1
|
Haque F, Diba F, Istiaq A, Siddique MA, Mou TJ, Hossain MA, Sultana M. Novel insights into the co-selection of metal-driven antibiotic resistance in bacteria: a study of arsenic and antibiotic co-exposure. Arch Microbiol 2024; 206:194. [PMID: 38538852 DOI: 10.1007/s00203-024-03873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 04/16/2024]
Abstract
The simultaneous development of antibiotic resistance in bacteria due to metal exposure poses a significant threat to the environment and human health. This study explored how exposure to both arsenic and antibiotics affects the ability of an arsenite oxidizer, Achromobacter xylosoxidans CAW4, to transform arsenite and its antibiotic resistance patterns. The bacterium was isolated from arsenic-contaminated groundwater in the Chandpur district of Bangladesh. We determined the minimum inhibitory concentration (MIC) of arsenite, cefotaxime, and tetracycline for A. xylosoxidans CAW4, demonstrating a multidrug resistance (MDR) trait. Following this determination, we aimed to mimic an environment where A. xylosoxidans CAW4 was exposed to both arsenite and antibiotics. We enabled the strain to grow in sub-MIC concentrations of 1 mM arsenite, 40 µg/mL cefotaxime, and 20 µg/mL tetracycline. The expression dynamics of the arsenite oxidase (aioA) gene in the presence or absence of antibiotics were analyzed. The findings indicated that simultaneous exposure to arsenite and antibiotics adversely affected the bacteria's capacity to metabolize arsenic. However, when arsenite was present in antibiotics-containing media, it promoted bacterial growth. The study observed a global downregulation of the aioA gene in arsenic-antibiotic conditions, indicating the possibility of increased susceptibility through co-resistance across the entire bacterial population of the environment. This study interprets that bacterial arsenic-metabolizing ability can rescue the bacteria from antibiotic stress, further disseminating environmental cross-resistance. Therefore, the co-selection of metal-driven antibiotic resistance in bacteria highlights the need for effective measures to address this emerging threat to human health and the environment.
Collapse
Affiliation(s)
- Farhana Haque
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Farzana Diba
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment, Savar, Dhaka, 1349, Bangladesh
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Sciences, Kyushu University, Fukuoka, Japan
| | - Mohammad Anwar Siddique
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Taslin Jahan Mou
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
2
|
Tsagogiannis E, Asimakoula S, Drainas AP, Marinakos O, Boti VI, Kosma IS, Koukkou AI. Elucidation of 4-Hydroxybenzoic Acid Catabolic Pathways in Pseudarthrobacter phenanthrenivorans Sphe3. Int J Mol Sci 2024; 25:843. [PMID: 38255919 PMCID: PMC10815724 DOI: 10.3390/ijms25020843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
4-hydroxybenzoic acid (4-HBA) is an aromatic compound with high chemical stability, being extensively used in food, pharmaceutical and cosmetic industries and therefore widely distributed in various environments. Bioremediation constitutes the most sustainable approach for the removal of 4-hydroxybenzoate and its derivatives (parabens) from polluted environments. Pseudarthrobacter phenanthrenivorans Sphe3, a strain capable of degrading several aromatic compounds, is able to grow on 4-HBA as the sole carbon and energy source. Here, an attempt is made to clarify the catabolic pathways that are involved in the biodegradation of 4-hydroxybenzoate by Sphe3, applying a metabolomic and transcriptomic analysis of cells grown on 4-HBA. It seems that in Sphe3, 4-hydroxybenzoate is hydroxylated to form protocatechuate, which subsequently is either cleaved in ortho- and/or meta-positions or decarboxylated to form catechol. Protocatechuate and catechol are funneled into the TCA cycle following either the β-ketoadipate or protocatechuate meta-cleavage branches. Our results also suggest the involvement of the oxidative decarboxylation of the protocatechuate peripheral pathway to form hydroxyquinol. As a conclusion, P. phenanthrenivorans Sphe3 seems to be a rather versatile strain considering the 4-hydroxybenzoate biodegradation, as it has the advantage to carry it out effectively following different catabolic pathways concurrently.
Collapse
Affiliation(s)
- Epameinondas Tsagogiannis
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Stamatia Asimakoula
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Alexandros P. Drainas
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Orfeas Marinakos
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| | - Vasiliki I. Boti
- Unit of Environmental, Organic and Biochemical High-Resolution Analysis-Orbitrap-LC-MS, University of Ioannina, 451110 Ioannina, Greece;
| | - Ioanna S. Kosma
- Laboratory of Food Chemistry, Sector of Industrial Chemistry and Food Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Anna-Irini Koukkou
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (S.A.); (A.P.D.); (O.M.)
| |
Collapse
|
3
|
Iasakov T. Evolution End Classification of tfd Gene Clusters Mediating Bacterial Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D). Int J Mol Sci 2023; 24:14370. [PMID: 37762674 PMCID: PMC10531765 DOI: 10.3390/ijms241814370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The tfd (tfdI and tfdII) are gene clusters originally discovered in plasmid pJP4 which are involved in the bacterial degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) via the ortho-cleavage pathway of chlorinated catechols. They share this activity, with respect to substituted catechols, with clusters tcb and clc. Although great effort has been devoted over nearly forty years to exploring the structural diversity of these clusters, their evolution has been poorly resolved to date, and their classification is clearly obsolete. Employing comparative genomic and phylogenetic approaches has revealed that all tfd clusters can be classified as one of four different types. The following four-type classification and new nomenclature are proposed: tfdI, tfdII, tfdIII and tfdIV(A,B,C). Horizontal gene transfer between Burkholderiales and Sphingomonadales provides phenomenal linkage between tfdI, tfdII, tfdIII and tfdIV type clusters and their mosaic nature. It is hypothesized that the evolution of tfd gene clusters proceeded within first (tcb, clc and tfdI), second (tfdII and tfdIII) and third (tfdIV(A,B,C)) evolutionary lineages, in each of which, the genes were clustered in specific combinations. Their clustering is discussed through the prism of hot spots and driving forces of various models, theories, and hypotheses of cluster and operon formation. Two hypotheses about series of gene deletions and displacements are also proposed to explain the structural variations across members of clusters tfdII and tfdIII, respectively. Taking everything into account, these findings reconstruct the phylogeny of tfd clusters, have delineated their evolutionary trajectories, and allow the contribution of various evolutionary processes to be assessed.
Collapse
Affiliation(s)
- Timur Iasakov
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
4
|
Asimakoula S, Marinakos O, Tsagogiannis E, Koukkou AI. Phenol Degradation by Pseudarthrobacter phenanthrenivorans Sphe3. Microorganisms 2023; 11:microorganisms11020524. [PMID: 36838489 PMCID: PMC9966258 DOI: 10.3390/microorganisms11020524] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Phenol poses a threat as one of the most important industrial environmental pollutants that must be removed before disposal. Biodegradation is a cost-effective and environmentally friendly approach for phenol removal. This work aimed at studying phenol degradation by Pseudarthrobacter phenanthrenivorans Sphe3 cells and also, investigating the pathway used by the bacterium for phenol catabolism. Moreover, alginate-immobilized Sphe3 cells were studied in terms of phenol degradation efficiency compared to free cells. Sphe3 was found to be capable of growing in the presence of phenol as the sole source of carbon and energy, at concentrations up to 1500 mg/L. According to qPCR findings, both pathways of ortho- and meta-cleavage of catechol are active, however, enzymatic assays and intermediate products identification support the predominance of the ortho-metabolic pathway for phenol degradation. Alginate-entrapped Sphe3 cells completely degraded 1000 mg/L phenol after 192 h, even though phenol catabolism proceeds slower in the first 24 h compared to free cells. Immobilized Sphe3 cells retain phenol-degrading capacity even after 30 days of storage and also can be reused for at least five cycles retaining more than 75% of the original phenol-catabolizing capacity.
Collapse
|
5
|
Tsagogiannis E, Vandera E, Primikyri A, Asimakoula S, Tzakos AG, Gerothanassis IP, Koukkou AI. Characterization of Protocatechuate 4,5-Dioxygenase from Pseudarthrobacter phenanthrenivorans Sphe3 and In Situ Reaction Monitoring in the NMR Tube. Int J Mol Sci 2021; 22:9647. [PMID: 34502555 PMCID: PMC8431788 DOI: 10.3390/ijms22179647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The current study aims at the functional and kinetic characterization of protocatechuate (PCA) 4,5-dioxygenase (PcaA) from Pseudarthrobacter phenanthrenivorans Sphe3. This is the first single subunit Type II dioxygenase characterized in Actinobacteria. RT-PCR analysis demonstrated that pcaA and the adjacent putative genes implicated in the PCA meta-cleavage pathway comprise a single transcriptional unit. The recombinant PcaA is highly specific for PCA and exhibits Michaelis-Menten kinetics with Km and Vmax values of 21 ± 1.6 μM and 44.8 ± 4.0 U × mg-1, respectively, in pH 9.5 and at 20 °C. PcaA also converted gallate from a broad range of substrates tested. The enzymatic reaction products were identified and characterized, for the first time, through in situ biotransformation monitoring inside an NMR tube. The PCA reaction product demonstrated a keto-enol tautomerization, whereas the gallate reaction product was present only in the keto form. Moreover, the transcriptional levels of pcaA and pcaR (gene encoding a LysR-type regulator of the pathway) were also determined, showing an induction when cells were grown on PCA and phenanthrene. Studying key enzymes in biodegradation pathways is significant for bioremediation and for efficient biocatalysts development.
Collapse
Affiliation(s)
- Epameinondas Tsagogiannis
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Elpiniki Vandera
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Alexandra Primikyri
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Stamatia Asimakoula
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Andreas G. Tzakos
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Ioannis P. Gerothanassis
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Anna-Irini Koukkou
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| |
Collapse
|
6
|
Hyperosmotic Adaptation of Pseudomonas protegens SN15-2 Helps Cells to Survive at Lethal Temperatures. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0430-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Otani S, Hiramatsu K, Hashinaga K, Komiya K, Umeki K, Kishi K, Kadota JI. Sub-minimum inhibitory concentrations of ceftazidime inhibit Pseudomonas aeruginosa biofilm formation. J Infect Chemother 2018; 24:428-433. [PMID: 29449129 DOI: 10.1016/j.jiac.2018.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/27/2017] [Accepted: 01/13/2018] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa exhibits the biofilm mode of growth and causes chronic as well as acute infections in humans. Several reports have shown that the treatments with sub-minimum inhibitory concentrations (sub-MICs) of antimicrobial agents influence biofilm formation by P. aeruginosa. The antibiotic ceftazidime (CAZ) is used to treat P. aeruginosa infections, but few studies have examined the effects of β-lactams on biofilm formation by P. aeruginosa. In this study, we investigated the role of sub-MICs of CAZ in the formation of P. aeruginosa biofilms. 1/4 × MIC CAZ reduced the biofilm volume of P. aeruginosa PAO1, as quantified by crystal violet staining. The formation of P. aeruginosa PAO1 biofilms treated with 1/4 × MIC CAZ were observed by confocal laser scanning microscopy. They were more heterogeneous than the PAO1 biofilms without CAZ treatment. Furthermore, sub-MICs of CAZ inhibited the twitching motility, which played an important role in mature biofilm formation. 1/4 × MIC CAZ also reduced the gene expressions of lecA, lecB, pel and psl, which mediate the adhesion and polysaccharide matrix synthesis of P. aeruginosa. These effects suggest that sub-MICs of CAZ may affect a number of stages of biofilm formation. Investigating the effects of sub-MIC antibiotics on targeted bacterial biofilm may lead to the development of future antibiotic treatment modalities.
Collapse
Affiliation(s)
- Satoshi Otani
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Kazufumi Hiramatsu
- Department of Medical Safety Management, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan.
| | - Kazuhiko Hashinaga
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Kosaku Komiya
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Kenji Umeki
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Kenji Kishi
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Jun-Ichi Kadota
- Department of Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| |
Collapse
|
8
|
Bouffartigues E, Moscoso JA, Duchesne R, Rosay T, Fito-Boncompte L, Gicquel G, Maillot O, Bénard M, Bazire A, Brenner-Weiss G, Lesouhaitier O, Lerouge P, Dufour A, Orange N, Feuilloley MGJ, Overhage J, Filloux A, Chevalier S. The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level. Front Microbiol 2015; 6:630. [PMID: 26157434 PMCID: PMC4477172 DOI: 10.3389/fmicb.2015.00630] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/09/2015] [Indexed: 11/13/2022] Open
Abstract
OprF is the major outer membrane porin in bacteria belonging to the Pseudomonas genus. In previous studies, we have shown that OprF is required for full virulence expression of the opportunistic pathogen Pseudomonas aeruginosa. Here, we describe molecular insights on the nature of this relationship and report that the absence of OprF leads to increased biofilm formation and production of the Pel exopolysaccharide. Accordingly, the level of c-di-GMP, a key second messenger in biofilm control, is elevated in an oprF mutant. By decreasing c-di-GMP levels in this mutant, both biofilm formation and pel gene expression phenotypes were restored to wild-type levels. We further investigated the impact on two small RNAs, which are associated with the biofilm lifestyle, and found that expression of rsmZ but not of rsmY was increased in the oprF mutant and this occurs in a c-di-GMP-dependent manner. Finally, the extracytoplasmic function (ECF) sigma factors AlgU and SigX displayed higher activity levels in the oprF mutant. Two genes of the SigX regulon involved in c-di-GMP metabolism, PA1181 and adcA (PA4843), were up-regulated in the oprF mutant, partly explaining the increased c-di-GMP level. We hypothesized that the absence of OprF leads to a cell envelope stress that activates SigX and results in a c-di-GMP elevated level due to higher expression of adcA and PA1181. The c-di-GMP level can in turn stimulate Pel synthesis via increased rsmZ sRNA levels and pel mRNA, thus affecting Pel-dependent phenotypes such as cell aggregation and biofilm formation. This work highlights the connection between OprF and c-di-GMP regulatory networks, likely via SigX (ECF), on the regulation of biofilm phenotypes.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Joana A Moscoso
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London London, UK
| | - Rachel Duchesne
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Thibaut Rosay
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Laurène Fito-Boncompte
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Gwendoline Gicquel
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Olivier Maillot
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Magalie Bénard
- Cell Imaging Platform of Normandy (PRIMACEN), Institute for Research and Innovation in Biomedicine, University of Rouen Mont-Saint-Aignan, France
| | - Alexis Bazire
- EA 3884-Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud Lorient, France
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Olivier Lesouhaitier
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Patrice Lerouge
- Glyco-MeV Laboratory, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Alain Dufour
- EA 3884-Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud Lorient, France
| | - Nicole Orange
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Marc G J Feuilloley
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Joerg Overhage
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London London, UK
| | - Sylvie Chevalier
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| |
Collapse
|
9
|
Decreasing global transcript levels over time suggest that phytoplasma cells enter stationary phase during plant and insect colonization. Appl Environ Microbiol 2015; 81:2591-602. [PMID: 25636844 DOI: 10.1128/aem.03096-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To highlight different transcriptional behaviors of the phytoplasma in the plant and animal host, expression of 14 genes of "Candidatus Phytoplasma asteris," chrysanthemum yellows strain, was investigated at different times following the infection of a plant host (Arabidopsis thaliana) and two insect vector species (Macrosteles quadripunctulatus and Euscelidius variegatus). Target genes were selected among those encoding antigenic membrane proteins, membrane transporters, secreted proteins, and general enzymes. Transcripts were detected for all analyzed genes in the three hosts; in particular, those encoding the antigenic membrane protein Amp, elements of the mechanosensitive channel, and two of the four secreted proteins (SAP54 and TENGU) were highly accumulated, suggesting that they play important roles in phytoplasma physiology during the infection cycle. Most transcripts were present at higher abundance in the plant host than in the insect hosts. Generally, transcript levels of the selected genes decreased significantly during infection of A. thaliana and M. quadripunctulatus but were more constant in E. variegatus. Such decreases may be explained by the fact that only a fraction of the phytoplasma population was transcribing, while the remaining part was aging to a stationary phase. This strategy might improve long-term survival, thereby increasing the likelihood that the pathogen may be acquired by a vector and/or inoculated to a healthy plant.
Collapse
|
10
|
Bazire A, Dufour A. The Pseudomonas aeruginosa rhlG and rhlAB genes are inversely regulated and RhlG is not required for rhamnolipid synthesis. BMC Microbiol 2014; 14:160. [PMID: 24943492 PMCID: PMC4074388 DOI: 10.1186/1471-2180-14-160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa produces rhamnolipid biosurfactants involved in numerous phenomena including virulence. The transcriptional study of the rhlAB operon encoding two key enzymes for rhamnolipid synthesis led to the discovery of the quorum sensing system RhlRI. The latter positively controls the transcription of rhlAB, as well as of rhlC, which is required for di-rhamnolipid synthesis. The rhlG gene encodes an NADPH-dependent β-ketoacyl reductase. Although it was reported to be required for the biosynthesis of the fatty acid part of rhamnolipids, its function in rhamnolipid synthesis was later questioned. The rhlG transcription and its role in rhamnolipid production were investigated here. RESULTS Using 5'-RACE PCR, a luxCDABE-based transcriptional fusion, and quantitative reverse transcription-PCR, we confirmed two previously identified σ70- and σ54-dependent promoters and we identified a third promoter recognized by the extra-cytoplasmic function sigma factor AlgU. rhlG was inversely regulated compared to rhlAB and rhlC: the rhlG transcription was down-regulated in response to N-butyryl-l-homoserine lactone, the communication molecule of the RhlRI system, and was induced by hyperosmotic stress in an AlgU-dependent manner. Consistently with this transcriptional pattern, the single or double deletions of rhlG and PA3388, which forms an operon with rhlG, did not dramatically impair rhamnolipid synthesis. CONCLUSION This first detailed study of rhlG transcription reveals a complex regulation involving three sigma factors and N-butyryl-l-homoserine lactone. We furthermore present evidences that RhlG does not play a key role in rhamnolipid synthesis.
Collapse
Affiliation(s)
- Alexis Bazire
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France.
| | | |
Collapse
|
11
|
Transcription of the oprF gene of Pseudomonas aeruginosa is dependent mainly on the SigX sigma factor and is sucrose induced. J Bacteriol 2012; 194:4301-11. [PMID: 22685281 DOI: 10.1128/jb.00509-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The OprF porin is the major outer membrane protein of Pseudomonas aeruginosa. OprF is involved in several crucial functions, including cell structure, outer membrane permeability, environmental sensing, and virulence. The oprF gene is preceded by the sigX gene, which encodes the poorly studied extracytoplasmic function (ECF) sigma factor SigX. Three oprF promoters were previously identified. Two intertwined promoters dependent on σ(70) and SigX are located in the sigX-oprF intergenic region, whereas a promoter dependent on the ECF AlgU lies within the sigX gene. An additional promoter was found in the cmpX-sigX intergenic region. In this study, we dissected the contribution of each promoter region and of each sigma factor to oprF transcription using transcriptional fusions. In Luria-Bertani (LB) medium, the oprF-proximal region (sigX-oprF intergenic region) accounted for about 80% of the oprF transcription, whereas the AlgU-dependent promoter had marginal activity. Using the sigX mutant PAOSX, we observed that the SigX-dependent promoter was largely predominant over the σ(70)-dependent promoter. oprF transcription was increased in response to low NaCl or high sucrose concentrations, and this induced transcription was strongly impaired in the absence of SigX. The lack of OprF itself increased oprF transcription. Since these conditions led to cell wall alterations, oprF transcription could be activated by signals triggered by perturbation of the cell envelope.
Collapse
|
12
|
Mishra S, Mishra A, Chauhan P, Mishra S, Kumari M, Niranjan A, Nautiyal C. Pseudomonas putida NBRIC19 dihydrolipoamide succinyltransferase (SucB) gene controls degradation of toxic allelochemicals produced by Parthenium hysterophorus. J Appl Microbiol 2012; 112:793-808. [DOI: 10.1111/j.1365-2672.2012.05256.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Heterologous expression and characterization of two 1-hydroxy-2-naphthoic acid dioxygenases from Arthrobacter phenanthrenivorans. Appl Environ Microbiol 2011; 78:621-7. [PMID: 22101055 DOI: 10.1128/aem.07137-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A protein fraction exhibiting 1-hydroxy-2-naphthoic acid (1-H2NA) dioxygenase activity was purified via ion exchange, hydrophobic interactions, and gel filtration chromatography from Arthrobacter phenanthrenivorans sp. nov. strain Sphe3 isolated from a Greek creosote-oil-polluted site. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and tandem MS (MS-MS) analysis revealed that the amino acid sequences of oligopeptides of the major 45-kDa protein species, as analyzed by SDS-PAGE and silver staining, comprising 29% of the whole sequence, exhibited strong homology with 1-H2NA dioxygenase of Nocardioides sp. strain KP7. A BLAST search of the recently sequenced Sphe3 genome revealed two putative open reading frames, named diox1 and diox2, showing 90% nucleotide identity to each other and 85% identity at the amino acid level with the Nocardia sp. homologue. diox1 was found on an indigenous Sphe3 plasmid, whereas diox2 was located on the chromosome. Both genes were induced by the presence of phenanthrene used as a sole carbon and energy source, and as expected, both were subject to carbon catabolite repression. The relative RNA transcription level of the chromosomal (diox2) gene was significantly higher than that of its plasmid (diox1) homologue. Both diox1 and diox2 putative genes were PCR amplified, cloned, and overexpressed in Escherichia coli. Recombinant E. coli cells expressed 1-H2NA dioxygenase activity. Recombinant enzymes exhibited Michaelis-Menten kinetics with an apparent K(m) of 35 μM for Diox1 and 29 μM for Diox2, whereas they showed similar kinetic turnover characteristics with K(cat)/K(m) values of 11 × 10(6) M(-1) s(-1) and 12 × 10(6) M(-1) s(-1), respectively. Occurrence of two diox1 and diox2 homologues in the Sphe3 genome implies that a replicative transposition event has contributed to the evolution of 1-H2NA dioxygenase in A. phenanthrenivorans.
Collapse
|
14
|
Blier AS, Veron W, Bazire A, Gerault E, Taupin L, Vieillard J, Rehel K, Dufour A, Le Derf F, Orange N, Hulen C, Feuilloley MGJ, Lesouhaitier O. C-type natriuretic peptide modulates quorum sensing molecule and toxin production in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2011; 157:1929-1944. [PMID: 21511763 PMCID: PMC3755537 DOI: 10.1099/mic.0.046755-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa coordinates its virulence expression and establishment in the host in response to modification of its environment. During the infectious process, bacteria are exposed to and can detect eukaryotic products including hormones. It has been shown that P. aeruginosa is sensitive to natriuretic peptides, a family of eukaryotic hormones, through a cyclic nucleotide-dependent sensor system that modulates its cytotoxicity. We observed that pre-treatment of P. aeruginosa PAO1 with C-type natriuretic peptide (CNP) increases the capacity of the bacteria to kill Caenorhabditis elegans through diffusive toxin production. In contrast, brain natriuretic peptide (BNP) did not affect the capacity of the bacteria to kill C. elegans. The bacterial production of hydrogen cyanide (HCN) was enhanced by both BNP and CNP whereas the production of phenazine pyocyanin was strongly inhibited by CNP. The amount of 2-heptyl-4-quinolone (HHQ), a precursor to 2-heptyl-3-hydroxyl-4-quinolone (Pseudomonas quinolone signal; PQS), decreased after CNP treatment. The quantity of 2-nonyl-4-quinolone (HNQ), another quinolone which is synthesized from HHQ, was also reduced after CNP treatment. Conversely, both BNP and CNP significantly enhanced bacterial production of acylhomoserine lactone (AHL) [e.g. 3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL) and butanoylhomoserine lactone (C4-HSL)]. These results correlate with an induction of lasI transcription 1 h after bacterial exposure to BNP or CNP. Concurrently, pre-treatment of P. aeruginosa PAO1 with either BNP or CNP enhanced PAO1 exotoxin A production, via a higher toxA mRNA level. At the same time, CNP led to elevated amounts of algC mRNA, indicating that algC is involved in C. elegans killing. Finally, we observed that in PAO1, Vfr protein is essential to the pro-virulent effect of CNP whereas the regulator PtxR supports only a part of the CNP pro-virulent activity. Taken together, these data reinforce the hypothesis that during infection natriuretic peptides, particularly CNP, could enhance the virulence of PAO1. This activity is relayed by Vfr and PtxR activation, and a general diagram of the virulence activation cascade involving AHL, HCN and exotoxin A is proposed.
Collapse
Affiliation(s)
- Anne-Sophie Blier
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| | - Wilfried Veron
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université de Bretagne-Sud B.P. 92116, 56321 Lorient Cedex, France
| | - Eloïse Gerault
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, Université de Bretagne-Sud B.P. 92116, 56321 Lorient Cedex, France
| | | | - Karine Rehel
- Laboratoire de Biotechnologie et Chimie Marines, Université de Bretagne-Sud B.P. 92116, 56321 Lorient Cedex, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université de Bretagne-Sud B.P. 92116, 56321 Lorient Cedex, France
| | - Franck Le Derf
- SIMA, UMR 6014 COBRA, University of Rouen, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| | - Christian Hulen
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| | - Marc G. J. Feuilloley
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| |
Collapse
|
15
|
Fito-Boncompte L, Chapalain A, Bouffartigues E, Chaker H, Lesouhaitier O, Gicquel G, Bazire A, Madi A, Connil N, Véron W, Taupin L, Toussaint B, Cornelis P, Wei Q, Shioya K, Déziel E, Feuilloley MGJ, Orange N, Dufour A, Chevalier S. Full virulence of Pseudomonas aeruginosa requires OprF. Infect Immun 2011; 79:1176-86. [PMID: 21189321 PMCID: PMC3067511 DOI: 10.1128/iai.00850-10] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/10/2010] [Accepted: 12/02/2010] [Indexed: 01/26/2023] Open
Abstract
OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression.
Collapse
Affiliation(s)
- Laurène Fito-Boncompte
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Annelise Chapalain
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Hichem Chaker
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Gwendoline Gicquel
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Alexis Bazire
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Amar Madi
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Nathalie Connil
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Wilfried Véron
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Laure Taupin
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Bertrand Toussaint
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Qing Wei
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Koki Shioya
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Eric Déziel
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Nicole Orange
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Alain Dufour
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| |
Collapse
|
16
|
Liu JB, Amemiya T, Chang Q, Xu X, Itoh K. Real-time reverse transcription PCR analysis of trichloroethylene-regulated toluene dioxygenase expression in Pseudomonas putida F1. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2011; 46:294-300. [PMID: 21500075 DOI: 10.1080/03601234.2011.559877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Toluene dioxygenase (tod) is a multicomponent enzyme system in Pseudomonas putida F1. Tod can mediate the degradation of Trichloroethylene (TCE), a widespread pollutant. In this study, we try to explore the TCE-regulated tod expression by using real-time qRT-PCR. The minimal culture media were supplemented with glucose, toluene, or a mixture of glucose/toluene respectively as carbon and energy sources. The TCE was injected into each medium after a 12-hour incubation period. The TCE injection severely affected bacterial growth when cultured with toluene or toluene/glucose mixtures. The cell density dropped 61 % for bacteria growing in toluene and 36 % for bacteria in the glucose/toluene mixture after TCE injection, but the TCE treatment had little effect on bacteria supplied with glucose alone. The decrease in cell number was caused by the cytotoxicity of the TCE metabolized by tod. The results from the real-time qRT-PCR revealed that TCE was capable of inducing tod expression in a toluene-dependent manner and that the tod expression level increased 50 times in toluene and 3 times in the toluene/glucose mixture after 6 hours of TCE treatment. Furthermore, validation of the rpoD gene as a reference gene for P. putida F1 was performed in this study, providing a valuable foundation for future studies to use real-time qRT-PCR in the analysis of the P. putida F1 strain.
Collapse
Affiliation(s)
- Jian B Liu
- Graduate School of Environment and Information Science, Yokohama National University, Yokohama, Japan.
| | | | | | | | | |
Collapse
|
17
|
The sigma factor AlgU plays a key role in formation of robust biofilms by nonmucoid Pseudomonas aeruginosa. J Bacteriol 2010; 192:3001-10. [PMID: 20348252 DOI: 10.1128/jb.01633-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The extracytoplasmic function sigma factor AlgU of Pseudomonas aeruginosa is responsible for alginate overproduction, leading to mucoidy and chronic infections of cystic fibrosis patients. We investigated here the role of AlgU in the formation of nonmucoid biofilms. The algU mutant of P. aeruginosa PAO1 (PAOU) showed a dramatic impairment in biofilm formation under dynamic conditions. PAOU was defective both in cell attachment to glass and in development of robust, shear-resistant biofilms. This was explained by an impaired production of extracellular matrix, specifically of the exopolysaccharide Psl, as revealed by microscopy and enzyme-linked immunosorbent assay. Complementing the algU mutation with a plasmid-borne algU gene restored wild-type phenotypes. Compared with that in PAO1, expression of the psl operon was reduced in the PAOU strain, and the biofilm formation ability of this strain was partially restored by inducing the transcription of the psl operon. Furthermore, expression of the lectin-encoding lecA and lecB genes was reduced in the PAOU strain. In agreement with the requirement of LecB for type IV pilus biogenesis, PAOU displayed impaired twitching motility. Collectively, these genetic downregulation events explain the biofilm formation defect of the PAOU mutant. Promoter mapping indicated that AlgU is probably not directly responsible for transcription of the psl operon and the lec genes, but AlgU is involved in the expression of the ppyR gene, whose product was reported to positively control psl expression. Expressing the ppyR gene in PAOU partially restored the formation of robust biofilms.
Collapse
|
18
|
Sipilä TP, Väisänen P, Paulin L, Yrjälä K. Sphingobium sp. HV3 degrades both herbicides and polyaromatic hydrocarbons using ortho- and meta-pathways with differential expression shown by RT-PCR. Biodegradation 2010; 21:771-84. [DOI: 10.1007/s10532-010-9342-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 02/09/2010] [Indexed: 11/29/2022]
|
19
|
Béra-Maillet C, Mosoni P, Kwasiborski A, Suau F, Ribot Y, Forano E. Development of a RT-qPCR method for the quantification of Fibrobacter succinogenes S85 glycoside hydrolase transcripts in the rumen content of gnotobiotic and conventional sheep. J Microbiol Methods 2009; 77:8-16. [DOI: 10.1016/j.mimet.2008.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/22/2008] [Accepted: 11/23/2008] [Indexed: 10/21/2022]
|
20
|
Guyard-Nicodème M, Bazire A, Hémery G, Meylheuc T, Mollé D, Orange N, Fito-Boncompte L, Feuilloley M, Haras D, Dufour A, Chevalier S. Outer membrane Modifications of Pseudomonas fluorescens MF37 in Response to Hyperosmolarity. J Proteome Res 2008; 7:1218-25. [DOI: 10.1021/pr070539x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Muriel Guyard-Nicodème
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Alexis Bazire
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Gaëlle Hémery
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Thierry Meylheuc
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Daniel Mollé
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Nicole Orange
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Laurène Fito-Boncompte
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Dominique Haras
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Alain Dufour
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| |
Collapse
|
21
|
Srivastava S, Yadav A, Seem K, Mishra S, Chaudhary V, Nautiyal CS. Effect of high temperature on Pseudomonas putida NBRI0987 biofilm formation and expression of stress sigma factor RpoS. Curr Microbiol 2008; 56:453-7. [PMID: 18219523 DOI: 10.1007/s00284-008-9105-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 11/26/2007] [Indexed: 11/26/2022]
Abstract
Pseudomonas is an efficient plant growth-promoting rhizobacteria; however, among the limiting factors for its commercialization, tolerance for high temperature is the most critical one. After screening 2,500 Pseudomnas sp. strains, a high temperature tolerant-strain Pseudomonas putida NBRI0987 was isolated from the drought-exposed rhizosphere of chickpea (Cicer arietinum L. cv. Radhey), which was grown under rain-fed conditions. P. putida NBRI0987 tolerated a temperature of 40 degrees C for < or = 5 days. To the best of our knowledge, this is the first report of a Pseudomnas sp. demonstrating survival estimated by counting viable cells under such a high temperature. P. putida NBRI0987 colony-forming unit (CFU)/ml on day 10 in both the absence and presence of MgSO4 x 7H2O (MgSO4) in combination with glycerol at 40 degrees C were 0.0 and 1.7 x 10(11), respectively. MgSO4 plus glycerol also enhanced the ability of P. putida NBRI0987 to tolerate high temperatures by inducing its ability to form biofilm. However, production of alginate was not critical for biofilm formation. The present study demonstrates overexpression of stress sigma factor sigma(S) (RpoS) when P. putida NBRI0987 is grown under high-temperature stress at 40 degrees C compared with 30 degrees C. We present evidence, albeit indirect, that the adaptation of P. putida NBRI0987 to high temperatures is a complex multilevel regulatory process in which many different genes can be involved.
Collapse
Affiliation(s)
- S Srivastava
- Division of Plant Microbe Interactions, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | | | | | | | | | | |
Collapse
|
22
|
Validation of an internal control gene to apply reverse transcription quantitative PCR to study heat, cold and ethanol stresses in Lactobacillus plantarum. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9556-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Beltramo C, Desroche N, Tourdot-Maréchal R, Grandvalet C, Guzzo J. Real-time PCR for characterizing the stress response of Oenococcus oeni in a wine-like medium. Res Microbiol 2006; 157:267-74. [PMID: 16171980 DOI: 10.1016/j.resmic.2005.07.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 07/01/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
The tolerance of the lactic acid bacterium Oenococcus oeni to hostile wine conditions is essential for the success of malolactic fermentation (MLF). In this study, reverse transcription quantitative PCR (RT-qPCR) was used to quantify the transcript level of 13 genes that could play a role in adaptation of O. oeni in wine. To optimize survival and growth in wine, cells were adapted during growth at low pH (3.5) prior to inoculation into wine. The level of gene expression was analyzed after growth at pH 3.5 in a rich medium and during MLF in a wine-like medium. RT-qPCR analyses exhibited different expression ratios of stress genes. The data obtained showed that determination of mRNA levels could constitute a new approach to studying the stress response of O. oeni after adaptation at low pH and during growth in a wine-like medium.
Collapse
|
24
|
Bazire A, Dheilly A, Diab F, Morin D, Jebbar M, Haras D, Dufour A. Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa. FEMS Microbiol Lett 2005; 253:125-31. [PMID: 16239086 DOI: 10.1016/j.femsle.2005.09.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/19/2005] [Accepted: 09/19/2005] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas aeruginosa, rhamnolipid production is controlled by the quorum-sensing system RhlRI, which itself depends on LasRI. These systems use cell-to-cell signal molecules: N-butyryl-l-homoserine lactone (C4-HSL) and N-(3-oxododecanoyl)-l-homoserine lactone (3OC(12)-HSL), respectively. Whereas both HSLs were produced in M63 medium, rhamnolipid synthesis was not achieved. Phosphate limitation reduced the HSL concentrations, while allowing rhamnolipid production. Hyperosmotic shock applied during the exponential growth phase stopped the accumulation of 3OC(12)-HSL, and prevented C4-HSL and rhamnolipid production. These defects result from lower expression of genes involved in C4-HSL and rhamnolipid syntheses. The osmoprotectant glycine betaine partially restored C4-HSL and rhamnolipid production.
Collapse
Affiliation(s)
- Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, BP 92116, 56321 Lorient, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Johnson DR, Lee PKH, Holmes VF, Alvarez-Cohen L. An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene. Appl Environ Microbiol 2005; 71:3866-71. [PMID: 16000799 PMCID: PMC1169012 DOI: 10.1128/aem.71.7.3866-3871.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accuracy of mRNA quantification by reverse transcription (RT) in conjunction with real-time PCR (qPCR) is limited by mRNA losses during sample preparation (cell lysis, RNA isolation, and DNA removal) and by inefficiencies in reverse transcription. To control for these losses and inefficiencies, a technique was developed that utilizes an exogenous internal reference mRNA (ref mRNA) along with mRNA absolute standard curves. The technique was applied to quantify mRNA of the trichloroethene (TCE) reductive dehalogenase-encoding tceA gene in an anaerobic TCE-to-ethene dechlorinating microbial enrichment. Compared to RT-qPCR protocols that utilize DNA absolute standard curves, application of the new technique increased measured quantities of tceA mRNA by threefold, demonstrating a substantial improvement in quantification. The technique was also effective for quantifying the loss of mRNA during specific steps of the sample processing protocol. Analysis revealed that the efficiency of the RNA isolation (56%) step was significantly less than that of the cell lysis (84%), DNA removal (93%), and RT (88%) steps. The technique was applied to compare the effects of cellular exposure to different chlorinated ethenes on tceA expression. Results show that exposure to TCE or cis-1,2-dichloroethene resulted in 25-fold-higher quantities of tceA mRNA than exposure to vinyl chloride or chlorinated ethene starvation.
Collapse
Affiliation(s)
- David R Johnson
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710.
| | | | | | | |
Collapse
|
26
|
Desroche N, Beltramo C, Guzzo J. Determination of an internal control to apply reverse transcription quantitative PCR to study stress response in the lactic acid bacterium Oenococcus oeni. J Microbiol Methods 2005; 60:325-33. [PMID: 15649534 DOI: 10.1016/j.mimet.2004.10.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 10/08/2004] [Accepted: 10/08/2004] [Indexed: 10/26/2022]
Abstract
The expression gene pattern reflects, in part, mechanisms involved in adaptation to environmental conditions. Thus, we established and validated a method that enables relative transcript quantification in different conditions in the lactic acid bacteria Oenococcus oeni, notably in a technological medium. First, we determined an internal control in our conditions by reverse transcription quantitative polymerase chain reaction (RT-qPCR) using the SYBR Green I technology. Among the seven presumed housekeeping tested genes, the ldhD gene was retained for further experiments. Then, the PCR reproducibility was verified in our conditions and the comparative critical threshold (2deltadeltaC(T)) method was applied to quantify the transcript level of genes. The quantification of transcript levels of several stress genes already studied in our laboratory by Northern blot after a heat shock and at the entry of stationary phase allowed us to validate this method. RT-qPCR appeared as a powerful tool to study O. oeni response in stress conditions and wine mimetic conditions.
Collapse
Affiliation(s)
- Nicolas Desroche
- Laboratoire de Microbiologie, UMR UB/INRA 1232, ENSBANA, 1, Esplanade Erasme, Dijon 21000, France
| | | | | |
Collapse
|
27
|
Semrau JD, Han JI. Quantitative Community Analysis: Capillary Electrophoresis Techniques. Methods Enzymol 2005; 397:329-37. [PMID: 16260300 DOI: 10.1016/s0076-6879(05)97019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This chapter presents methodologies for RNA extraction from soils coupled with competitive reverse transcription-polymerase chain reaction and capillary electrophoresis techniques. Combined, these approaches provide new capabilities to quantify gene expression in different environments and can aid our understanding of not only community composition, but also community activity. Such information will prove important for enhancing our knowledge of how microbial communities respond to changing geochemical parameters (e.g., temperature, pH, redox conditions, substrate levels) in situ.
Collapse
Affiliation(s)
- Jeremy D Semrau
- Department of Civil and Environmental Engineering, The University of Michigan, Ann Arbor 48109, USA
| | | |
Collapse
|
28
|
Mackay IM, Arden KE, Nitsche A. Real-time Fluorescent PCR Techniques to Study Microbial-Host Interactions. METHODS IN MICROBIOLOGY 2004; 34:255-330. [PMID: 38620210 PMCID: PMC7148886 DOI: 10.1016/s0580-9517(04)34010-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This chapter describes how real-time polymerase chain reaction (PCR) performs and how it may be used to detect microbial pathogens and the relationship they form with their host. Research and diagnostic microbiology laboratories contain a mix of traditional and leading-edge, in-house and commercial assays for the detection of microbes and the effects they impart upon target tissues, organs, and systems. The PCR has undergone significant change over the last decade, to the extent that only a small proportion of scientists have been able or willing to keep abreast of the latest offerings. The chapter reviews these changes. It discusses the second-generation of PCR technology-kinetic or real-time PCR, a tool gaining widespread acceptance in many scientific disciplines but especially in the microbiology laboratory.
Collapse
Affiliation(s)
- Ian M Mackay
- Clinical Virology Research Unit, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Qld, Australia
- Clinical Medical Virology Centre, University of Queensland, Brisbane, Qld, Australia
| | - Katherine E Arden
- Clinical Virology Research Unit, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Qld, Australia
| | | |
Collapse
|
29
|
Devers M, Soulas G, Martin-Laurent F. Real-time reverse transcription PCR analysis of expression of atrazine catabolism genes in two bacterial strains isolated from soil. J Microbiol Methods 2004; 56:3-15. [PMID: 14706746 DOI: 10.1016/j.mimet.2003.08.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The level of expression of highly conserved, plasmid-borne, and widely dispersed atrazine catabolic genes (atz) was studied by RT-qPCR in two telluric atrazine-degrading microbes. RT-qPCR assays, based on the use of real-time PCR, were developed in order to quantify atzABCDEF mRNAs in Pseudomonas sp. ADP and atzABC mRNAs in Chelatobacter heintzii. atz gene expression was expressed as mRNA copy number per 10(6) 16S rRNA. In Pseudomonas sp. ADP, atz genes were basally expressed. It confirmed atrazine-degrading kinetics indicating that catabolic activity starts immediately after adding the herbicide. atz gene expression increased transitorily in response to atrazine treatment. This increase was only observed while low amount of atrazine remained in the medium. In C. heintzii, only atzA was basally expressed. atzA and atzB expression levels were similarly and significantly increased in response to atrazine treatment. atzC was not expressed even in the presence of high amounts of atrazine. This study showed that atz genes are basally expressed and up-regulated in response to atrazine treatment. atz gene expression patterns are different in Pseudomonas ADP and C. heintzii suggesting that the host may influence the expression of plasmid-borne atrazine-catabolic potential.
Collapse
Affiliation(s)
- Marion Devers
- INRA-CMSE, UMR 1229 INRA-Université de Bourgogne, Microbiologie et Géochimie des Sols, 17 rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | | | | |
Collapse
|