1
|
Dhakal S, Macreadie I. The Use of Yeast in Biosensing. Microorganisms 2022; 10:1772. [PMID: 36144374 PMCID: PMC9505958 DOI: 10.3390/microorganisms10091772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Yeast has been used as a model for several diseases as it is the simplest unicellular eukaryote, safe and easy to culture and harbors most of the fundamental processes that are present in almost all higher eukaryotes, including humans. From understanding the pathogenesis of disease to drug discovery studies, yeast has served as an important biosensor. It is not only due to the conservation of genetics, amenable modification of its genome and easily accessible analytical methods, but also some characteristic features such as its ability to survive with defective mitochondria, making it a highly flexible microbe for designing whole-cell biosensing systems. The aim of this review is to report on how yeasts have been utilized as biosensors, reporting on responses to various stimuli.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
2
|
Martin-Yken H. Yeast-Based Biosensors: Current Applications and New Developments. BIOSENSORS 2020; 10:E51. [PMID: 32413968 PMCID: PMC7277604 DOI: 10.3390/bios10050051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
Abstract
Biosensors are regarded as a powerful tool to detect and monitor environmental contaminants, toxins, and, more generally, organic or chemical markers of potential threats to human health. They are basically composed of a sensor part made up of either live cells or biological active molecules coupled to a transducer/reporter technological element. Whole-cells biosensors may be based on animal tissues, bacteria, or eukaryotic microorganisms such as yeasts and microalgae. Although very resistant to adverse environmental conditions, yeasts can sense and respond to a wide variety of stimuli. As eukaryotes, they also constitute excellent cellular models to detect chemicals and organic contaminants that are harmful to animals. For these reasons, combined with their ease of culture and genetic modification, yeasts have been commonly used as biological elements of biosensors since the 1970s. This review aims first at giving a survey on the different types of yeast-based biosensors developed for the environmental and medical domains. We then present the technological developments currently undertaken by academic and corporate scientists to further drive yeasts biosensors into a new era where the biological element is optimized in a tailor-made fashion by in silico design and where the output signals can be recorded or followed on a smartphone.
Collapse
Affiliation(s)
- Helene Martin-Yken
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR 792 Toulouse Biotechnology Institute (TBI), 31400 Toulouse, France; ; Tel.: +689-89-52-31-88
- Institut de Recherche pour le Développement (IRD), Faa’a, 98702 Tahiti, French Polynesia
- Unite Mixte de Recherche n°241 Ecosystemes Insulaires et Oceaniens, Université de la Polynésie Française, Faa’a, 98702 Tahiti, French Polynesia
- Laboratoire de Recherche sur les Biotoxines Marines, Institut Louis Malardé, Papeete, 98713 Tahiti, French Polynesia
| |
Collapse
|
3
|
Azri FA, Eissa S, Zourob M, Chinnappan R, Sukor R, Yusof NA, Raston NHA, Alhoshani A, Jinap S. Electrochemical determination of zearalenone using a label-free competitive aptasensor. Mikrochim Acta 2020; 187:266. [PMID: 32279134 DOI: 10.1007/s00604-020-4218-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/06/2020] [Indexed: 11/25/2022]
Abstract
An electrochemical aptasensor is described for determination of the phytohormone of zearalenone (ZEA). The gold electrode was modified with ZEA via covalent attachment using cysteamine-hydrochloride and 1,4-phenylene diisocyanate linker. A truncated ZEA aptamer with a dissociation constant of 13.4 ± 2.1 nM was used in an aptasensor. The electrochemical property was investigated using square wave voltammetry for monitoring the change in the electron transfer using the ferro/ferricyanide system as redox probe. Under optimal experimental conditions, the response was best measured at a potential of 0.20 V (vs. Ag/AgCl). The signals depended on the competitive mechanism between the immobilised ZEA and free ZEA for the aptamer binding site. The aptasensor works in the range 0.01 to 1000 ng·mL-1 ZEA concentration, with a detection limit of 0.017 ng·mL-1. High degree of cross-reactivity with the other analogues of ZEA was observed, whereas none towards other mycotoxins. The aptasensor was further applied for the determination of ZEA in the extract of maize grain and showed good recovery percentages between 87 and 110%. Graphical abstract Schematic representation of the electrochemical determination of zearalenone based on indirect competitive assay. Step a Immobilisation of ZEA on the surface of gold electrode via covalent attachment, b competition for the ZEA aptamer binding site between immobilised and free ZEA, and c current signal of the binding event based on SWV technique.
Collapse
Affiliation(s)
- Farah Asilah Azri
- Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Shimaa Eissa
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi, Riyadh, 11533, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi, Riyadh, 11533, Saudi Arabia
| | - Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi, Riyadh, 11533, Saudi Arabia
| | - Rashidah Sukor
- Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Nurul Hanun Ahmad Raston
- School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ali Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11533, Saudi Arabia
| | - Selamat Jinap
- Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia. .,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Fruhauf S, Novak B, Nagl V, Hackl M, Hartinger D, Rainer V, Labudová S, Adam G, Aleschko M, Moll WD, Thamhesl M, Grenier B. Biotransformation of the Mycotoxin Zearalenone to its Metabolites Hydrolyzed Zearalenone (HZEN) and Decarboxylated Hydrolyzed Zearalenone (DHZEN) Diminishes its Estrogenicity In Vitro and In Vivo. Toxins (Basel) 2019; 11:toxins11080481. [PMID: 31434326 PMCID: PMC6722729 DOI: 10.3390/toxins11080481] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 01/10/2023] Open
Abstract
Zearalenone (ZEN)-degrading enzymes are a promising strategy to counteract the negative effects of this mycotoxin in livestock. The reaction products of such enzymes need to be thoroughly characterized before technological application as a feed additive can be envisaged. Here, we evaluated the estrogenic activity of the metabolites hydrolyzed zearalenone (HZEN) and decarboxylated hydrolyzed zearalenone (DHZEN) formed by hydrolysis of ZEN by the zearalenone-lactonase Zhd101p. ZEN, HZEN, and DHZEN were tested in two in vitro models, the MCF-7 cell proliferation assay (0.01–500 nM) and an estrogen-sensitive yeast bioassay (1–10,000 nM). In addition, we compared the impact of dietary ZEN (4.58 mg/kg) and equimolar dietary concentrations of HZEN and DHZEN on reproductive tract morphology as well as uterine mRNA and microRNA expression in female piglets (n = 6, four weeks exposure). While ZEN increased cell proliferation and reporter gene transcription, neither HZEN nor DHZEN elicited an estrogenic response, suggesting that these metabolites are at least 50–10,000 times less estrogenic than ZEN in vitro. In piglets, HZEN and DHZEN did not increase vulva size or uterus weight. Moreover, RNA transcripts altered upon ZEN treatment (EBAG9, miR-135a-5p, miR-187-3p and miR-204-5p) were unaffected by HZEN and DHZEN. Our study shows that both metabolites exhibit markedly reduced estrogenicity in vitro and in vivo, and thus provides an important basis for further evaluation of ZEN-degrading enzymes.
Collapse
Affiliation(s)
| | - Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | | | | | | | | | - Gerhard Adam
- Institute of Applied Genetics and Cell Biology (IAGZ), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, 3430 Tulln, Austria
| | | | | | | | | |
Collapse
|
5
|
Ye J, Luo D, Yu J, Zhu S. Transcriptome analysis identifies key regulators and networks in Acute myeloid leukemia. ACTA ACUST UNITED AC 2019; 24:487-491. [PMID: 31210592 DOI: 10.1080/16078454.2019.1631506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is a heterogeneous and highly recurrent hematological malignancy. Studies have shown an association between microRNAs and drive genes in AMLs. However, the regulatory roles of miRNAs in AML and how they act on downstream targets and the signaling pathway has been little studied. METHODS As to understand the mechanism of mRNA-miRNA interaction in the blood malignancy from a large scale of transcriptomic sequencing studies, we applied a comprehensive miRNA-mRNA association, co-expression gene network and ingenuity pathway analysis using TCGA AML datasets. RESULTS Our results showed that his-mir-335 was a critical regulatory of homeobox A gene family. PBX3, KAT6A, MEIS1, and COMMD3-BMI1 were predicted as top transcription regulators in the regulatory network of the HOXA family. The most significantly enriched functions were cell growth, proliferation, and survival in the mRNA-miRNA network. CONCLUSION Our work revealed that regulation of the HOXA gene family and its regulation played an important role in the development of AML.
Collapse
Affiliation(s)
- Jiaxin Ye
- a Department of Hematology , Shaoxing Shangyu People's Hospital , Shaoxing , People's Republic of China
| | - Daliang Luo
- a Department of Hematology , Shaoxing Shangyu People's Hospital , Shaoxing , People's Republic of China
| | - Jianhong Yu
- b Department of Geriatric , Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital) , Zhejiang , People's Republic of China
| | - Sibo Zhu
- c School of Life Sciences, Fudan University , Shanghai , People's Republic of China
| |
Collapse
|
6
|
Abstract
Modern analysis of food and feed is mostly focused on development of fast and reliable portable devices intended for field applications. In this review, electrochemical biosensors based on immunological reactions and aptamers are considered in the determination of mycotoxins as one of most common contaminants able to negatively affect human health. The characteristics of biosensors are considered from the point of view of general principles of bioreceptor implementation and signal transduction providing sub-nanomolar detection limits of mycotoxins. Moreover, the modern trends of bioreceptor selection and modification are discussed as well as future trends of biosensor development for mycotoxin determination are considered.
Collapse
|
7
|
The Antagonistic Effect of Mycotoxins Deoxynivalenol and Zearalenone on Metabolic Profiling in Serum and Liver of Mice. Toxins (Basel) 2017; 9:toxins9010028. [PMID: 28075412 PMCID: PMC5308260 DOI: 10.3390/toxins9010028] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022] Open
Abstract
Metabolic profiling in liver and serum of mice was studied for the combined toxic effects of deoxynivalenol (DON) and zearalenone (ZEN), through gas chromatography mass spectrum. The spectrum of serum and liver sample of mice, treated with individual 2 mg/kg DON, 20 mg/kg ZEN, and the combined DON + ZEN with final concentration 2 mg/kg DON and 20 mg/kg ZEN for 21 days, were deconvoluted, aligned and identified with MS DIAL. The data matrix was processed with univariate analysis and multivariate analysis for selection of metabolites with variable importance for the projection (VIP) > 1, t-test p value < 0.05. The metabolic pathway analysis was performed with MetaMapp and drawn by CytoScape. Results show that the combined DON and ZEN treatment has an obvious “antagonistic effect” in serum and liver tissue metabolic profiling of mice. The blood biochemical indexes, like alkaline phosphatase, alanine transaminase, and albumin (ALB)/globulin (GLO), reveal a moderated trend in the combined DON + ZEN treatment group, which is consistent with histopathological examination. The metabolic pathway analysis demonstrated that the combined DON and ZEN treatment could down-regulate the valine, leucine and isoleucine biosynthesis, glycine, serine and threonine metabolism, and O-glycosyl compounds related glucose metabolism in liver tissue. The metabolic profiling in serum confirmed the finding that the combined DON and ZEN treatment has an “antagonistic effect” on liver metabolism of mice.
Collapse
|
8
|
Ji J, Gu W, Sun C, Sun J, Jiang H, Zhang Y, Sun X. A novel recombinant cell fluorescence biosensor based on toxicity of pathway for rapid and simple evaluation of DON and ZEN. Sci Rep 2016; 6:31270. [PMID: 27498557 PMCID: PMC4976381 DOI: 10.1038/srep31270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/15/2016] [Indexed: 12/25/2022] Open
Abstract
During an exposure, humans and animals are most often exposed to a mixture rather than individual mycotoxins. In this study, a Human Embryonic Kidney 293 cell (HEK-293) fluorescence sensor was developed to detect and evaluate mycotoxins, deoxynivalenol (DON) and zearalenone (ZEN) compounds, produced by Fusarium culmorum that are common food contaminants. TRE-copGFP (green fluorescent protein) and ERE-TagRFP (red fluorescent protein) plasmids were constructed and cotransfected into HEK-293 cells through a highly efficient, lipid-mediated, DNA-transfection procedure. Results show that fluorescence intensity was proportional to DON and ZEN concentrations, ranging from 2 to 40 ng/mL and 10 to 100 ng/mL respectively, with a detection limit of 0.75 ng/mL and 3.2 ng/mL respectively. The EC50 of DON and ZEN are 30.13 ng/mL and 76.63 ng/mL respectively. Additionally, ZEN may have a synergistic effect on enhancing AP-1 activity of the toxicity pathway of DON. These data indicate the high sensitivity and effectiveness of our biosensor system in the evaluation of the combined toxicity of ZEN, DON and their derivatives. In addition, this approach is suitable for an early warning method for the detection of ZEN and DON family mycotoxins contamination without higher-priced, conventional analytical chemistry methods.
Collapse
Affiliation(s)
- Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu, 214122, China
| | - Wenshu Gu
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu, 214122, China
| | - Chao Sun
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu, 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu, 214122, China
| | - Hui Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu, 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu, 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
9
|
Acetylated Deoxynivalenol Generates Differences of Gene Expression that Discriminate Trichothecene Toxicity. Toxins (Basel) 2016; 8:42. [PMID: 26861396 PMCID: PMC4773795 DOI: 10.3390/toxins8020042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/03/2016] [Indexed: 01/06/2023] Open
Abstract
Deoxynivalenol (DON), which is a toxic secondary metabolite generated by Fusarium species, is synthesized through two separate acetylation pathways. Both acetylation derivatives, 3-acetyl-DON (3ADON) and 15-acetyl-DON (15ADON), also contaminate grain and corn widely. These derivatives are deacetylated via a variety of processes after ingestion, so it has been suggested that they have the same toxicity as DON. However, in the intestinal entry region such as the duodenum, the derivatives might come into contact with intestinal epithelium cells because metabolism by microflora or import into the body has not progressed. Therefore, the differences of toxicity between DON and these derivatives need to be investigated. Here, we observed gene expression changes in the yeast pdr5Δ mutant strain under concentration-dependent mycotoxin exposure conditions. 15ADON exposure induced significant gene expression changes and DON exposure generally had a similar but smaller effect. However, the glucose transporter genes HXT2 and HXT4 showed converse trends. 3ADON also induced a different expression trend in these genes than DON and 15ADON. These differences in gene expression suggest that DON and its derivatives have different effects on cells.
Collapse
|
10
|
Hybrid nanoparticles based on magnetic multiwalled carbon nanotube-nanoC18SiO2 composites for solid phase extraction of mycotoxins prior to their determination by LC-MS. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1722-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Jungsukcharoen J, Dhiani BA, Cherdshewasart W, Vinayavekhin N, Sangvanich P, Boonchird C. Pueraria mirifica leaves, an alternative potential isoflavonoid source. Biosci Biotechnol Biochem 2014; 78:917-26. [PMID: 25036114 DOI: 10.1080/09168451.2014.910091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We investigated the major leaf isoflavonoid contents of Pueraria mirifica from three different cultivars (PM-III, PM-IV, and PM-V) using reverse RP-HPLC analysis. The proportions and net levels of puerarin, daidzin, genistin, and daidzein in P. mirifica leaves were found to depend on the plant cultivar and to correlate with cultivation temperature and rainfall amount. The crude leaf-extracts were tested using the Yeast Estrogen Screen (YES) assay with both human estrogen receptors (hERα and hERβ). Their estrogenic activity was higher when determined by the YES system containing hERβ than that with hERα and was also higher when the Δsnq2 than the wildtype yeast was employed. The results open the possibility of selecting and cultivating certain P. mirifica cultivars at a farm scale to produce a sufficient supply of leaf material to act as a starting source for the commercial scale extraction of these major isoflavonoids.
Collapse
Affiliation(s)
- Jutarmas Jungsukcharoen
- a Faculty of Science, Program in Biotechnology , Chulalongkorn University , Bangkok , Thailand
| | | | | | | | | | | |
Collapse
|
12
|
Yang J, Li J, Jiang Y, Duan X, Qu H, Yang B, Chen F, Sivakumar D. Natural occurrence, analysis, and prevention of mycotoxins in fruits and their processed products. Crit Rev Food Sci Nutr 2014; 54:64-83. [PMID: 24188233 DOI: 10.1080/10408398.2011.569860] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mycotoxins are small toxic chemical products formed as the secondary metabolites by fungi that readily contaminate foods with toxins in the field or after harvest. The presence of mycotoxins, such as aflatoxins, ochratoxin A, and patulin, in fruits and their processed products is of high concern for human health due to their properties to induce severe acute and chronic toxicity at low-dose levels. Currently, a broad range of detection techniques used for practical analysis and detection of a wide spectrum of mycotoxins are available. Many analytical methods have been developed for the determination of each group of these mycotoxins in different food matrices, but new methods are still required to achieve higher sensitivity and address other challenges that are posed by these mycotoxins. Effective technologies are needed to reduce or even eliminate the presence of the mycotoxins in fruits and their processed products. Preventive measures aimed at the inhibition of mycotoxin formation in fruits and their processed products are the most effective approach. Detoxification of mycotoxins by different physical, chemical, and biological methods are less effective and sometimes restricted because of concerns of safety, possible losses in nutritional quality of the treated commodities and cost implications. This article reviewed the available information on the major mycotoxins found in foods and feeds, with an emphasis of fruits and their processed products, and the analytical methods used for their determination. Based on the current knowledge, the major strategies to prevent or even eliminate the presence of the mycotoxins in fruits and their processed products were proposed.
Collapse
Affiliation(s)
- Jinyi Yang
- a Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences , People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kovalsky Paris MP, Schweiger W, Hametner C, Stückler R, Muehlbauer GJ, Varga E, Krska R, Berthiller F, Adam G. Zearalenone-16-O-glucoside: a new masked mycotoxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1181-1189. [PMID: 24386883 DOI: 10.1021/jf405627d] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This paper reports the identification of a barley UDP-glucosyltransferase, HvUGT14077, which is able to convert the estrogenic Fusarium mycotoxin zearalenone into a near-equimolar mixture of the known masked mycotoxin zearalenone-14-O-β-glucoside and a new glucose conjugate, zearalenone-16-O-β-glucoside. Biocatalytical production using engineered yeast expressing the HvUGT14077 gene allowed structural elucidation of this compound. The purified zearalenone-16-O-β-glucoside was used as an analytical calibrant in zearalenone metabolization experiments. This study confirmed the formation of this new masked mycotoxin in barley seedlings as well as in wheat and Brachypodium distachyon cell suspension cultures. In barley roots, up to 18-fold higher levels of zearalenone-16-O-β-glucoside compared to the known zearalenone-14-O-β-glucoside were found. Incubation of zearalenone-16-O-β-glucoside with human fecal slurry showed that this conjugate can also be hydrolyzed rapidly by intestinal bacteria, converting the glucoside back to the parental mycotoxin. Consequently, it should be considered as an additional masked form of zearalenone with potential relevance for food safety.
Collapse
Affiliation(s)
- Maria Paula Kovalsky Paris
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna , Konrad Lorenz Straße 24, A-3430 Tulln, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mbundi L, Gallar-Ayala H, Khan MR, Barber JL, Losada S, Busquets R. Advances in the Analysis of Challenging Food Contaminants. ADVANCES IN MOLECULAR TOXICOLOGY 2014. [DOI: 10.1016/b978-0-444-63406-1.00002-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Sebaei AS, Gomaa AM, Mohamed GG, Nour El-Di F. Simple Validated Method for Determination of Deoxynivalenol and Zearalenone in Some Cereals Using High Performance Liquid Chromatography. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajft.2012.668.678] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain. PLoS One 2012; 7:e43608. [PMID: 23049739 PMCID: PMC3458049 DOI: 10.1371/journal.pone.0043608] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/24/2012] [Indexed: 12/04/2022] Open
Abstract
Zearalenone (hereafter referred to as ZEA) is a nonsteroidal estrogenic mycotoxin produced by several Fusarium spp. on cereal grains. ZEA is one of the most hazardous natural endocrine disrupting chemicals (EDC) which induces hyper estrogenic responses in mammals. This can result in reproductive disorders in farm animals as well as in humans. Consequently, detoxification strategies for contaminated crops are crucial for food safety. In this study we have developed a bacterial based detoxification system using a non-pathogen Rhodococcus pyridinivorans K408 strain. Following 5 days treatment of ZEA with R. pyridinivorans K408 strain HPLC analyses showed an 87.21% ZEA-degradation efficiency of the bacterial enzyme systems. In another approach, the strain biotransformation ability has also been confirmed by a bioluminescent version of the yeast estrogen screening system (BLYES), which detected an 81.75% of biodegradability of ZEA, in a good agreement with the chemical analyses. Furthermore, the capacity of R. pyridinivorans to eliminate the estrogenic effects of ZEA was tested by using an immature uterotrophic assay. Prepubertal female rats were treated with vehicle (olive oil), 17β-estradiol, ZEA (0.1-1-5-10 mg/kg body weight) and LB broth containing 500 mg/l ZEA that has already been incubated with or without Rhodococcus pyridinivorans K408 strain. Uterine weights were measured and the mRNA level changes relating to apelin, aquaporin 5, complement component 2, and calbindin-3 genes were measured by qRT-PCR. These genes represent the major pathways that are affected by estromimetic compounds. Zearalenone feeding significantly increased the uterus weight in a dose dependent manner and at the same time upregulated complement component 2 and calbindin-3 expression as well as decreased apelin and aquaporin 5 mRNA levels comparable to that seen in 17β-estradiol exposed rats. In contrast, LB broth in which ZEA was incubated with Rhodococcus pyridinivorans K408 prior to the feeding did not display any estrogenic effect neither on uterine weight nor on the expression of estrogen-regulated genes. Consequently, the identification of Rhodococcus pyridinivorans K408 strain in ZEA biodegradation proved to be a very efficient biological tool that is able to eliminate the complete estrogenic effects of ZEA. It is also remarkable that this biotransformation pathway of ZEA did not result in any residual estrogenic effects.
Collapse
|
17
|
Suzuki T, Iwahashi Y. Comprehensive gene expression analysis of type B trichothecenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9519-9527. [PMID: 22897823 DOI: 10.1021/jf3020975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Type B trichothecenes, deoxynivalenol (DON) and nivalenol (NIV), are secondary metabolites of Fusarium species and are major pollutants in food and feed products. Recently, the production trend of their derivatives, 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), and 4-acetylnivalenol (4-AcNIV or fusarenon-X), has been changing in various regions worldwide. Although in vivo behavior has been reported, it is necessary to acquire more detailed information about these derivatives. Here, the yeast PDR5 mutant was used for toxicity evaluation, and the growth test revealed that DON, 15-AcDON, and 4-AcNIV had higher toxicity compared to 3-AcDON and NIV. 15-AcDON exerted the most significant gene expression changes, and cellular localization clustering exhibited repression of mitochondrial ribosomal genes. This study suggests that the toxicity trends of both DON products (DON and its derivatives) and NIV products (NIV and its derivatives) are similar to those observed in mammalian cells, with a notable toxic response to 15-AcDON.
Collapse
Affiliation(s)
- Tadahiro Suzuki
- Applied Microbiology Division, National Food Research Institute, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
18
|
p53 transactivation and the impact of mutations, cofactors and small molecules using a simplified yeast-based screening system. PLoS One 2011; 6:e20643. [PMID: 21674059 PMCID: PMC3107237 DOI: 10.1371/journal.pone.0020643] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/06/2011] [Indexed: 11/19/2022] Open
Abstract
Background The p53 tumor suppressor, which is altered in most cancers, is a sequence-specific transcription factor that is able to modulate the expression of many target genes and influence a variety of cellular pathways. Inactivation of the p53 pathway in cancer frequently occurs through the expression of mutant p53 protein. In tumors that retain wild type p53, the pathway can be altered by upstream modulators, particularly the p53 negative regulators MDM2 and MDM4. Methodology/Principal Findings Given the many factors that might influence p53 function, including expression levels, mutations, cofactor proteins and small molecules, we expanded our previously described yeast-based system to provide the opportunity for efficient investigation of their individual and combined impacts in a miniaturized format. The system integrates i) variable expression of p53 proteins under the finely tunable GAL1,10 promoter, ii) single copy, chromosomally located p53-responsive and control luminescence reporters, iii) enhanced chemical uptake using modified ABC-transporters, iv) small-volume formats for treatment and dual-luciferase assays, and v) opportunities to co-express p53 with other cofactor proteins. This robust system can distinguish different levels of expression of WT and mutant p53 as well as interactions with MDM2 or 53BP1. Conclusions/Significance We found that the small molecules Nutlin and RITA could both relieve the MDM2-dependent inhibition of WT p53 transactivation function, while only RITA could impact p53/53BP1 functional interactions. PRIMA-1 was ineffective in modifying the transactivation capacity of WT p53 and missense p53 mutations. This dual-luciferase assay can, therefore, provide a high-throughput assessment tool for investigating a matrix of factors that can influence the p53 network, including the effectiveness of newly developed small molecules, on WT and tumor-associated p53 mutants as well as interacting proteins.
Collapse
|
19
|
|
20
|
Suzuki T, Iwahashi Y. Gene expression profile of MAP kinase PTC1 mutant exposed to deoxynivalenol. CHEM-BIO INFORMATICS JOURNAL 2011. [DOI: 10.1273/cbij.11.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tadahiro Suzuki
- Applied Microbiology Division, National Food Research Institute
| | - Yumiko Iwahashi
- Applied Microbiology Division, National Food Research Institute
| |
Collapse
|
21
|
Cleavage of zearalenone by Trichosporon mycotoxinivorans to a novel nonestrogenic metabolite. Appl Environ Microbiol 2010; 76:2353-9. [PMID: 20118365 DOI: 10.1128/aem.01438-09] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zearalenone (ZON) is a potent estrogenic mycotoxin produced by several Fusarium species most frequently on maize and therefore can be found in food and animal feed. Since animal production performance is negatively affected by the presence of ZON, its detoxification in contaminated plant material or by-products of bioethanol production would be advantageous. Microbial biotransformation into nontoxic metabolites is one promising approach. In this study the main transformation product of ZON formed by the yeast Trichosporon mycotoxinivorans was identified and characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and LC-diode array detector (DAD) analysis. The metabolite, named ZOM-1, was purified, and its molecular formula, C(18)H(24)O(7), was established by time of flight MS (TOF MS) from the ions observed at m/z 351.1445 [M-H](-) and at m/z 375.1416 [M+Na](+). Employing nuclear magnetic resonance (NMR) spectroscopy, the novel ZON metabolite was finally identified as (5S)-5-({2,4-dihydroxy-6-[(1E)-5-hydroxypent-1-en-1-yl]benzoyl}oxy)hexanoic acid. The structure of ZOM-1 is characterized by an opening of the macrocyclic ring of ZON at the ketone group at C6'. ZOM-1 did not show estrogenic activity in a sensitive yeast bioassay, even at a concentration 1,000-fold higher than that of ZON and did not interact with the human estrogen receptor in an in vitro competitive binding assay.
Collapse
|
22
|
SUZUKI T, SIRISATTHA S, MORI K, IWAHASHI Y. Mycotoxin Toxicity in Saccharomyces cerevisiae Differs Depending on Gene Mutations. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2009. [DOI: 10.3136/fstr.15.453] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Stepanov A, Nitiss KC, Neale G, Nitiss JL. Enhancing drug accumulation in Saccharomyces cerevisiae by repression of pleiotropic drug resistance genes with chimeric transcription repressors. Mol Pharmacol 2008; 74:423-31. [PMID: 18469141 PMCID: PMC2597350 DOI: 10.1124/mol.107.044651] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yeast is a powerful model system for studying the action of small-molecule therapeutics. An important limitation has been low efficacy of many small molecules in yeast due to limited intracellular accumulation. We used the DNA binding domain of the pleiotropic drug resistance regulator pleiotropic drug resistance 1 (Pdr1) fused in-frame to transcription repressors to repress Pdr1-regulated genes. Expression of these chimeric regulators conferred dominant enhancement of sensitivity to a different class of compounds and led to greatly diminished levels of Pdr1p-regulated transcripts, including the yeast p-glycoprotein homolog Pdr5. Enhanced sensitivity was seen for a wide range of small molecules. Biochemical measurements demonstrated enhanced accumulation of rhodamine in yeast cells expressing the chimeric repressors. These repressors of Pdr1p-regulated transcripts can be introduced into large collections of strains such as the Saccharomyces cerevisiae deletion set and enhance the utility of yeast for studying drug action and for mechanism-based drug discovery.
Collapse
Affiliation(s)
- Alexander Stepanov
- St. Jude Children's Research Hospital, Molecular Pharmacology Department, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
24
|
Efficacy of mineral and organic adsorbent in alleviating harmful effects of zearalenone on pigs performance and health. ACTA VET-BEOGRAD 2008. [DOI: 10.2298/avb0803211n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Krenn P, Berthiller F, Schweiger W, Hametner C, Ludwig R, Adam G, Krska R, Schuhmacher R. Production of zearalenone-4-glucoside, a-zearalenol-4-glucoside and ß-zearalenol-4-glucoside. Mycotoxin Res 2007; 23:180-4. [DOI: 10.1007/bf02946045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 09/06/2007] [Indexed: 10/21/2022]
|
26
|
Utermark J, Karlovsky P. Quantification of green fluorescent protein fluorescence using real-time PCR thermal cycler. Biotechniques 2006; 41:150, 152, 154. [PMID: 16925016 DOI: 10.2144/000112221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Poppenberger B, Berthiller F, Bachmann H, Lucyshyn D, Peterbauer C, Mitterbauer R, Schuhmacher R, Krska R, Glössl J, Adam G. Heterologous expression of Arabidopsis UDP-glucosyltransferases in Saccharomyces cerevisiae for production of zearalenone-4-O-glucoside. Appl Environ Microbiol 2006; 72:4404-10. [PMID: 16751557 PMCID: PMC1489669 DOI: 10.1128/aem.02544-05] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 04/04/2006] [Indexed: 02/01/2023] Open
Abstract
Zearalenone, a secondary metabolite produced by several plant-pathogenic fungi of the genus Fusarium, has high estrogenic activity in vertebrates. We developed a Saccharomyces cerevisiae bioassay strain that we used to identify plant genes encoding UDP-glucosyltransferases that can convert zearalenone into zearalenone-4-O-glucoside (ZON-4-O-Glc). Attachment of the glucose moiety to zearalenone prevented the interaction of the mycotoxin with the human estrogen receptor. We found that two of six clustered, similar UGT73C genes of Arabidopsis thaliana encode glucosyltransferases that can inactivate zearalenone in the yeast bioassay. The formation of glucose conjugates seems to be an important plant mechanism for coping with zearalenone but may result in significant amounts of "masked" zearalenone in Fusarium-infected plant products. Due to the unavailability of an analytical standard, the ZON-4-O-Glc is not measured in routine analytical procedures, even though it can be converted back to active zearalenone in the digestive tracts of animals. Zearalenone added to yeast transformed with UGT73C6 was converted rapidly and efficiently to ZON-4-O-Glc, suggesting that the cloned UDP-glucosyltransferase could be used to produce reference glucosides of zearalenone and its derivatives.
Collapse
Affiliation(s)
- Brigitte Poppenberger
- Institute of Applied Genetics and Cell Biology, Department of Applied Plant Sciences and Plant Biotechnology, BOKU-University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Beg MU, Al-Mutairi M, Beg KR, Al-Mazeedi HM, Ali LN, Saeed T. Mycotoxins in poultry feed in Kuwait. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 50:594-602. [PMID: 16435083 DOI: 10.1007/s00244-005-2094-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 08/22/2005] [Indexed: 05/06/2023]
Abstract
A survey was conducted at a poultry feed production unit in Kuwait for mycotoxin contamination in the samples of yellow maize, soybean meal, wheat bran used as raw material and the poultry feed prepared for broiler starter, broiler finisher, and layer mash. Individual aflatoxins were determined by high-pressure liquid chromatography after immunoaffinity column purification. Repeated analysis revealed average aflatoxin concentration in maize at 0.27 ppb (range 0 to 1.69 ppb), soybean meal at 0.20 ppb (range 0 to 1.27 ppb), wheat bran at 0.15 ppb (range 0 to 1.07 ppb), prepared poultry feed for broiler starter at 0.48 ppb (range 0 to 3.26 ppb), broiler finisher at 0.39 ppb (range 0 to 1.05 ppb), and layer mash at 0.21 ppb (range 0 to 1.30 ppb). Other mycotoxins (ochratoxin, fumonisin, deoxynivalenol (DON), and zearalenone), were detected by quantitative enzyme-linked immunosorbent assay. The average levels of ochratoxin A ranged from 4.6 to 9.6 ppb, fumonisin from 1.4 to 3.2 ppm, DON from 0.17 to 0.29 ppm, and zearalenone from 46.4 to 67.6 ppb in various commodities and prepared feed samples. The study revealed the coexistence of determined mycotoxins, although their concentrations in general were found to be lower than the permissible levels, wherever defined, for the poultry feed.
Collapse
Affiliation(s)
- M U Beg
- Environmental Sciences Department, Kuwait Institute for Scientific Research, Safat.
| | | | | | | | | | | |
Collapse
|
29
|
Pachlinger R, Mitterbauer R, Adam G, Strauss J. Metabolically independent and accurately adjustable Aspergillus sp. expression system. Appl Environ Microbiol 2005; 71:672-8. [PMID: 15691916 PMCID: PMC546773 DOI: 10.1128/aem.71.2.672-678.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filamentous fungi are well-established expression hosts often used to produce extracellular proteins of use in the food and pharmaceutical industries. The expression systems presently used in Aspergillus species rely on either strong constitutive promoters, e.g., that for glyceraldehyde-3-phosphate dehydrogenase, or inducible systems derived from metabolic pathways, e.g., glaA (glucoamylase) or alc (alcohol dehydrogenase). We describe for Aspergillus nidulans and Aspergillus niger a novel expression system that utilizes the transcriptional activation of the human estrogen receptor by estrogenic substances. The system functions independently from metabolic signals and therefore can be used with low-cost, complex media. A combination of positive and negative regulatory elements in the promoter drives the expression of a reporter gene, yielding a linear dose response to the inducer. The off status is completely tight, yet the system responds within minutes to induction and reaches a level of expression of up to 15% of total cell protein after 8 h. Both Aspergillus species are very sensitive to estrogenic substances, and low-cost inducers function in the picomolar concentration range, at which estrogenic substances also can be found in the environment. Given this high sensitivity to estrogens, Aspergillus cells carrying estrogen-responsive units could be used to detect xenoestrogens in food or in the environment.
Collapse
Affiliation(s)
- Robert Pachlinger
- Institut für Angewandte Genetik und Zellbiologie, BOKU-University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | |
Collapse
|
30
|
Takahashi-Ando N, Ohsato S, Shibata T, Hamamoto H, Yamaguchi I, Kimura M. Metabolism of zearalenone by genetically modified organisms expressing the detoxification gene from Clonostachys rosea. Appl Environ Microbiol 2004; 70:3239-45. [PMID: 15184117 PMCID: PMC427733 DOI: 10.1128/aem.70.6.3239-3245.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zearalenone (ZEN) is converted to a nontoxic product by a lactonohydololase encoded by zhd101. An enhanced green fluorescent protein (EGFP) gene was fused to zhd101 (i.e., egfp::zhd101) and expressed in Escherichia coli. Both recombinant ZHD101 and EGFP::ZHD101 were purified to homogeneity and characterized. Maximal activity of ZHD101 toward ZEN was measured at approximately 37 to 45 degrees C and pH 10.5 (k(cat) at 30 degrees C, 0.51 s(-1)). The enzyme was irreversibly inactivated at pH values below 4.5 or by treatment with serine protease inhibitors. ZHD101 was also active against five ZEN cognates, although the efficiencies were generally low; e.g., the k(cat) was highest with zearalanone (1.5 s(-1)) and lowest with beta-zearalenol (0.075 s(-1)). EGFP::ZHD101 had properties similar to those of the individual proteins with regard to the EGFP fluorescence and lactonohydrolase activity. Fortuitously, EGFP::ZHD101 exhibited a good correlation between the fluorescence intensity and reaction velocity under various pH conditions. We therefore used egfp::zhd101 to visually monitor the lactonohydrolase activity in genetically modified organisms and evaluated the usefulness of zhd101 for in vivo detoxification of ZEN. While recombinant E. coli and transgenic rice calluses exhibited strong EGFP fluorescence and completely degraded ZEN in liquid media, recombinant Saccharomyces cerevisiae gave poor fluorescence and did not eliminate all the toxicity of the mycotoxin in the medium; i.e., the rest of ZEN was transformed into an unfavorable substrate, beta-zearalenol, by an as-yet-unidentified reductase and remained in the medium. Even so, as much as 75% of ZEN was detoxified by the yeast transformant, which is better than the detoxification system in which food-grade Lactobacillus strains are used (H. El-Nezami, N. Polychronaki, S. Salminen, and H. Mykkuäne, Appl. Environ. Microbiol. 68:3545-3549, 2002). An appropriate combination of a candidate host microbe and the codon-optimized synthetic gene may contribute significantly to establishing a mycotoxin detoxification system for food and feed.
Collapse
Affiliation(s)
- Naoko Takahashi-Ando
- Laboratory for Remediation Research, Plant Science Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Lee SH, Jung BH, Kim SY, Chung BC. Determination of phytoestrogens in traditional medicinal herbs using gas chromatography–mass spectrometry. J Nutr Biochem 2004; 15:452-60. [PMID: 15302079 DOI: 10.1016/j.jnutbio.2004.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Revised: 11/28/2003] [Accepted: 01/04/2004] [Indexed: 11/17/2022]
Abstract
Quantitative analytical methods for the 17 phytoestrogens containing isoflavonoids, lignans, and mycoestrogens in herbs were developed, and the amount of phytoestrogens was determined in 22 traditional medicinal herbs. The focus of this study was to simplify the purification procedure for removing many kinds of interferences in herbs, and to select adequate derivatization reagent for getting desirable selectivity and sensitivity in the quantitative determination of phytoestrogens. To satisfy these goals, we performed a solid-phase extraction with Oasis HLB cartridges following enzymatic and acidic hydrolysis, and we used the mixture of MSTFA/NH4I/DTE (1000:4:5, v/w/w) to form TMS derivatives of phytoestrogens. Overall recovery was more than 84% in all of the phytoestrogens, and the limit of quantification for phytoestrogens in herbs were set at 0.2 microg/g. Coefficient of variation percentages were in the range of 0.18-15.68% (within-day) and 0.23-16.61% (day-to-day), respectively. Most of the isoflavonoids and lignans were found in all of the herbs, but mycoestrogens were not detected at all. The Leguminosae family proved to be the richest source of isoflavonoids. Lignans such as enterodiol and enterolactone were detected at low concentration in most of the herbs. These results indicate that this assay is accurate and reliable for the determination of phytoestrogens in herbs. Also, information regarding the phytoestrogen contents in traditional medicinal herbs is useful in the prevention and treatment of chronic diseases such as cancer, osteoporosis, dementia, and cardiovascular disease.
Collapse
Affiliation(s)
- Sang Hee Lee
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul, South Korea
| | | | | | | |
Collapse
|
32
|
Current awareness on yeast. Yeast 2003; 20:837-44. [PMID: 12886942 DOI: 10.1002/yea.946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|