1
|
Baek JH, Kim KH, Lee Y, Jeong SE, Jin HM, Jia B, Jeon CO. Elucidating the biodegradation pathway and catabolic genes of benzophenone-3 in Rhodococcus sp. S2-17. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118890. [PMID: 35085657 DOI: 10.1016/j.envpol.2022.118890] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A new bacterium, Rhodococcus sp. S2-17, which could completely degrade an emerging organic pollutant, benzophenone-3 (BP-3), was isolated from contaminated sediment through an enrichment procedure, and its BP-3 catabolic pathway and genes were identified through metabolic intermediate and transcriptomic analyses and biochemical and genetic studies. Metabolic intermediate analysis suggested that strain S2-17 may degrade BP-3 using a catabolic pathway progressing via the intermediates BP-1, 2,4,5-trihydroxy-benzophenone, 3-hydroxy-4-benzoyl-2,4-hexadienedioic acid, 4-benzoyl-3-oxoadipic acid, 3-oxoadipic acid, and benzoic acid. A putative BP-3 catabolic gene cluster including cytochrome P450, flavin-dependent oxidoreductase, hydroxyquinol 1,2-dioxygenase, maleylacetate reductase, and α/β hydrolase genes was identified through genomic and transcriptomic analyses. Genes encoding the cytochrome P450 complex that demethylates BP-3 to BP-1 were functionally verified through protein expression, and the functions of the other genes were also verified through knockout mutant construction and intermediate analysis. This study suggested that strain S2-17 might have acquired the ability to catabolize BP-3 by recruiting the cytochrome P450 complex and α/β hydrolase, which hydrolyzes 4-benzoyl-3-oxoadipic acid to benzoic acid and 3-oxoadipic acid, genes, providing insights into the recruitment of genes of for the catabolism of emerging organic pollutants.
Collapse
Affiliation(s)
- Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yunhee Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sang Eun Jeong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea; Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Hyun Mi Jin
- Nakdonggang National Institute of Biological Resources, Sangju-si, Gyeongsangbuk-do, 37242, Republic of Korea
| | - Baolei Jia
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
Current research on simultaneous oxidation of aliphatic and aromatic hydrocarbons by bacteria of genus Pseudomonas. Folia Microbiol (Praha) 2022; 67:591-604. [PMID: 35318574 DOI: 10.1007/s12223-022-00966-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
One of the most frequently used methods for elimination of oil pollution is the use of biological preparations based on oil-degrading microorganisms. Such microorganisms often relate to bacteria of the genus Pseudomonas. Pseudomonads are ubiquitous microorganisms that often have the ability to oxidize various pollutants, including oil hydrocarbons. To date, individual biochemical pathways of hydrocarbon degradation and the organization of the corresponding genes have been studied in detail. Almost all studies of this kind have been performed on degraders of individual hydrocarbons belonging to a single particular class. Microorganisms capable of simultaneous degradation of aliphatic and aromatic hydrocarbons are very poorly studied. Most of the works on such objects have been devoted only to phenotype characteristic and some to genetic studies. To identify the patterns of interaction of several metabolic systems depending on the growth conditions, the most promising are such approaches as transcriptomics and proteomics, which make it possible to obtain a comprehensive assessment of changes in the expression of hundreds of genes and proteins at the same time. This review summarizes the existing data on bacteria of the genus Pseudomonas capable of the simultaneous oxidation of hydrocarbons of different classes (alkanes, monoaromatics, and polyaromatics) and presents the most important results obtained in the studies on the biodegradation of hydrocarbons by representatives of this genus using methods of transcriptomic and proteomic analyses.
Collapse
|
3
|
Shi S, Yang L, Yang C, Li S, Zhao H, Ren L, Wang X, Lu F, Li Y, Zhao H. Function and Molecular Ecology Significance of Two Catechol-Degrading Gene Clusters in Pseudomonas putida ND6. J Microbiol Biotechnol 2021; 31:259-271. [PMID: 33323670 PMCID: PMC9705993 DOI: 10.4014/jmb.2009.09026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Many bacteria metabolize aromatic compounds via catechol as a catabolic intermediate, and possess multiple genes or clusters encoding catechol-cleavage enzymes. The presence of multiple isozyme-encoding genes is a widespread phenomenon that seems to give the carrying strains a selective advantage in the natural environment over those with only a single copy. In the naphthalene-degrading strain Pseudomonas putida ND6, catechol can be converted into intermediates of the tricarboxylic acid cycle via either the ortho- or meta-cleavage pathways. In this study, we demonstrated that the catechol ortho-cleavage pathway genes (catBICIAI and catBIICIIAII) on the chromosome play an important role. The catI and catII operons are co-transcribed, whereas catAI and catAII are under independent transcriptional regulation. We examined the binding of regulatory proteins to promoters. In the presence of cis-cis-muconate, a well-studied inducer of the cat gene cluster, CatRI and CatRII occupy an additional downstream site, designated as the activation binding site. Notably, CatRI binds to both the catI and catII promoters with high affinity, while CatRII binds weakly. This is likely caused by a T to G mutation in the G/T-N11-A motif. Specifically, we found that CatRI and CatRII regulate catBICIAI and catBIICIIAII in a cooperative manner, which provides new insights into naphthalene degradation.
Collapse
Affiliation(s)
- Sanyuan Shi
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Liu Yang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Chen Yang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710048, P.R. China
| | - Hong Zhao
- Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 00457, P.R. China
| | - Lu Ren
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Xiaokang Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Fuping Lu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Ying Li
- China Animal Disease Control Center, Beijing 100000, P.R. China,Y. Li Phone: +86-10-59198969 Fax: +86-10-59198969 E-mail:
| | - Huabing Zhao
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China,Corresponding authors H. Zhao Phone: +86-22-60601958 Fax: +86-22-60602298 E-mail:
| |
Collapse
|
4
|
Li C, Chen J, Li SC. Understanding Horizontal Gene Transfer network in human gut microbiota. Gut Pathog 2020; 12:33. [PMID: 32670414 PMCID: PMC7346641 DOI: 10.1186/s13099-020-00370-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background Horizontal Gene Transfer (HGT) is the process of transferring genetic materials between species. Through sharing genetic materials, microorganisms in the human microbiota form a network. The network can provide insights into understanding the microbiota. Here, we constructed the HGT networks from the gut microbiota sequencing data and performed network analysis to characterize the HGT networks of gut microbiota. Results We constructed the HGT network and perform the network analysis to two typical gut microbiota datasets, a 283-sample dataset of Mother-to-Child and a 148-sample dataset of longitudinal inflammatory bowel disease (IBD) metagenome. The results indicated that (1) the HGT networks are scale-free. (2) The networks expand their complexities, sizes, and edge numbers, accompanying the early stage of lives; and microbiota established in children shared high similarity as their mother (p-value = 0.0138), supporting the transmission of microbiota from mother to child. (3) Groups harbor group-specific network edges, and network communities, which can potentially serve as biomarkers. For instances, IBD patient group harbors highly abundant communities of Proteobacteria (p-value = 0.0194) and Actinobacteria (p-value = 0.0316); children host highly abundant communities of Proteobacteria (p-value = 2.8785\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$e^{-5}$$\end{document}e-5) and Actinobacteria (p-value = 0.0015), and the mothers host highly abundant communities of Firmicutes (p-value = 8.0091\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$e^{-7}$$\end{document}e-7). IBD patient networks contain more HGT edges in pathogenic genus, including Mycobacterium, Sutterella, and Pseudomonas. Children’s networks contain more edges from Bifidobacterium and Escherichia. Conclusion Hence, we proposed the HGT network constructions from the gut microbiota sequencing data. The HGT networks capture the host state and the response of microbiota to the environmental and host changes, and they are essential to understand the human microbiota.
Collapse
Affiliation(s)
- Chen Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jiaxing Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Li S, Li X, Zhao H, Cai B. Physiological role of the novel salicylaldehyde dehydrogenase NahV in mineralization of naphthalene by Pseudomonas putida ND6. Microbiol Res 2011; 166:643-53. [PMID: 21376550 DOI: 10.1016/j.micres.2011.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 01/21/2011] [Accepted: 01/29/2011] [Indexed: 11/18/2022]
Abstract
The classical salicylaldehyde dehydrogenases found in naphthalene-degrading bacteria are denoted as NahF. In addition to NahF, NahV, and its corresponding gene nahV, were found here in multiple naphthalene-degrading bacteria isolated from industrial wastewater polluted with polycyclic aromatic hydrocarbons (PAHs). In this study, we described for the first time the biological function and regulation model of NahV for the mineralization of naphthalene by P. putida ND6 via the construction of nahF-, nahV- and regulatory gene nahR-deficient strains. The two mutants of salicylaldehyde dehydrogenase genes and wild-type Pseudomonas ND6 were compared with respect to growth rate, naphthalene degradation efficiency, protein expression level, and salicylaldehyde dehydrogenase activity. The data showed that the presence of NahV conferred a physiological advantage on P. putida ND6 for the catabolism of naphthalene in the presence of NahF. NahV could facilitate naphthalene degradation by increasing total salicylaldehyde dehydrogenase activity when both dehydrogenases are present and it could replace the function of NahF when nahF gene is deleted or mutated, thus ensuring mutants could survive in naphthalene-containing environments. To investigate regulation model of NahV, we detected the expression levels and salicylaldehyde dehydrogenase activity in the wild-type and the nahR mutant strains following cultivation in the presence of glucose±salicylate. The data demonstrated that just like the classical salicylaldehyde dehydrogenases, NahF, NahV was induced by salicylate in the presence of NahR.
Collapse
Affiliation(s)
- Shanshan Li
- Key Laboratory of Bioactive Materials, Ministry of Education, and Department of Microbiology, Nankai University, Tianjin, China
| | | | | | | |
Collapse
|
6
|
Seoane J, Yankelevich T, Dechesne A, Merkey B, Sternberg C, Smets BF. An individual-based approach to explain plasmid invasion in bacterial populations. FEMS Microbiol Ecol 2010; 75:17-27. [PMID: 21091520 DOI: 10.1111/j.1574-6941.2010.00994.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We present an individual-based experimental framework to identify and estimate the main parameters governing bacterial conjugation at the individual cell scale. From this analysis, we have established that transient periods of unregulated plasmid transfer within newly formed transconjugant cells, together with contact mechanics arising from cellular growth and division, are the two main processes determining the emergent inability of the pWW0 TOL plasmid to fully invade spatially structured Pseudomonas putida populations. We have also shown that pWW0 conjugation occurs mainly at advanced stages of the growth cycle and that nongrowing cells, even when exposed to high nutrient concentrations, do not display conjugal activity. These results do not support previous hypotheses relating conjugation decay in the deeper cell layers of bacterial biofilms to nutrient depletion and low physiological activity. We observe, however, that transient periods of elevated plasmid transfer in newly formed transconjugant cells are offset by unfavorable cell-to-cell contact mechanics, which ultimately precludes the pWWO TOL plasmid from fully invading tightly packed multicellular P. putida populations such as microcolonies and biofilms.
Collapse
Affiliation(s)
- Jose Seoane
- Department of Environmental Engineering, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
7
|
Kim J, Yeom J, Jeon CO, Park W. Intracellular 2-keto-3-deoxy-6-phosphogluconate is the signal for carbon catabolite repression of phenylacetic acid metabolism in Pseudomonas putida KT2440. Microbiology (Reading) 2009; 155:2420-2428. [DOI: 10.1099/mic.0.027060-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The growth pattern of Pseudomonas putida KT2440 in the presence of glucose and phenylacetic acid (PAA), where the sugar is used in preference to the aromatic compound, suggests that there is carbon catabolite repression (CCR) of PAA metabolism by glucose or gluconate. Furthermore, CCR is regulated at the transcriptional level. However, this CCR phenomenon does not occur in PAA-amended minimal medium containing fructose, pyruvate or succinate. We previously identified 2-keto-3-deoxy-6-phosphogluconate (KDPG) as an inducer of glucose metabolism, and this has led to this investigation into the role of KDPG as a signal compound for CCR. Two mutant strains, the edd mutant (non-KDPG producer) and the eda mutant (KDPG overproducer), grew in the presence of PAA but not in the presence of glucose. The edd mutant utilized PAA even in the presence of glucose, indicating that CCR had been abolished. This observation has additional support from the finding that there is high phenylacetyl-CoA ligase activity in the edd mutant, even in the presence of glucose+PAA, but not in wild-type cells under the same conditions. Unlike the edd mutant, the eda mutant did not grow in the presence of glucose+PAA. Interestingly, there was no uptake and/or metabolism of PAA in the eda mutant cells under the same conditions. Targeted disruption of PaaX, a repressor of the PAA operon, had no effect on CCR of PAA metabolism in the presence of glucose, suggesting that there is another transcriptional repression system associated with the KDPG signal. This is the first study to demonstrate that KDPG is the true CCR signal of PAA metabolism in P. putida KT2440.
Collapse
Affiliation(s)
- Juhyun Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5 Ga, Seoul, Republic of Korea
| | - Jinki Yeom
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5 Ga, Seoul, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Woojun Park
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5 Ga, Seoul, Republic of Korea
| |
Collapse
|
8
|
Kim J, Jeon CO, Park W. Dual regulation of zwf-1 by both 2-keto-3-deoxy-6-phosphogluconate and oxidative stress in Pseudomonas putida. MICROBIOLOGY-SGM 2009; 154:3905-3916. [PMID: 19047757 DOI: 10.1099/mic.0.2008/020362-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Northern blot analysis and a GFP-based reporter assay showed that zwf-1, which encodes glucose-6-phosphate dehydrogenase, was highly induced when Pseudomonas putida KT2440 was cultured in minimal medium containing glucose or gluconate. However, zwf-1 expression was not detected in the presence of pyruvate or succinate. The use of a knockout mutant of HexR, a putative transcription regulator, resulted in constitutively high expression of zwf-1, regardless of the carbon source. An electrophoretic mobility shift assay showed that HexR protein binds to the zwf-1 promoter region and that HexR binding is inhibited by 2-keto-3-deoxy-6-phosphogluconate (KDPG). Despite the presence of gluconate, the edd mutant (non-KDPG producer) was not able to induce the zwf-1 gene. The eda mutant (KDPG overproducer) featured a constitutively high level of zwf-1 expression. Interestingly, zwf-1 was also highly expressed in the presence of oxidative stress-inducing reagents. The level of zwf-1 induction in wild-type cells undergoing oxidative stress did not differ significantly from that observed with the hexR mutant under normal conditions. Interestingly, the hexR mutant was more tolerant of oxidative stress than the wild-type. Expression of zwf-1 was induced by oxidative stress in the edd mutant. Thus, KDPG, a real inducer of zwf-1 gene expression, was not necessary for oxidative-stress induction. In vitro binding of HexR to its cognate promoter region was diminished by menadione and cumene hydroperoxide. The data suggested that HexR might be a dual-sensing regulator of zwf-1 induction that is able to respond to both KDPG and oxidative stress.
Collapse
Affiliation(s)
- Juhyun Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5 Ga, Seoul, Republic of South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Republic of South Korea
| | - Woojun Park
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, Republic of Korea.,Division of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5 Ga, Seoul, Republic of South Korea
| |
Collapse
|
9
|
Park M, Jeon Y, Jang HH, Ro HS, Park W, Madsen EL, Jeon CO. Molecular and biochemical characterization of 3-hydroxybenzoate 6-hydroxylase from Polaromonas naphthalenivorans CJ2. Appl Environ Microbiol 2007; 73:5146-52. [PMID: 17586666 PMCID: PMC1950974 DOI: 10.1128/aem.00782-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prior research revealed that Polaromonas naphthalenivorans CJ2 carries and expresses genes encoding the gentisate metabolic pathway for naphthalene. These metabolic genes are split into two clusters, comprising nagRAaGHAbAcAdBFCQEDJI'-orf1-tnpA and nagR2-orf2I''KL (C. O. Jeon, M. Park, H. Ro, W. Park, and E. L. Madsen, Appl. Environ. Microbiol. 72:1086-1095, 2006). BLAST homology searches of sequences in GenBank indicated that the orf2 gene from the small cluster likely encoded a salicylate 5-hydroxylase, presumed to catalyze the conversion of salicylate into gentisate. Here, we report physiological and genetic evidence that orf2 does not encode salicylate 5-hydroxylase. Instead, we have found that orf2 encodes 3-hydroxybenzoate 6-hydroxylase, the enzyme which catalyzes the NADH-dependent conversion of 3-hydroxybenzoate into gentisate. Accordingly, we have renamed orf2 nagX. After expression in Escherichia coli, the NagX enzyme had an approximate molecular mass of 43 kDa, as estimated by gel filtration, and was probably a monomeric protein. The enzyme was able to convert 3-hydroxybenzoate into gentisate without salicylate 5-hydroxylase activity. Like other 3-hydroxybenzoate 6-hydroxylases, NagX utilized both NADH and NADPH as electron donors and exhibited a yellowish color, indicative of a bound flavin adenine dinucleotide. An engineered mutant of P. naphthalenivorans CJ2 defective in nagX failed to grow on 3-hydroxybenzoate but grew normally on naphthalene. These results indicate that the previously described small catabolic cluster in strain CJ2 may be multifunctional and is essential for the degradation of 3-hydroxybenzoate. Because nagX and an adjacent MarR-type regulatory gene are both closely related to homologues in Azoarcus species, this study raises questions about horizontal gene transfer events that contribute to operon evolution.
Collapse
Affiliation(s)
- Minjeong Park
- Division of Applied Life Science, EB-NCRC, PMBBRC, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Kim YH, Lee Y, Kim S, Yeom J, Yeom S, Seok Kim B, Oh S, Park S, Jeon CO, Park W. The role of periplasmic antioxidant enzymes (superoxide dismutase and thiol peroxidase) of the Shiga toxin-producingEscherichia coli O157:H7 in the formation of biofilms. Proteomics 2006; 6:6181-93. [PMID: 17133368 DOI: 10.1002/pmic.200600320] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study examined the role of the periplasmic oxidative defense proteins, copper, zinc superoxide dismutase (SodC), and thiol peroxidase (Tpx), from the Shiga toxin-producing Escherichia coli O157:H7 (STEC) in the formation of biofilms. Proteomic analyses have shown significantly higher expression levels of both periplasmic antioxidant systems (SodC and Tpx) in STEC cells grown under biofilm conditions than under planktonic conditions. An analysis of their growth phase-dependent gene expression indicated that a high level of the sodC expression occurred during the stationary phase and that the expression of the tpx gene was strongly induced only during the exponential growth phase. Exogenous hydrogen peroxide reduced the aerobic growth of the STEC sodC and tpx mutants by more than that of their parental strain. The two mutants also displayed significant reductions in their attachment to both biotic (HT-29 epithelial cell) and abiotic surfaces (polystyrene and polyvinyl chloride microplates) during static aerobic growth. However, the growth rates of both wild-type and mutants were similar under aerobic growth conditions. The formation of an STEC biofilm was only observed with the wild-type STEC cells in glass capillary tubes under continuous flow-culture conditions compared with the STEC sodC and tpx mutants. To the best of our knowledge, this is the first mutational study to show the contribution of sodC and tpx gene products to the formation of an E. coli O157:H7 biofilm. These results also suggest that these biofilms are physiologically heterogeneous and that oxidative stress defenses in both the exponential and stationary growth stages play important roles in the formation of STEC biofilms.
Collapse
Affiliation(s)
- Young Hoon Kim
- Division of Food Science, Korea University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jeon CO, Park M, Ro HS, Park W, Madsen EL. The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control. Appl Environ Microbiol 2006; 72:1086-95. [PMID: 16461653 PMCID: PMC1392936 DOI: 10.1128/aem.72.2.1086-1095.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polaromonas naphthalenivorans CJ2, found to be responsible for the degradation of naphthalene in situ at a coal tar waste-contaminated site (C.-O. Jeon et al., Proc. Natl. Acad. Sci. USA 100:13591-13596, 2003), is able to grow on mineral salts agar media with naphthalene as the sole carbon source. Beginning from a 484-bp nagAc-like region, we used a genome walking strategy to sequence genes encoding the entire naphthalene degradation pathway andadditional flanking regions. We found that the naphthalene catabolic genes in P. naphthalenivorans CJ2 were divided into one large and one small gene cluster, separated by an unknown distance. The large gene cluster (nagRAaGHAbAcAdBFCQEDJI'ORF1tnpA) is bounded by a LysR-type regulator (nagR). The small cluster (nagR2ORF2I"KL) is bounded by a MarR-type regulator (nagR2). The catabolic genes of P. naphthalenivorans CJ2 were homologous to many of those of Ralstonia U2, which uses the gentisate pathway to convert naphthalene to central metabolites. However, three open reading frames (nagY, nagM, and nagN), present in Ralstonia U2, were absent. Also, P. naphthalenivorans carries two copies of gentisate dioxygenase (nagI) with 77.4% DNA sequence identity to one another and 82% amino acid identity to their homologue in Ralstonia sp. strain U2. Investigation of the operons using reverse transcription PCR showed that each cluster was controlled independently by its respective promoter. Insertional inactivation and lacZ reporter assays showed that nagR2 is a negative regulator and that expression of the small cluster is not induced by naphthalene, salicylate, or gentisate. Association of two putative Azoarcus-related transposases with the large cluster and one Azoarcus-related putative salicylate 5-hydroxylase gene (ORF2) in the small cluster suggests that mobile genetic elements were likely involved in creating the novel arrangement of catabolic and regulatory genes in P. naphthalenivorans.
Collapse
Affiliation(s)
- Che Ok Jeon
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | | | |
Collapse
|
12
|
Ma Y, Wang L, Shao Z. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 2006; 8:455-65. [PMID: 16478452 DOI: 10.1111/j.1462-2920.2005.00911.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Twenty-two polycyclic aromatic hydrocarbon (PAH)-degrading bacterial strains were isolated from Antarctic soils with naphthalene or phenanthrene as a sole carbon source, while no degrader was obtained from an unpolluted sampling site. Phylogenetic analysis showed that all belonged to the genus Pseudomonas except one that was identified as the genus of Rahnella. Some of them were closely related to previously reported cold-tolerant species, while some were separated in deeply rooted branches and represent new strains. All these strains showed a high efficiency to degrade naphthalene at 4 degrees C, and some additionally degraded phenanthrene. Using degenerate primers and polymerase chain reaction (PCR) amplification, ndo gene encoding naphthalene dioxygenase (NDO) was detected from all the isolates. Phylogenetic analysis grouped these genes into two clusters which shared 94% similarity to each other, and showed about 97% similarity within a cluster. However, no obvious difference was observed with mesophilic ndo genes; this indicates that the host cell is pivotal in cold adaptation. In addition, the mismatch between 16S rRNA and NDO phylogenetic trees strongly indicates horizontal gene transfer among these isolates and may have happened in situ. Further, Southern hybridization and plasmid curing confirmed that ndo genes were located on a large self-transmissible plasmid, which can be transferred to a mesophilic strains. The transconjugants acquired the ability to utilize naphthalene and phenanthrene. Results of this article imply that Pseudomonas plays an important role in PAH biodegradation in Antarctic soils, and the related genes might be originally transferred from outside Antarctica and spread among indigenous species.
Collapse
MESH Headings
- Antarctic Regions
- Blotting, Southern
- Conjugation, Genetic
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Dioxygenases
- Gene Transfer, Horizontal
- Molecular Sequence Data
- Multienzyme Complexes/genetics
- Naphthalenes/metabolism
- Oxygenases/genetics
- Phenanthrenes/metabolism
- Phylogeny
- Plasmids/genetics
- Polycyclic Aromatic Hydrocarbons/metabolism
- Polymerase Chain Reaction
- Pseudomonas/classification
- Pseudomonas/genetics
- Pseudomonas/isolation & purification
- Pseudomonas/metabolism
- RNA, Ribosomal, 16S/genetics
- Rahnella/classification
- Rahnella/genetics
- Rahnella/isolation & purification
- Rahnella/metabolism
- Sequence Analysis, DNA
- Sequence Homology
- Soil Microbiology
- Temperature
Collapse
Affiliation(s)
- Yingfei Ma
- Key Laboratory of Marine Biogenetic Resources, The Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | | | | |
Collapse
|
13
|
Chen Y, Klein JR, McKay LL, Dunny GM. Quantitative analysis of group II intron expression and splicing in Lactococcus lactis. Appl Environ Microbiol 2005; 71:2576-86. [PMID: 15870348 PMCID: PMC1087544 DOI: 10.1128/aem.71.5.2576-2586.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 11/22/2004] [Indexed: 11/20/2022] Open
Abstract
The group II intron Ll.ltrB is found within the ltrB relaxase gene of the conjugative element pRS01 in Lactococcus lactis. Precise splicing of the intron is essential for pRS01 transfer. The transcription regulation and in vivo splicing activity of Ll.ltrB have not been investigated thoroughly in L. lactis in the natural pRS01 context. We developed absolute quantitative real-time reverse transcription-PCR assays to quantify RNA levels of the 5' exon (ltrBE1) and the spliced relaxase (ltrB) and intron-encoded protein (ltrA) genes, as well as Ll.ltrB splicing activity under different physiological conditions. The mRNA levels for the ATP-binding protein OppD were assayed for comparison to the ltrB transcripts. The oppD mRNA ranged from 10- to 10,000-fold higher than ltrB region genes. ltrBE1 expression was growth-phase dependent. The mRNA level of ltrA was almost constant during all growth phases and in all media tested. Ll.ltrB in vivo splicing activity ranged from (6.5 +/- 2.1)% to (22.1 +/- 8.0)%. Acid challenge significantly decreased both ltrB region mRNA levels and intron splicing activity. The presence of recipient cells, different mating environments, and temperature stress had no significant effects on expression and splicing. Western blotting showed that the level of LtrB protein expressed from an intronless ltrB gene was much higher (about 20-fold) than the level of protein expressed from an intron-containing construct. Interestingly, LtrB protein showed a tendency to function in cis on its oriT target. The low level of ltrB transcript and relatively inefficient splicing of the intron may limit Ll.ltrB mobility and dissemination in nature.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
14
|
Lambertsen LM, Molin S, Kroer N, Thomas CM. Transcriptional regulation of pWW0 transfer genes in Pseudomonas putida KT2440. Plasmid 2005; 52:169-81. [PMID: 15518874 DOI: 10.1016/j.plasmid.2004.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/01/2004] [Indexed: 11/26/2022]
Abstract
The conjugative IncP-9 plasmid pWW0 (TOL) carries transfer genes, many of whose functions can be predicted from sequence similarities to the well-studied IncW and IncP-1 plasmids, and that are clustered with the replication and maintenance genes of the plasmid core. In this study we show that the IncP-9 transfer genes are transcribed from at least three promoter regions. The promoters for traA and traD act divergently from the region found to encode the origin of transfer, oriT. These promoters regulate expression of traA, B, and perhaps traC in one direction and traD in the other, all of whose gene products are predicted to be involved in relaxasome formation and DNA processing during transfer, and they are repressed by TraA. The third promoter region, upstream of mpfR, is responsible for transcription of mpfR and mpfA to mpfJ, encoding proteins involved in mating pair formation. Transcription from this region is negatively autoregulated by MpfR. Thus the pWW0 transfer genes, like those of the IncP-1 plasmids, are expressed at all times, but kept in control by a negative feed back loop to limit the metabolic burden on the host. Although many of the related mating pair formation systems are, as in pWW0, transcribed divergently from an operon for replication and/or stable inheritance functions, MpfR is not related to the known regulatory proteins of these other transfer systems outside those of the IncP-9 family and indeed the regulators tend to be specific for each plasmid family. This suggests that the general pattern of genetic organisation exhibited by these systems has arisen a number of times independently and must therefore be highly favourable to plasmid survival and spread.
Collapse
Affiliation(s)
- Lotte M Lambertsen
- Molecular Microbial Ecology Group, Centre for Biomedical Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
15
|
Park W, Madsen EL. Characterization in Pseudomonas putida Cg1 of nahR and its role in bacterial survival in soil. Appl Microbiol Biotechnol 2004; 66:209-16. [PMID: 15278309 DOI: 10.1007/s00253-004-1630-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 03/24/2004] [Accepted: 04/04/2004] [Indexed: 10/26/2022]
Abstract
Sequencing, RFLP analyses and experiments utilizing a lacZ transcriptional reporter fused to the promoter regions of nahR and nahG in Pseudomonas putida Cg1 confirmed that regulation of naphthalene degradation in both P. putida Cg1 and the type strain, P. putida NCIB 9816-4, is consistent with that of NAH7 from P. putida G7. Two nahR knockout strains (RK1 and Cg1-NAHR from P. putida NCIB 9816-4 and Cg1, respectively) showed a growth defect in the presence of naphthalene as sole carbon and energy source. We hypothesized that nahR influences ecological fitness of bacteria in naphthalene-contaminated soil and tested this hypothesis using both parent and nahR-knockout strains introduced to soil microcosms with and without added naphthalene. After 21 days, loss of cell viability was pronounced in the presence of added naphthalene crystals for nahR mutants of both test bacteria, relative to the wild types. Diminished viable counts were attributed to toxicity. Thus, our data indicated that NahR in P. putida Cg1 is virtually identical to its homologues in other pseudomonads and that nahR is required for resistance to naphthalene toxicity, hence the persistence of bacterial cells in soil with high concentrations of naphthalene.
Collapse
Affiliation(s)
- W Park
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|