affiliation(s)
- Xinjing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Duohong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Yu Y, Wang H, Tang B, Liang J, Zhang L, Wang H, Bian X, Li YZ, Zhang Y, Zhao GP, Ding X. Reassembly of the Biosynthetic Gene Cluster Enables High Epothilone Yield in Engineered Schlegelella brevitalea. ACS Synth Biol 2020; 9:2009-2022. [PMID: 32603592 DOI: 10.1021/acssynbio.0c00100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Epothilones, as a new class of microtubule-stabilizing anticancer drugs, exhibit strong bioactivity against taxane-resistant cells and show clinical activity for the treatment of advanced breast cancer. Additionally, they also show great potential for a central nervous system injury and Alzheimer's disease. However, due to the long fermentation period of the original producer and challenges of genetic engineering of nonribosomal peptide/polyketide (NRP/PK) megasynthase genes, the application of epothilones is severely limited. Here, we addressed these problems by reassembling a novel 56-kb epothilone biosynthetic gene cluster, optimizing the promoter of each gene based on RNA-seq profiling, and completing precursor synthetic pathways in engineered Schlegella brevitalea. Furthermore, we debottlenecked the cell autolysis by optimizing culture conditions. Finally, the yield of epothilones in shake flasks was improved to 82 mg/L in six-day fermentation. Overall, we not only constructed epothilone overproducers for further drug development but also provided a rational strategy for high-level NRP/PK compound production.
Collapse
Affiliation(s)
- Yucong Yu
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People’s Republic of China
| | - Huimin Wang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People’s Republic of China
| | - Biao Tang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People’s Republic of China
- Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, People’s Republic of China
| | - Junheng Liang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People’s Republic of China
| | - Lin Zhang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People’s Republic of China
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, People’s Republic of China
| | - Xiaoying Bian
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| | - Yue-zhong Li
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| | - Guo-ping Zhao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People’s Republic of China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, People’s Republic of China
| | - Xiaoming Ding
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, 200438, People’s Republic of China
| |
Collapse
|
4
|
Izzat S, Rachid S, Ajdidi A, El-Nakady YA, Liu XX, Ye BC, Müller R. The ROK like protein of Myxococcus xanthus DK1622 acts as a pleiotropic transcriptional regulator for secondary metabolism. J Biotechnol 2020; 311:25-34. [PMID: 32057784 DOI: 10.1016/j.jbiotec.2020.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 11/17/2022]
Abstract
Myxococcus xanthus DK1622 is known as a proficient producer of different kinds of secondary metabolites (SM) with various biological activities, including myxovirescin A, myxalamide A, myxochromide A and DKxanthene. Low production of SM in the wild type bacteria makes searching for production optimization methods highly desirable. Identification and induction of endogenous key molecular feature(s) regulating the production level of the metabolites remain promising, while heterologous expression of the biosynthetic genes is not always efficient because of various complicating factors including codon usage bias. This study established proteomic and molecular approaches to elucidate the regulatory roles of the ROK regulatory protein in the modification of secondary metabolite biosynthesis. Interestingly, the results revealed that rok inactivation significantly reduced the production of the SM and also changed the motility in the bacteria. Electrophoretic mobility shift assay using purified ROK protein indicated a direct enhancement of the promoters encoding transcription of the DKxanthene, myxochelin A, and myxalamide A biosynthesis machinery. Comparative proteomic analysis by two-dimensional fluorescence difference in-gel electrophoresis (2D-DIGE) was employed to identify the protein profiles of the wild type and rok mutant strains during early and late logarithmic growth phases of the bacterial culture. Resulting data demonstrated overall 130 differently altered proteins by the effect of the rok gene mutation, including putative proteins suspected to be involved in transcriptional regulation, carbohydrate metabolism, development, spore formation, and motility. Except for a slight induction seen in the production of myxovirescin A in a rok over-expression background, no changes were found in the formation of the other SM. From the outcome of our investigation, it is possible to conclude that ROK acts as a pleiotropic regulator of secondary metabolite formation and development in M. xanthus, while its direct effects still remain speculative. More experiments are required to elucidate in detail the variable regulation effects of the protein and to explore applicable approaches for generating valuable SM in this bacterium.
Collapse
Affiliation(s)
- Selar Izzat
- Department of Biology, School of Science and Health, Koya University, Koysinjaq, Kurdistan Region, Iraq
| | - Shwan Rachid
- Charmo Research Center, Charmo University, 46023 Chamchamal-Sulaimani, Iraq; Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
| | - Ahmad Ajdidi
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Yasser A El-Nakady
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8.1, 66123 Saarbrücken, Germany; Zoology Department, College of Science, King Saud University, P.O. Box 2455, 11415 Riyadh - Saudi Arabia
| | - Xin-Xin Liu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
| |
Collapse
|
5
|
Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering. Sci Rep 2016; 6:21066. [PMID: 26875499 PMCID: PMC4753468 DOI: 10.1038/srep21066] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/18/2016] [Indexed: 11/08/2022] Open
Abstract
Disorazol, a macrocyclic polykitide produced by the myxobacterium Sorangium cellulosum So ce12 and it is reported to have potential cytotoxic activity towards several cancer cell lines, including multi-drug resistant cells. The disorazol biosynthetic gene cluster (dis) from Sorangium cellulosum (So ce12) was identified by transposon mutagenesis and cloned in a bacterial artificial chromosome (BAC) library. The 58-kb dis core gene cluster was reconstituted from BACs via Red/ET recombineering and expressed in Myxococcus xanthus DK1622. For the first time ever, a myxobacterial trans-AT polyketide synthase has been expressed heterologously in this study. Expression in M. xanthus allowed us to optimize the yield of several biosynthetic products using promoter engineering. The insertion of an artificial synthetic promoter upstream of the disD gene encoding a discrete acyl transferase (AT), together with an oxidoreductase (Or), resulted in 7-fold increase in disorazol production. The successful reconstitution and expression of the genetic sequences encoding for these promising cytotoxic compounds will allow combinatorial biosynthesis to generate novel disorazol derivatives for further bioactivity evaluation.
Collapse
|
6
|
Li SG, Zhao L, Han K, Li PF, Li ZF, Hu W, Liu H, Wu ZH, Li YZ. Diversity of epothilone producers among Sorangium strains in producer-positive soil habitats. Microb Biotechnol 2013; 7:130-41. [PMID: 24308800 PMCID: PMC3937717 DOI: 10.1111/1751-7915.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022] Open
Abstract
Large-scale surveys show that the anti-tumour compounds known as epothilones are produced by only a small proportion of Sorangium strains, thereby greatly hampering the research and development of these valuable compounds. In this study, to investigate the niche diversity of epothilone-producing Sorangium strains, we re-surveyed four soil samples where epothilone producers were previously found. Compared with the < 2.5% positive strains collected from different places, epothilone producers comprised 25.0-75.0% of the Sorangium isolates in these four positive soil samples. These sympatric epothilone producers differed not only in their 16S rRNA gene sequences and morphologies but also in their production of epothilones and biosynthesis genes. A further exploration of 14 soil samples collected from a larger area around a positive site showed a similar high positive ratio of epothilone producers among the Sorangium isolates. The present results suggest that, in an area containing epothilone producers, the long-term genetic variations and refinements resulting from selective pressure form a large reservoir of epothilone-producing Sorangium strains with diverse genetic compositions.
Collapse
Affiliation(s)
- Shu-Guang Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li PF, Li SG, Li ZF, Zhao L, Wang T, Pan HW, Liu H, Wu ZH, Li YZ. Co-cultivation ofSorangium cellulosumstrains affects cellular growth and biosynthesis of secondary metabolite epothilones. FEMS Microbiol Ecol 2013; 85:358-68. [DOI: 10.1111/1574-6941.12125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/18/2013] [Accepted: 03/24/2013] [Indexed: 12/18/2022] Open
Affiliation(s)
- Peng-fei Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Shu-guang Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Zhi-feng Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Lin Zhao
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Ting Wang
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Hong-wei Pan
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Hong Liu
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Zhi-hong Wu
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology; School of Life Science; Shandong University; Jinan; China
| |
Collapse
|
8
|
Gong J, Zheng H, Wu Z, Chen T, Zhao X. Genome shuffling: Progress and applications for phenotype improvement. Biotechnol Adv 2009; 27:996-1005. [DOI: 10.1016/j.biotechadv.2009.05.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Wenzel SC, Müller R. The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat Prod Rep 2009; 26:1385-407. [DOI: 10.1039/b817073h] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Xia ZJ, Wang J, Hu W, Liu H, Gao XZ, Wu ZH, Zhang PY, Li YZ. Improving conjugation efficacy of Sorangium cellulosum by the addition of dual selection antibiotics. J Ind Microbiol Biotechnol 2008; 35:1157-63. [DOI: 10.1007/s10295-008-0395-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
|
11
|
Zhao JY, Zhong L, Shen MJ, Xia ZJ, Cheng QX, Sun X, Zhao GP, Li YZ, Qin ZJ. Discovery of the autonomously replicating plasmid pMF1 from Myxococcus fulvus and development of a gene cloning system in Myxococcus xanthus. Appl Environ Microbiol 2008; 74:1980-7. [PMID: 18245244 PMCID: PMC2292591 DOI: 10.1128/aem.02143-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Accepted: 01/23/2008] [Indexed: 11/20/2022] Open
Abstract
Myxobacteria are very important due to their unique characteristics, such as multicellular social behavior and the production of diverse and novel bioactive secondary metabolites. However, the lack of autonomously replicating plasmids has hindered genetic manipulation of myxobacteria for decades. To determine whether indigenous plasmids are present, we screened about 150 myxobacterial strains, and a circular plasmid designated pMF1 was isolated from Myxococcus fulvus 124B02. Sequence analysis showed that this plasmid was 18,634 bp long and had a G+C content of 68.7%. Twenty-three open reading frames were found in the plasmid, and 14 of them were not homologous to any known sequence. Plasmids containing the gene designated pMF1.14, which encodes a large unknown protein, were shown to transform Myxococcus xanthus DZ1 and DK1622 at high frequencies ( approximately 10(5) CFU/microg DNA), suggesting that the locus is responsible for the autonomous replication of pMF1. Shuttle vectors were constructed for both M. xanthus and Escherichia coli. The pilA gene, which is essential for pilus formation and social motility in M. xanthus, was cloned into the shuttle vectors and introduced into the pilA-deficient mutant DK10410. The transformants subsequently exhibited the ability to form pili and social motility. Autonomously replicating plasmid pMF1 provides a new tool for genetic manipulation in Myxococcus.
Collapse
Affiliation(s)
- Jing-Yi Zhao
- State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Julien B, Tian ZQ, Reid R, Reeves CD. Analysis of the ambruticin and jerangolid gene clusters of Sorangium cellulosum reveals unusual mechanisms of polyketide biosynthesis. ACTA ACUST UNITED AC 2007; 13:1277-86. [PMID: 17185223 DOI: 10.1016/j.chembiol.2006.10.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 10/02/2006] [Accepted: 10/11/2006] [Indexed: 11/20/2022]
Abstract
Ambruticins and jerangolids are structurally related antifungal polyketides produced by Sorangium cellulosum strains. Comparative analysis of the gene clusters and characterization of compounds produced by gene knockout strains suggested hypothetical schemes for biosynthesis of these compounds. Polyketide synthase (PKS) architecture suggests that the pyran ring structure common to ambruticins and jerangolids forms by an intramolecular reaction on a PKS-bound intermediate. Disrupting ambM, encoding a discrete enzyme homologous to PKS C-methyltransferase domains, gave 15-desmethylambruticins. Thus, AmbM is required for C-methylation, but not pyran ring formation. Several steps in the post-PKS modification of ambruticin involve new enzymology. Remarkably, the methylcyclopropane ring and putative carbon atom excision during ambruticin biosynthesis apparently occur on the PKS assembly line. The mechanism probably involves a Favorskii rearrangement, but further work is required to elucidate these complex events.
Collapse
Affiliation(s)
- Bryan Julien
- Kosan Biosciences, Inc., 3832 Bay Center Place, Hayward, California 94545, USA
| | | | | | | |
Collapse
|
13
|
Gong GL, Sun X, Liu XL, Hu W, Cao WR, Liu H, Liu WF, Li YZ. Mutation and a high-throughput screening method for improving the production of Epothilones of Sorangium. J Ind Microbiol Biotechnol 2007; 34:615-23. [PMID: 17647035 DOI: 10.1007/s10295-007-0236-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Accepted: 06/03/2007] [Indexed: 10/23/2022]
Abstract
The epothilones are highly promising prospective anticancer agents that are produced by the myxobacterium Sorangium cellulosum. We mutated the epothilone producing S. cellulosum strain So0157-2 to improve the production of epothilones. For evaluation in high-throughput of a large number of mutants, we developed a simple microtiter method for primary screening. Using the classical UV-mutation method plus selection pressures, the production capacity was increased about 0.5 approximately 2.5 times the starting strain. The mutants with higher production and different phenotypes were further subjected to recursive protoplast fusions and the fusants products were screened under multi-selection pressure. Furthermore, the production was greatly increased by the genome shuffling. For epothilone B, the production of one fusant was increased about 130 times compared to the starting strain, increasing from 0.8 mg l(-1) to 104 mg l(-1).
Collapse
Affiliation(s)
- Guo-li Gong
- State Key Libratory of Microbial Technology, College of Life Science, Shan Dong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Rachid S, Gerth K, Kochems I, Müller R. Deciphering regulatory mechanisms for secondary metabolite production in the myxobacterium Sorangium cellulosum So ce56. Mol Microbiol 2007; 63:1783-96. [PMID: 17367395 DOI: 10.1111/j.1365-2958.2007.05627.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sorangium cellulosum strains produce approximately 50% of the biologically active secondary metabolites known from myxobacteria. These metabolites include several compounds of biotechnological importance such as the epothilones and chivosazols, which, respectively, stabilize the tubulin and actin skeletons of eukaryotic cells. S. cellulosum is characterized by its slow growth rate, and natural products are typically produced in low yield. In this study, biomagnetic bead separation of promoter-binding proteins and subsequent inactivation experiments were employed to identify the chivosazol regulator, ChiR, as a positive regulator of chivosazol biosynthesis in the genome-sequenced strain So ce56. Overexpression of chiR under the control of T7A1 promoter in a merodiploid mutant resulted in fivefold overproduction of chivosazol in a kinetic shake flask experiment, and 2.5-fold overproduction by fermentation. Using quantitative reverse transcription PCR and gel shift experiments employing heterologously expressed ChiR, we have shown that transcription of the chivosazol biosynthetic genes (chiA-chiF) is directly controlled by this protein. In addition, we have demonstrated that ChiR serves as a pleiotropic regulator in S. cellulosum, because mutant strains lack the ability to develop into regular fruiting bodies.
Collapse
Affiliation(s)
- Shwan Rachid
- Pharmaceutical Biotechnology, Saarland University, 66041 Saarbrücken, Germany
| | | | | | | |
Collapse
|
15
|
Tu Y, Chen GP, Wang YL. Autonomously Replicating Plasmid Transforms Sorangium cellulosum So ce90 and Induces Expression of Green Fluorescent Protein. J Biosci Bioeng 2007; 104:385-90. [DOI: 10.1263/jbb.104.385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 08/03/2007] [Indexed: 11/17/2022]
|
16
|
Zirkle R, Ligon JM, Molnár I. Cloning, sequence analysis and disruption of the mglA gene involved in swarming motility of Sorangium cellulosum So ce26, a producer of the antifungal polyketide antibiotic soraphen A. J Biosci Bioeng 2005; 97:267-74. [PMID: 16233626 DOI: 10.1016/s1389-1723(04)70202-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 02/06/2004] [Indexed: 10/26/2022]
Abstract
The myxobacterium Sorangium cellulosum So ce26, the producer of the agriculturally important fungicide antibiotic soraphen A, displays coordinated gliding motility (swarming) on agar surfaces. The consequent failure to form detached colonies represents a major obstacle for microbiological and genetic studies, since single cells representing discrete genetic events cannot be reliably separated and propagated as clones. The MglA protein, the product of the mglA gene, has been shown to be a central regulator of gliding motility and swarming in the related myxobacterium Myxococcus xanthus. We have cloned and sequenced a chromosomal locus from S. cellulosum So ce26 that shows similarity to the M. xanthus mglA locus. Insertional inactivation of the chromosomal copy of the S. cellulosum So ce26 mglA homolog resulted in a strain with a non-swarming colony phenotype. This strain is able to form distinct colonies presumably derived from single cells. This is the first report on the characterization of a genetic element of the gliding motility system in the myxobacterial suborder Sorangineae.
Collapse
Affiliation(s)
- Ross Zirkle
- Syngenta Biotechnology Inc., Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
17
|
Carvalho R, Reid R, Viswanathan N, Gramajo H, Julien B. The biosynthetic genes for disorazoles, potent cytotoxic compounds that disrupt microtubule formation. Gene 2005; 359:91-8. [PMID: 16084035 DOI: 10.1016/j.gene.2005.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 06/17/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
Disorazoles are polyketides produced by the myxobacterium Sorangium cellulosum So ce12. Their mode of action is to inhibit tubulin polymerization and destabilize microtubules. Using transposon mutagenesis, two mutant strains were identified that produced no disorazoles. Sequencing the DNA flanking the insertions revealed a polyketide synthase gene cluster that would encode three polypeptides, DszA, DszB, and DszC, with DszC containing both nonribosomal peptide synthetase and polyketide synthase modules. The disorazole polyketide synthase modules lack an acyltransferase domain. Instead, a separate gene, dszD, encodes an AT protein, thus revealing that the disorazole gene cluster falls into the trans-AT Type I family of PKS enzymes.
Collapse
Affiliation(s)
- Ruby Carvalho
- Kosan Biosciences, Inc., 3832 Bay Center Place, Hayward, CA 94545, USA
| | | | | | | | | |
Collapse
|