1
|
Park MK, Hong CP, Kim BS, Lee DY, Kim YS. Integrated-Omics Study on the Transcriptomic and Metabolic Changes of Bacillus licheniformis, a Main Microorganism of Fermented Soybeans, According to Alkaline pH and Osmotic Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14379-14389. [PMID: 37737871 DOI: 10.1021/acs.jafc.3c01900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Bacillus licheniformis has been widely utilized in the food industry as well as various agricultural industries. In particular, it is a main microorganism of fermented soybeans. In this study, the changes of the metabolome and transcriptome of B. licheniformis KACC15844, which had been isolated from fermented soybeans, were investigated depending on alkaline pH (BP) and a high salt concentration (BS) using an integrated-omics technology, focusing on leucine metabolism. Overall, carbohydrate (glycolysis, sugar transport, and overflow) and amino acid (proline, glycine betaine, and serine) metabolisms were strongly associated with BS, while fatty acid metabolism, malate utilization, and branched-chain amino acid-derived volatiles were closely related to BP, in both gene and metabolic expressions. In particular, in leucine metabolism, the formation of 3-methylbutanoic acid, which has strong cheesy odor notes, was markedly increased in BP compared to the other samples. This study provided information on how specific culture conditions can affect gene expressions and metabolite formations in B. licheniformis using an integrated-omics approach.
Collapse
Affiliation(s)
- Min Kyung Park
- Food Processing Research Group, Korean Food Research Institute, Wanju 55365, Republic of Korea
| | - Chang Pyo Hong
- Theragen Etex Bio Institute, Suwon-si 13488, Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Suk Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Izumi M, Sonoki K, Akifusa S. Correlation of Salivary Occult Blood with the Plasma Concentration of Branched-Chain Amino Acids: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19158930. [PMID: 35897295 PMCID: PMC9332040 DOI: 10.3390/ijerph19158930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023]
Abstract
Background: Plasma branched-chain amino acids (BCAA) levels are predictors of glycometabolic disorders, leading to diabetes. Microbes, including periodontal pathogens, are thought to be associated with elevated plasma BCAA levels. This study aimed to evaluate the relationship between salivary occult blood (SOB) and plasma BCAA levels in middle-aged Japanese individuals. Methods: Sixty-four Japanese individuals aged ≥ 40 years were recruited for this study, which was conducted in Fukuoka Prefecture, Japan, from August to December 2021. Individuals diagnosed with and/or treated for diabetes were excluded from the study. The body mass index (BMI); plasma concentrations of total, high-density, and low-density lipoprotein cholesterol; triglyceride, glucose, and BCAA; and glycosylated hemoglobin ratio were measured. A basic periodontal examination was performed after the SOB test. Results: The median age of participants (men—20; women—44) was 55 (range, 41–78) years. The plasma BCAA concentration in the SOB-positive group (477 [400–658] μmol/L) was higher than that in the SOB-negative group (432 [307–665] μmol/L). Linear regression analysis revealed that SOB remained independently associated with the plasma BCAA level with statistical significance (β = 0.17, p = 0.02) after adjusting for sex, age, and BMI. Conclusions: SOB was positively correlated with plasma BCAA levels in middle-aged Japanese individuals. Thus, SOB may be a predictor of elevated plasma BCAA levels.
Collapse
|
3
|
Pham MT, Tran TTA, Zayabaatar E. Discovery of inhibitors against mycobacterium branched-chain amino acid aminotransferases through in silico screening and experimental evaluation. Lett Appl Microbiol 2022; 75:942-950. [PMID: 35687522 DOI: 10.1111/lam.13763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is one of the most dangerous infectious diseases and is caused by Mycobacterium bovis (Mb) and Mycobacterium tuberculosis (Mt). Branched-chain amino acid aminotransferases (BCATs) were reported to be the key enzyme for methionine synthesis in Mycobacterium. Blocking the methionine synthesis in Mycobacterium can inhibit the growth of Mycobacterium. Therefore, in silico screening of inhibitors can be a good way to develop a potential drug for treating TB. A pyridoxal 5'-phosphate (PLP)-form of Mycobacterium bovis branched-chain amino acid aminotransferases (MbBCAT), an active form of MbBCAT, was constructed manually for docking approximately 150 000 compounds and the free energy was calculated in Autodock Vina. The 10 compounds which had the highest affinity to MbBCAT were further evaluated for their inhibitory effects against MbBCAT. Within the selected compounds, compound 4 (ZINC12359007) was found to be the best inhibitor against MbBCAT with the inhibitory constant Ki of 0·45 μmol l-1 and IC50 of 2·37 μmol l-1 . Our work provides potential candidates to develop effective drugs to prevent TB since the well-known structural information would be beneficial in the structure-based modification and design.
Collapse
Affiliation(s)
- M T Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - T T A Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
| | - E Zayabaatar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Higdon SM, Huang BC, Bennett AB, Weimer BC. Identification of Nitrogen Fixation Genes in Lactococcus Isolated from Maize Using Population Genomics and Machine Learning. Microorganisms 2020; 8:microorganisms8122043. [PMID: 33419343 PMCID: PMC7768417 DOI: 10.3390/microorganisms8122043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Sierra Mixe maize is a landrace variety from Oaxaca, Mexico, that utilizes nitrogen derived from the atmosphere via an undefined nitrogen fixation mechanism. The diazotrophic microbiota associated with the plant’s mucilaginous aerial root exudate composed of complex carbohydrates was previously identified and characterized by our group where we found 23 lactococci capable of biological nitrogen fixation (BNF) without containing any of the proposed essential genes for this trait (nifHDKENB). To determine the genes in Lactococcus associated with this phenotype, we selected 70 lactococci from the dairy industry that are not known to be diazotrophic to conduct a comparative population genomic analysis. This showed that the diazotrophic lactococcal genomes were distinctly different from the dairy isolates. Examining the pangenome followed by genome-wide association study and machine learning identified genes with the functions needed for BNF in the maize isolates that were absent from the dairy isolates. Many of the putative genes received an ‘unknown’ annotation, which led to the domain analysis of the 135 homologs. This revealed genes with molecular functions needed for BNF, including mucilage carbohydrate catabolism, glycan-mediated host adhesion, iron/siderophore utilization, and oxidation/reduction control. This is the first report of this pathway in this organism to underpin BNF. Consequently, we proposed a model needed for BNF in lactococci that plausibly accounts for BNF in the absence of the nif operon in this organism.
Collapse
Affiliation(s)
- Shawn M. Higdon
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.M.H.); (A.B.B.)
| | - Bihua C. Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
- 100 K Pathogen Genome Project, University of California, Davis, CA 95616, USA
| | - Alan B. Bennett
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.M.H.); (A.B.B.)
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
- 100 K Pathogen Genome Project, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
5
|
Lagatie O, Verheyen A, Van Asten S, Odiere MR, Djuardi Y, Levecke B, Vlaminck J, Mekonnen Z, Dana D, T'Kindt R, Sandra K, van Outersterp R, Oomens J, Lin R, Dillen L, Vreeken R, Cuyckens F, Stuyver LJ. 2-Methyl-pentanoyl-carnitine (2-MPC): a urine biomarker for patent Ascaris lumbricoides infection. Sci Rep 2020; 10:15780. [PMID: 32978457 PMCID: PMC7519643 DOI: 10.1038/s41598-020-72804-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/04/2020] [Indexed: 01/12/2023] Open
Abstract
Infections with intestinal worms, such as Ascaris lumbricoides, affect hundreds of millions of people in all tropical and subtropical regions of the world. Through large-scale deworming programs, World Health Organization aims to reduce moderate-to-heavy intensity infections below 1%. Current diagnosis and monitoring of these control programs are solely based on the detection of worm eggs in stool. Here we describe how metabolome analysis was used to identify the A. lumbricoides-specific urine biomarker 2-methyl pentanoyl carnitine (2-MPC). This biomarker was found to be 85.7% accurate in determining infection and 90.5% accurate in determining a moderate-to-heavy infection. Our results also demonstrate that there is a correlation between 2-MPC levels in urine and A. lumbricoides DNA detected in stool. Furthermore, the levels of 2-MPC in urine were shown to rapidly and strongly decrease upon administration of a standard treatment (single oral dose of 400 mg albendazole). In an Ascaris suum infection model in pigs, it was found that, although 2-MPC levels were much lower compared to humans, there was a significant association between urinary 2-MPC levels and both worm counts (p = 0.023) and the number of eggs per gram (epg) counts (p < 0.001). This report demonstrates that urinary 2-MPC can be considered an A. lumbricoides-specific biomarker that can be used to monitor infection intensity.
Collapse
Affiliation(s)
- Ole Lagatie
- Janssen Global Public Health, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Ann Verheyen
- Janssen Global Public Health, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Stijn Van Asten
- Discovery Sciences, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Maurice R Odiere
- Centre for Global Health Research, Kenya Medical Research Institute, P. O. Box 1578, Kisumu, 40100, Kenya
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Bruno Levecke
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Johnny Vlaminck
- Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Zeleke Mekonnen
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Daniel Dana
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Ruben T'Kindt
- Research Institute for Chromatography, President Kennedypark 26, 8500, Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography, President Kennedypark 26, 8500, Kortrijk, Belgium
| | - Rianne van Outersterp
- FELIX Laboratory, Faculty of Science, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - Jos Oomens
- FELIX Laboratory, Faculty of Science, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
| | - Ronghui Lin
- Janssen R&D, Welsh & McKean Road, Spring House, PA, 19477-0776, USA
| | - Lieve Dillen
- Discovery Sciences, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Rob Vreeken
- Discovery Sciences, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Filip Cuyckens
- Discovery Sciences, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Lieven J Stuyver
- Janssen Global Public Health, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
6
|
Gómez de Cadiñanos LP, García-Cayuela T, Martínez-Cuesta MC, Peláez C, Requena T. Expression of amino acid converting enzymes and production of volatile compounds by Lactococcus lactis IFPL953. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Fate of Lactococcus lactis starter cultures during late ripening in cheese models. Food Microbiol 2016; 59:112-8. [DOI: 10.1016/j.fm.2016.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
|
8
|
Wu C, Huang J, Zhou R. Progress in engineering acid stress resistance of lactic acid bacteria. Appl Microbiol Biotechnol 2013; 98:1055-63. [DOI: 10.1007/s00253-013-5435-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 11/24/2022]
|
9
|
He X, Mishchuk DO, Shah J, Weimer BC, Slupsky CM. Cross-talk between E. coli strains and a human colorectal adenocarcinoma-derived cell line. Sci Rep 2013; 3:3416. [PMID: 24301462 PMCID: PMC3849634 DOI: 10.1038/srep03416] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/18/2013] [Indexed: 12/19/2022] Open
Abstract
Although there is great interest in the specific mechanisms of how gut microbiota modulate the biological processes of the human host, the extent of host-microbe interactions and the bacteria-specific metabolic activities for survival in the co-evolved gastrointestinal environment remain unclear. Here, we demonstrate a comprehensive comparison of the host epithelial response induced by either a pathogenic or commensal strain of Escherichia coli using a multi-omics approach. We show that Caco-2 cells incubated with E. coli display an activation of defense response genes associated with oxidative stress. Indeed, in the bacteria co-culture system, the host cells experience an altered environment compared with the germ-free system that includes reduced pH, depletion of major energy substrates, and accumulation of fermentation by-products. Measurement of intracellular Caco-2 cell metabolites revealed a significantly increased lactate concentration, as well as changes in TCA cycle intermediates. Our results will lead to a deeper understanding of acute microbial-host interactions.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, University of California, Davis, CA 95616-5270, USA
| | | | | | | | | |
Collapse
|
10
|
The branched-chain amino acid aminotransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans. J Bacteriol 2012; 194:2010-9. [PMID: 22328677 DOI: 10.1128/jb.06737-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of Streptococcus mutans to produce and tolerate organic acids from carbohydrate metabolism represents a major virulence factor responsible for the formation of carious lesions. Pyruvate is a key metabolic intermediate that, when rerouted to other metabolic pathways such as amino acid biosynthesis, results in the alleviation of acid stress by reducing acid end products and aiding in maintenance of intracellular pH. Amino acid biosynthetic genes such as ilvC and ilvE were identified as being upregulated in a proteome analysis of Streptococcus mutans under acid stress conditions (A. C. Len, D. W. Harty, and N. A. Jacques, Microbiology 150:1353-1366, 2004). In Lactococcus lactis and Staphylococcus carnosus, the ilvE gene product is involved with biosynthesis and degradation of branched-chain amino acids, as well as in the production of branched-chain fatty acids (B. Ganesan and B. C. Weimer, Appl. Environ. Microbiol. 70:638-641, 2004; S. M. Madsen et al., Appl. Environ. Microbiol. 68:4007-4014, 2002; and M. Yvon, S. Thirouin, L. Rijnen, D. Fromentier, and J. C. Gripon, Appl. Environ. Microbiol. 63:414-419, 1997). Here we constructed and characterized an ilvE deletion mutant of S. mutans UA159. Growth experiments revealed that the ilvE mutant strain has a lag in growth when nutritionally limited for branched-chain amino acids. We further demonstrated that the loss of ilvE causes a decrease in acid tolerance. The ilvE strain exhibits a defect in F(1)-F(o) ATPase activity and has reduced catabolic activity for isoleucine and valine. Results from transcriptional studies showed that the ilvE promoter is upregulated during growth at low pH. Collectively, the results of this investigation show that amino acid metabolism is a component of the acid-adaptive repertoire of S. mutans.
Collapse
|
11
|
Burns P, Patrignani F, Serrazanetti D, Vinderola G, Reinheimer J, Lanciotti R, Guerzoni M. Probiotic Crescenza Cheese Containing Lactobacillus casei and Lactobacillus acidophilus Manufactured with High-Pressure Homogenized Milk. J Dairy Sci 2008; 91:500-12. [DOI: 10.3168/jds.2007-0516] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Ganesan B, Dobrowolski P, Weimer BC. Identification of the leucine-to-2-methylbutyric acid catabolic pathway of Lactococcus lactis. Appl Environ Microbiol 2006; 72:4264-73. [PMID: 16751541 PMCID: PMC1489675 DOI: 10.1128/aem.00448-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nutrient starvation and nonculturability in bacteria lead to changes in metabolism not found during the logarithmic phase. Substrates alternate to those used during growth are metabolized in these physiological states, yielding secondary metabolites. In firmicutes and actinobacteria, amino acid catabolic pathways are induced during starvation and nonculturability. Examination of lactococci showed that the population entered a nonculturable state after carbohydrate depletion and was incapable of growth on solid media; however, the cells gained the ability to produce branched-chain fatty acids from amino acids. Gene expression profiling and in silico pathway analysis coupled with nuclear magnetic resonance spectroscopy were used to delineate the leucine catabolic pathway. Lactococci produced acetic and propionic acid during logarithmic growth and starvation. At the onset of nonculturability, 2-methylbutyric acid was produced via hydroxymethyl-glutaryl-coenzyme A (CoA) and acetyl-CoA, along with ATP and oxidation/reduction precursors. Gene expression profiling and genome sequence analysis showed that lactococci contained redundant genes for branched-chain fatty acid production that were regulated by an unknown mechanism linked to carbon metabolism. This work demonstrated the ability of a firmicute to induce new metabolic capabilities in the nonculturable state for producing energy and intermediates needed for transcription and translation. Phylogenetic analyses showed that homologues of these enzymes and their functional motifs were widespread across the domains of life.
Collapse
|
13
|
Smit G, Smit BA, Engels WJ. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2005.04.002] [Citation(s) in RCA: 536] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Ganesan B, Seefeldt K, Weimer BC. Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2. Appl Environ Microbiol 2005; 70:6385-93. [PMID: 15528496 PMCID: PMC525268 DOI: 10.1128/aem.70.11.6385-6393.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and alpha-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of alpha-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and alpha-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from alpha-keto acids only. BL2 also converted alpha-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and alpha-keto acids and that carbon metabolism is important in regulating this event.
Collapse
|