1
|
Chen R, Orsi RH, Guariglia-Oropeza V, Wiedmann M. Development of a Modeling Tool To Assess and Reduce Regulatory and Recall Risks for Cold-Smoked Salmon Due to Listeria monocytogenes Contamination. J Food Prot 2022; 85:1335-1354. [PMID: 35723598 DOI: 10.4315/jfp-22-025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Although public health risk assessments for Listeria monocytogenes (Lm) have been published for various foods, firm-level decision making on interventions targeting Lm involves considerations of both public health and enterprise risks. Smoked seafood is a ready-to-eat product with a high incidence of Lm contamination and has been associated with several recalls. We used cold-smoked salmon as a model product to develop a decision support tool (the regulatory and recall risk [3R] model) to estimate (i) baseline regulatory and recall (RR) risks (i.e., overall risks of a lot sampled and found positive for Lm, e.g., by food regulatory agencies) due to Lm contamination and (ii) the RR risk reduction that can be achieved through interventions with underlying mechanisms such as reducing the prevalence and/or level of Lm and retarding or preventing Lm growth. Given that a set number of samples (e.g., 10) are tested for a given lot, the RR risk equals the likelihood of detecting Lm in at least one sample. Under the baseline scenario, which assumes a 4% Lm prevalence and no interventions, the median predicted RR risk for a given production lot was 0.333 (95% credible interval: 0.288, 0.384) when 10 25-g samples were tested. Nisin treatments, which reduce both the prevalence and initial level of Lm, reduced RR risks in a concentration-dependent manner to 0.109 (0.074, 0.146) with 5 ppm, 0.049 (0.024, 0.083) with 10 ppm, and 0.017 (0.007, 0.033) with 20 ppm. In general, more effective reduction in RR risks can be achieved by reducing Lm prevalence than by retarding Lm growth; the RR risk was reduced to 0.182 (0.153, 0.213) by a 50% prevalence reduction but to only 0.313 (0.268, 0.367) by bacteriostatic growth inhibitors. Sensitivity analysis indicated that prevalence and initial level of Lm and storage temperature have the greatest impact on predicting RR risks, suggesting that reliable data for these parameters will improve model performance. HIGHLIGHTS
Collapse
Affiliation(s)
- Ruixi Chen
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | - Renato H Orsi
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| | | | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
2
|
Gana J, Gcebe N, Pierneef R, Moerane R, Adesiyun AA. Multiple-Locus Variable-Number Tandem Repeat Analysis Genotypes of Listeria monocytogenes Isolated from Farms, Abattoirs, and Retail in Gauteng Province, South Africa. J Food Prot 2022; 85:1249-1257. [PMID: 35588459 DOI: 10.4315/jfp-22-081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The use of multiple-locus variable-number analysis (MLVA) of tandem repeats (TRs) for subtyping Listeria monocytogenes has proven to be reliable and fast. This study determined the MLVA genotypes of 60 isolates of L. monocytogenes recovered from cattle farms, abattoirs, and retail outlets in Gauteng province, South Africa. The distribution of the 60 L. monocytogenes isolates analyzed by type of sample was as follows: raw beef (28, 46.7%), ready-to-eat beef products (9, 15.0%), beef carcass swabs (9, 15.0%), cattle environment (6, 10.0%), and cattle feces (8, 13.3%). The serogroups of the isolates were determined using PCR and the MLVA genotypes based on six selected loci. The frequency of the 60 serogroups detected was as follows: 1/2a-3a (IIa) (27, 45.0%); 4b-4d-4e (1Vb) (24, 40.0%); 1/2c-3c (IIc) (8, 13.3%); and 1/2b-3b (IIb) (1, 1.7%). MLVA successfully clustered genetically related isolates and differentiated nonrelated isolates, irrespective of their sources, sample types, and serogroups, as demonstrated by 16 MLVA pattern types detected. For serogroup 4b-4d-4e (IVb), there was no variation in TRs LM-TR2, LM-TR4, and LM-TR6, which each contained only one allele (02, 00, and 93, respectively). However, across the sources and sample types of isolates, there was variation in serogroup 4b-4d-4e (IVb): LM-TR1 contained 00, 03, and 05; LM-TR3 contained 14, 20, and 22; and LM-TR5 contained 14, 21, and 25. Similar patterns of variation in the TRs were detected in the other serogroups (1/2a-3a, 1/2b-3b, and 1/2c-3c). BioNumeric data analysis identified at least five types in Gauteng province. MLVA epidemiologically clustered the related isolates and differentiated unrelated isolates. HIGHLIGHTS
Collapse
Affiliation(s)
- James Gana
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,Department of Agricultural Education, Federal College of Education, Kontagora, Niger State, Nigeria
| | - Nomakorinte Gcebe
- Bacteriology Department, Onderstepoort Veterinary Research, Agricultural Research Council, South Africa
| | - Rian Pierneef
- Agricultural Research Council-Biotechnology Platform, 100 Old Soutpan Road, Onderstepoort, Pretoria 0110, South Africa
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Abiodun A Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,Department of Paraclinical Sciences, School of Veterinary Medicine, The University of West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
3
|
ULUDAĞ AA, ARSLAN AYDOĞDU EÖ, KİMİRAN A. The Determination of Presence of Listeria monocytogenes in Ground Meat Sold in Istanbul. GAZI UNIVERSITY JOURNAL OF SCIENCE 2022. [DOI: 10.35378/gujs.972909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Among the 21 different species of the Listeria genus, Listeria monocytogenes is the most common and listeriosis agent in humans. The mortality rate of L. monocytogenes infection is higher than the other common foodborne pathogens such as Salmonella Enteritidis, Campylobacter and Vibrio species. In the current study, it is aimed to determine the presence of L. monocytogenes bacteria in minced meat samples sold in Istanbul province by using the culture method of the USDA-FSIS. In this study, 100 minced meat samples purchased from different butchers in 11 districts of Istanbul between December 2018 and November 2019 were examined for the presence of L. monocytogenes. The bacteria identified also molecularly verified according to the presence of iap and hlyA gene regions by the polymerase chain reaction (PCR) method. When antibiotic susceptibility tests of 21 strains, identified as L. monocytogenes through biochemical tests, it was found to be resistant to Amoxicillin/Clavulanic acid (14.28%), penicillin (9.52%), cefaclor (9.52%), vancomycin (9.52%), ciprofloxacin (9.52%) and trimethoprim-sulfamethoxazole (9.52%) and susceptible to ampicillin (100%) and tetracycline (100%). In terms of iap and hlyA gene regions, only 16 of 21 isolates, identified as L. monocytogenes as a result of biochemical tests, were found to be L. monocytogenes. In our study with minced meat offered for sale in Istanbul, although, the L. monocytogenes isolation rate (17%) and the incidence of antibiotic resistance of the isolated L. monocytogenes bacteria are low, it was concluded that minced meat may pose a public health risk.
Collapse
Affiliation(s)
| | - Elif Özlem ARSLAN AYDOĞDU
- ISTANBUL UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF BIOLOGY, DEPARTMENT OF FUNDAMENTAL AND INDUSTRIAL MICROBIOLOGY
| | - Ayten KİMİRAN
- ISTANBUL UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF BIOLOGY, DEPARTMENT OF FUNDAMENTAL AND INDUSTRIAL MICROBIOLOGY
| |
Collapse
|
4
|
Day J, Hammack T. Immuno‐detection and differentiation ofListeria monocytogenesandListeria ivanoviiin stone fruits. J Appl Microbiol 2019; 127:1848-1858. [DOI: 10.1111/jam.14440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/09/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
- J.B. Day
- Center for Food Safety and Applied Nutrition U.S. Food and Drug Administration College Park MD USA
| | - T.S. Hammack
- Center for Food Safety and Applied Nutrition U.S. Food and Drug Administration College Park MD USA
| |
Collapse
|
5
|
|
6
|
Using genome-scale metabolic models to compare serovars of the foodborne pathogen Listeria monocytogenes. PLoS One 2018; 13:e0198584. [PMID: 29879172 PMCID: PMC6012718 DOI: 10.1371/journal.pone.0198584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/22/2018] [Indexed: 01/06/2023] Open
Abstract
Listeria monocytogenes is a microorganism of great concern for the food industry and the cause of human foodborne disease. Therefore, novel methods of control are needed, and systems biology is one such approach to identify them. Using a combination of computational techniques and laboratory methods, genome-scale metabolic models (GEMs) can be created, validated, and used to simulate growth environments and discern metabolic capabilities of microbes of interest, including L. monocytogenes. The objective of the work presented here was to generate GEMs for six different strains of L. monocytogenes, and to both qualitatively and quantitatively validate these GEMs with experimental data to examine the diversity of metabolic capabilities of numerous strains from the three different serovar groups most associated with foodborne outbreaks and human disease. Following qualitative validation, 57 of the 95 carbon sources tested experimentally were present in the GEMs, and; therefore, these were the compounds from which comparisons could be drawn. Of these 57 compounds, agreement between in silico predictions and in vitro results for carbon source utilization ranged from 80.7% to 91.2% between strains. Nutrient utilization agreement between in silico predictions and in vitro results were also conducted for numerous nitrogen, phosphorous, and sulfur sources. Additionally, quantitative validation showed that the L. monocytogenes GEMs were able to generate in silico predictions for growth rate and growth yield that were strongly and significantly (p < 0.0013 and p < 0.0015, respectively) correlated with experimental results. These findings are significant because they show that these GEMs for L. monocytogenes are comparable to published GEMs of other organisms for agreement between in silico predictions and in vitro results. Therefore, as with the other GEMs, namely those for Escherichia coli, Staphylococcus aureus, Vibrio vulnificus, and Salmonella spp., they can be used to determine new methods of growth control and disease treatment.
Collapse
|
7
|
It Is Not All about Single Nucleotide Polymorphisms: Comparison of Mobile Genetic Elements and Deletions in Listeria monocytogenes Genomes Links Cases of Hospital-Acquired Listeriosis to the Environmental Source. J Clin Microbiol 2015; 53:3492-500. [PMID: 26311854 DOI: 10.1128/jcm.00202-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022] Open
Abstract
The control of food-borne outbreaks caused by Listeria monocytogenes in humans relies on the timely identification of food or environmental sources and the differentiation of outbreak-related isolates from unrelated ones. This study illustrates the utility of whole-genome sequencing for examining the link between clinical and environmental isolates of L. monocytogenes associated with an outbreak of hospital-acquired listeriosis in Sydney, Australia. Comparative genomic analysis confirmed an epidemiological link between the three clinical and two environmental isolates. Single nucleotide polymorphism (SNP) analysis showed that only two SNPs separated the three human outbreak isolates, which differed by 19 to 20 SNPs from the environmental isolates and 71 to >10,000 SNPs from sporadic L. monocytogenes isolates. The chromosomes of all human outbreak isolates and the two suspected environmental isolates were syntenic. In contrast to the genomes of background sporadic isolates, all epidemiologically linked isolates contained two novel prophages and a previously unreported clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) locus subtype sequence. The mobile genetic element (MGE) profile of these isolates was distinct from that of the other serotype 1/2b reference strains and sporadic isolates. The identification of SNPs and clonally distinctive MGEs strengthened evidence to distinguish outbreak-related isolates of L. monocytogenes from cocirculating endemic strains.
Collapse
|
8
|
Day JB, Basavanna U. Magnetic bead based immuno-detection of Listeria monocytogenes and Listeria ivanovii from infant formula and leafy green vegetables using the Bio-Plex suspension array system. Food Microbiol 2015; 46:564-572. [PMID: 25475329 DOI: 10.1016/j.fm.2014.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/29/2022]
Abstract
Listeriosis, a disease contracted via the consumption of foods contaminated with pathogenic Listeria species, can produce severe symptoms and high mortality in susceptible people and animals. The development of molecular methods and immuno-based techniques for detection of pathogenic Listeria in foods has been challenging due to the presence of assay inhibiting food components. In this study, we utilize a macrophage cell culture system for the isolation and enrichment of Listeria monocytogenes and Listeria ivanovii from infant formula and leafy green vegetables for subsequent identification using the Luminex xMAP technique. Macrophage monolayers were exposed to infant formula, lettuce and celery contaminated with L. monocytogenes or L. ivanovii. Magnetic microspheres conjugated to Listeria specific antibody were used to capture Listeria from infected macrophages and then analyzed using the Bio-Plex 200 analyzer. As few as 10 CFU/mL or g of L. monocytogenes was detected in all foods tested. The detection limit for L. ivanovii was 10 CFU/mL in infant formula and 100 CFU/g in leafy greens. Microsphere bound Listeria obtained from infected macrophage lysates could also be isolated on selective media for subsequent confirmatory identification. This method presumptively identifies L. monocytogenes and L. ivanovii from infant formula, lettuce and celery in less than 28 h with confirmatory identifications completed in less than 48 h.
Collapse
Affiliation(s)
- J B Day
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5100 Paint Branch Parkway, College Park, MD 20740, USA.
| | - U Basavanna
- U.S. Army Medical Research Institute of Infectious Diseases, 1430 Veterans Drive Fort Detrick, MD 21702, USA
| |
Collapse
|
9
|
Day JB, Basavanna U. Real-time PCR detection of Listeria monocytogenes in infant formula and lettuce following macrophage-based isolation and enrichment. J Appl Microbiol 2015; 118:233-44. [PMID: 25346434 DOI: 10.1111/jam.12674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022]
Abstract
AIMS To develop a rapid detection procedure for Listeria monocytogenes in infant formula and lettuce using a macrophage-based enrichment protocol and real-time PCR. METHODS AND RESULTS A macrophage cell culture system was employed for the isolation and enrichment of L. monocytogenes from infant formula and lettuce for subsequent identification using real-time PCR. Macrophage monolayers were exposed to infant formula and lettuce contaminated with a serial dilution series of L. monocytogenes. As few as approx. 10 CFU ml(-1) or g(-1) of L. monocytogenes were detected in infant formula and lettuce after 16 h postinfection by real-time PCR. Internal positive PCR controls were utilized to eliminate the possibility of false-negative results. Co-inoculation with Listeria innocua did not reduce the L. monocytogenes detection sensitivity. Intracellular L. monocytogenes could also be isolated on Listeria selective media from infected macrophage lysates for subsequent confirmation. CONCLUSIONS The detection method is highly sensitive and specific for L. monocytogenes in infant formula and lettuce and establishes a rapid identification time of 20 and 48 h for presumptive and confirmatory identification, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY The method is a promising alternative to many currently used q-PCR detection methods which employ traditional selective media for enrichment of contaminated food samples. Macrophage enrichment of L. monocytogenes eliminates PCR inhibitory food elements and contaminating food microflora which produce cleaner samples that increase the rapidity and sensitivity of detection.
Collapse
Affiliation(s)
- J B Day
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Colleg Park, MD, USA
| | | |
Collapse
|
10
|
Sinclair SH, Rennoll-Bankert KE, Dumler JS. Effector bottleneck: microbial reprogramming of parasitized host cell transcription by epigenetic remodeling of chromatin structure. Front Genet 2014; 5:274. [PMID: 25177343 PMCID: PMC4132484 DOI: 10.3389/fgene.2014.00274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/26/2014] [Indexed: 12/25/2022] Open
Abstract
Obligate intracellular pathogenic bacteria evolved to manipulate their host cells with a limited range of proteins constrained by their compact genomes. The harsh environment of a phagocytic defense cell is one that challenges the majority of commensal and pathogenic bacteria; yet, these are the obligatory vertebrate homes for important pathogenic species in the Anaplasmataceae family. Survival requires that the parasite fundamentally alter the native functions of the cell to allow its entry, intracellular replication, and transmission to a hematophagous arthropod. The small genomic repertoires encode several eukaryotic-like proteins, including ankyrin A (AnkA) of Anaplasma phagocytophilum and Ank200 and tandem-repeat containing proteins of Ehrlichia chaffeensis that localize to the host cell nucleus and directly bind DNA. As a model, A. phagocytophilum AnkA appears to directly alter host cell gene expression by recruiting chromatin modifying enzymes such as histone deacetylases and methyltransferases or by acting directly on transcription in cis. While cis binding could feasibly alter limited ranges of genes and cellular functions, the complex and dramatic alterations in transcription observed with infection are difficult to explain on the basis of individually targeted genes. We hypothesize that nucleomodulins can act broadly, even genome-wide, to affect entire chromosomal neighborhoods and topologically associating chromatin domains by recruiting chromatin remodeling complexes or by altering the folding patterns of chromatin that bring distant regulatory regions together to coordinate control of transcriptional reprogramming. This review focuses on the A. phagocytophilum nucleomodulin AnkA, how it impacts host cell transcriptional responses, and current investigations that seek to determine how these multifunctional eukaryotic-like proteins facilitate epigenetic alterations and cellular reprogramming at the chromosomal level.
Collapse
Affiliation(s)
- Sara H Sinclair
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA
| | - Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - J S Dumler
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA
| |
Collapse
|
11
|
|
12
|
Ochiai Y, Mochizuki M, Yamada F, Takano T, Hondo R, Ueda F. Genetic Classification of Listeria monocytogenes Serotype 4b Strains, Including Epidemic Clones, Isolated from Retail Meat in the Tokyo Metropolitan Area. Jpn J Infect Dis 2014; 67:258-63. [DOI: 10.7883/yoken.67.258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
"Epidemic clones" of Listeria monocytogenes are widespread and ancient clonal groups. J Clin Microbiol 2013; 51:3770-9. [PMID: 24006010 DOI: 10.1128/jcm.01874-13] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The food-borne pathogen Listeria monocytogenes is genetically heterogeneous. Although some clonal groups have been implicated in multiple outbreaks, there is currently no consensus on how "epidemic clones" should be defined. The objectives of this work were to compare the patterns of sequence diversity on two sets of genes that have been widely used to define L. monocytogenes clonal groups: multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MvLST). Further, we evaluated the diversity within clonal groups by pulsed-field gel electrophoresis (PFGE). Based on 125 isolates of diverse temporal, geographical, and source origins, MLST and MvLST genes (i) had similar patterns of sequence polymorphisms, recombination, and selection, (ii) provided concordant phylogenetic clustering, and (iii) had similar discriminatory power, which was not improved when we combined both data sets. Inclusion of representative strains of previous outbreaks demonstrated the correspondence of epidemic clones with previously recognized MLST clonal complexes. PFGE analysis demonstrated heterogeneity within major clones, most of which were isolated decades before their involvement in outbreaks. We conclude that the "epidemic clone" denominations represent a redundant but largely incomplete nomenclature system for MLST-defined clones, which must be regarded as successful genetic groups that are widely distributed across time and space.
Collapse
|
14
|
Liu D. Molecular approaches to the identification of pathogenic and nonpathogenic listeriae. Microbiol Insights 2013; 6:59-69. [PMID: 24826075 PMCID: PMC3987759 DOI: 10.4137/mbi.s10880] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genus Listeria consists of a closely related group of Gram-positive bacteria that commonly occur in the environment and demonstrate varied pathogenic potential. Of the 10 species identified to date, L. monocytogenes is a facultative intracellular pathogen of both humans and animals, L. ivanovii mainly infects ungulates (eg., sheep and cattle), while other species (L. innocua, L. seeligeri, L. welshimeri, L. grayi, L. marthii, L. rocourtiae, L. fleischmannii and L. weihenstephanensis) are essentially saprophytes. Within the species of L. monocytogenes, several serovars (e.g., 4b, 1/2a, 1/2b and 1/2c) are highly pathogenic and account for a majority of clinical isolations. Due to their close morphological, biological, biochemical and genetic similarities, laboratory identification of pathogenic and nonpathogenic Listeria organisms is technically challenging. With the development and application of various molecular approaches, accurate and rapid discrimination of pathogenic and nonpathogenic Listeria organisms, as well as pathogenic and nonpathogenic L. monocytogenes strains, has become possible.
Collapse
Affiliation(s)
- Dongyou Liu
- Royal College of Pathologists of Australasia Biosecurity Quality Assurance Programs, NSW, Australia
| |
Collapse
|
15
|
Datta AR, Laksanalamai P, Solomotis M. Recent developments in molecular sub-typing of Listeria monocytogenes. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 30:1437-45. [PMID: 23061558 DOI: 10.1080/19440049.2012.728722] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As a vast majority of the human listeriosis cases are caused by serotypes 1/2a, 1/2b and 4b strains, it is imperative that strains from clinical as well as from food and environment are further characterised so that accurate and timely epidemiological determination of sources of the contamination can be established to minimise the disease burden. Recent developments in the field of genomics provide a great opportunity to use these tools towards the development of molecular sub-typing techniques with a greater degree of discrimination spanning the entire length of the genome. This brief review summarises a few of these DNA-based techniques with an emphasis on DNA microarray and other whole genome sequencing-based approaches and their usefulness in Listeria monocytogenes sub-typing and outbreak investigations.
Collapse
Affiliation(s)
- Atin R Datta
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, Maryland, USA.
| | | | | |
Collapse
|
16
|
Miya S, Takahashi H, Kamimura C, Nakagawa M, Kuda T, Kimura B. Highly discriminatory typing method for Listeria monocytogenes using polymorphic tandem repeat regions. J Microbiol Methods 2012; 90:285-91. [PMID: 22677602 DOI: 10.1016/j.mimet.2012.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 11/17/2022]
Abstract
Tandem repeats (TR), which are repetitive nucleotide sequences in DNA, are polymorphic both in repeat number and sequence. In this study, we developed a new typing method, multilocus TR sequence analysis (MLTSA), for the foodborne pathogen Listeria monocytogenes using sequence polymorphisms in three tandem repeat regions. The obtained dendrogram clustered L. monocytogenes strains of lineage I and lineage II separately, and formed three groups within the lineage I cluster, each of which included one of the three major L. monocytogenes epidemic clones (ECI, ECIa, and ECII). These results were consistent with a previously established virulence-gene-based MLST method. In comparison, our method grouped some epidemiologically related isolates together, which virulence-gene-based MLST did not. Moreover, our method, using three tandem repeat regions, showed a higher discriminatory power than the MLST method, which uses six virulence gene regions. This MLTSA approach using sequence polymorphisms in TR regions could be a useful tool in the epidemiological study of L. monocytogenes.
Collapse
Affiliation(s)
- Satoko Miya
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
17
|
A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII. Appl Environ Microbiol 2012. [PMID: 22247158 DOI: 10.1128/aem.07086‐11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes epidemic clone II (ECII) strains are unusual in being completely resistant to phage when grown at low temperatures (≤30°C). In the current study we constructed and characterized a mariner-based mutant (J46C) of the ECII strain H7550-Cd(S) that lacked temperature-dependent resistance to phage. The transposon was localized in LMOh7858_2753 (open reading frame [ORF] 2753), a member of a 12-ORF genomic island unique to ECII strains. ORF 2753 and ORF 2754 exhibited homologies to restriction endonucleases and methyltransferases associated with type II restriction-modification (RM) systems. In silico-based predictions of the recognition site for this putative RM system were supported by resistance of DNA from ECII strains to digestion by BfuI, a type II restriction enzyme specific for GTATCC (N6/5). Similarly to J46C, a mutant harboring an in-frame deletion of ORF 2753 was susceptible to phage regardless of temperature of growth (25°C or 37°C). Genetic complementation restored phage resistance in 25°C-grown cells of ORF 2753 mutants. Reverse transcription (RT) and quantitative real-time PCR data suggested enhanced transcription of ORF 2753 at low temperatures (≤25°C) compared to 37°C. In contrast, available transcriptional data suggested that the putative methyltransferase (ORF 2754) was constitutively expressed at all tested temperatures (4 to 37°C). Thus, temperature-dependent resistance of L. monocytogenes ECII to phage is mediated by temperature-dependent expression of the restriction endonuclease associated with a novel RM system (LmoH7) unique to this epidemic clone.
Collapse
|
18
|
A novel restriction-modification system is responsible for temperature-dependent phage resistance in Listeria monocytogenes ECII. Appl Environ Microbiol 2012; 78:1995-2004. [PMID: 22247158 DOI: 10.1128/aem.07086-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes epidemic clone II (ECII) strains are unusual in being completely resistant to phage when grown at low temperatures (≤30°C). In the current study we constructed and characterized a mariner-based mutant (J46C) of the ECII strain H7550-Cd(S) that lacked temperature-dependent resistance to phage. The transposon was localized in LMOh7858_2753 (open reading frame [ORF] 2753), a member of a 12-ORF genomic island unique to ECII strains. ORF 2753 and ORF 2754 exhibited homologies to restriction endonucleases and methyltransferases associated with type II restriction-modification (RM) systems. In silico-based predictions of the recognition site for this putative RM system were supported by resistance of DNA from ECII strains to digestion by BfuI, a type II restriction enzyme specific for GTATCC (N6/5). Similarly to J46C, a mutant harboring an in-frame deletion of ORF 2753 was susceptible to phage regardless of temperature of growth (25°C or 37°C). Genetic complementation restored phage resistance in 25°C-grown cells of ORF 2753 mutants. Reverse transcription (RT) and quantitative real-time PCR data suggested enhanced transcription of ORF 2753 at low temperatures (≤25°C) compared to 37°C. In contrast, available transcriptional data suggested that the putative methyltransferase (ORF 2754) was constitutively expressed at all tested temperatures (4 to 37°C). Thus, temperature-dependent resistance of L. monocytogenes ECII to phage is mediated by temperature-dependent expression of the restriction endonuclease associated with a novel RM system (LmoH7) unique to this epidemic clone.
Collapse
|
19
|
Atypical Listeria monocytogenes serotype 4b strains harboring a lineage II-specific gene cassette. Appl Environ Microbiol 2011; 78:660-7. [PMID: 22138999 DOI: 10.1128/aem.06378-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a severe food-borne illness. The population of L. monocytogenes is divided into four lineages (I to IV), and serotype 4b in lineage I has been involved in numerous outbreaks. Several serotype 4b epidemic-associated clonal groups (ECI, -II, and -Ia) have been identified. In this study, we characterized a panel of strains of serotype 4b that produced atypical results with a serotype-specific multiplex PCR and possessed the lmo0734 to lmo0739 gene cassette that had been thought to be specific to lineage II. The cassette was harbored in a genomically syntenic locus in these isolates and in lineage II strains. Three distinct clonal groups (groups 1 to 3) were identified among these isolates based on single-nucleotide polymorphism-based multilocus genotyping (MLGT) and DNA hybridization data. Groups 1 and 2 had MLGT haplotypes previously encountered among clinical isolates and were composed of clinical isolates from multiple states in the United States. In contrast, group 3 consisted of clinical and environmental isolates solely from North Carolina and exhibited a novel haplotype. In addition, all group 3 isolates had DNA that was resistant to MboI, suggesting methylation of adenines at GATC sites. Sequence analysis of the lmo0734 to lmo0739 gene cassette from two strains (group 1 and group 3) revealed that the genes were highly conserved (>99% identity). The data suggest relatively recent horizontal gene transfer from lineage II L. monocytogenes into L. monocytogenes serotype 4b and subsequent dissemination among at least three distinct clonal groups of L. monocytogenes serotype 4b, one of which exhibits restrictions in regional distribution.
Collapse
|
20
|
Chenal-Francisque V, Lopez J, Cantinelli T, Caro V, Tran C, Leclercq A, Lecuit M, Brisse S. Worldwide distribution of major clones of Listeria monocytogenes. Emerg Infect Dis 2011; 17:1110-2. [PMID: 21749783 DOI: 10.3201/eid/1706.101778] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Listeria monocytogenes is worldwide a pathogen, but the geographic distribution of clones remains largely unknown. Genotyping of 300 isolates from the 5 continents and diverse sources showed the existence of few prevalent and globally distributed clones, some of which include previously described epidemic clones. Cosmopolitan distribution indicates the need for genotyping standardization.
Collapse
|
21
|
Chenal-Francisque V, Lopez J, Cantinelli T, Caro V, Tran C, Leclercq A, Lecuit M, Brisse S. Worldwide Distribution of Major Clones of Listeria monocytogenes. Emerg Infect Dis 2011. [PMID: 21749783 PMCID: PMC3358213 DOI: 10.3201/eid1706.101778] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Listeriamonocytogenes is worldwide a pathogen, but the geographic distribution of clones remains largely unknown. Genotyping of 300 isolates from the 5 continents and diverse sources showed the existence of few prevalent and globally distributed clones, some of which include previously described epidemic clones. Cosmopolitan distribution indicates the need for genotyping standardization.
Collapse
|
22
|
Velge P, Roche SM. Variability of Listeria monocytogenes virulence: a result of the evolution between saprophytism and virulence? Future Microbiol 2011; 5:1799-821. [PMID: 21155663 DOI: 10.2217/fmb.10.134] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The genus Listeria consists of eight species but only two are pathogenic. Human listeriosis due to Listeria monocytogenes is a foodborne disease. L. monocytogenes is widespread in the environment living as a saprophyte, but is also capable of making the transition into a pathogen following its ingestion by susceptible humans or animals. It is now known that many distinct strains of L. monocytogenes differ in their virulence and epidemic potential. Unfortunately, there is currently no standard definition of virulence levels and no complete comprehensive overview of the evolution of Listeria species and L. monocytogenes strains taking into account the presence of both epidemic and low-virulence strains. This article focuses on the methods and genes allowing us to determine the pathogenic potential of Listeria strains, and the evolution of Listeria virulence. The presence of variable levels of virulence within L. monocytogenes has important consequences on detection of Listeria strains and risk analysis but also on our comprehension of how certain pathogens will behave in a population over evolutionary time.
Collapse
Affiliation(s)
- Philippe Velge
- INRA de tours, UR1282, Infectiologie Animale et Santé Publique, 37380 Nouzilly, France.
| | | |
Collapse
|
23
|
Chen S, Li J, Saleh-Lakha S, Allen V, Odumeru J. Multiple-locus variable number of tandem repeat analysis (MLVA) of Listeria monocytogenes directly in food samples. Int J Food Microbiol 2011; 148:8-14. [PMID: 21550679 DOI: 10.1016/j.ijfoodmicro.2011.04.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/04/2011] [Accepted: 04/12/2011] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes is the etiologic agent of listeriosis responsible for severe and fatal infections in humans. Listeria contamination occurs quite often in a wide range of foods due to its ubiquitous nature. Isolates need to be characterized to a strain level for accurate diagnosis of Listeria infection, epidemiological studies, investigation of outbreaks and effective prevention and control of food-borne listeriosis. The purpose of this research was to evaluate the multiple-locus variable number of tandem repeat analysis (MLVA) for sub-typing L. monocytogenes isolates in pure cultures and in food matrices. Two multiplex PCR assays were formulated to amplify six specific loci using fluorescently-labeled primers; and the amplicons were analyzed by capillary electrophoresis. The MLVA method resulted in 34 unique DNA fingerprint patterns from 46 L. monocytogenes isolates of 10 serotypes which had 29 or 30 PFGE patterns with a single restriction enzyme and 34 AFLP patterns. The MLVA patterns of the 46 isolates remained unchanged in the presence of pre-enriched food matrices including sausage, ham, chicken, milk and lettuce. The MLVA method successfully typed L. monocytogenes strains spiked in cheese, roast beef, egg salad and vegetable samples after 48 h enrichment at the initial inoculation levels of 1-5 CFU per 25 g of food or higher. The limits of detection (typing) of the MLVA method were 10(3)-10(4)CFU/mL of pre-enriched food broth when evaluated using post-spiked sausage, ham, chicken, milk and lettuce samples. The MLVA method was simple, highly discriminatory, and easy to perform with portable (numerical) results. To our knowledge, this is the first report that describes the application of the MLVA method directly to food samples and demonstrates the possibility to obtain rapid and accurate subtyping results before an isolate is obtained.
Collapse
Affiliation(s)
- Shu Chen
- Laboratory Services Division, University of Guelph, Ontario, Canada.
| | | | | | | | | |
Collapse
|
24
|
Indrawattana N, Nibaddhasobon T, Sookrung N, Chongsa-nguan M, Tungtrongchitr A, Makino SI, Tungyong W, Chaicumpa W. Prevalence of Listeria monocytogenes in raw meats marketed in Bangkok and characterization of the isolates by phenotypic and molecular methods. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2011; 29:26-38. [PMID: 21528788 PMCID: PMC3075055 DOI: 10.3329/jhpn.v29i1.7565] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Listeria monocytogenes causes listeriosis characterized by septicaemia, encephalitis, and abortion or stillbirth. Regular monitoring of its prevalence in food and characterization of its phenotypes and genotypes are necessary for disease surveillance and tracing the epidemic outbreaks. In this study, the prevalence of L. monocytogenes in raw meats marketed in Bangkok was 15.4%. The bacteria isolated from meat were serotyped and genotyped using enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). Their virulence-associated genes, antimicrobial susceptibility, and ability to invade intestinal epithelial cells were studied. All 22 L. monocytogenes strains isolated from 104 raw meat samples carried virulence-associated genes, such as actA, flaA, hlyA, lap, inlA, inlB, and prfA. These were serotype 4b, suggesting their pathogenic and epidemic potential. These isolates could be classified into six ERIC-PCR groups: A-E The majority (59.1%) of the isolates belonged to Group A, and three isolates were Group D which was closely related to the Group A. Two isolates each were Group C and E, and one isolate each was group B and F. Although the isolates belonged to the same serotype and genotype and were all equipped with the virulence-associated genes, they showed a different cell invasion capability and antibiotic susceptibility. All the isolates were susceptible to ampicillin, amikacin, chloramphenicol, gentamicin, imipenem, penicillin G, sulphamethoxazole-trimethoprim, and tetracycline. However, one isolate showed only intermediate susceptibility to tetracycline. The data provide the first molecular insight into the L. monocytogenes isolates in Thailand and elucidate a potential risk of people contracting listeriosis.
Collapse
Affiliation(s)
- Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tanaporn Nibaddhasobon
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nitat Sookrung
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Manas Chongsa-nguan
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sou-ichi Makino
- Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Witawat Tungyong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
25
|
Ryan S, Begley M, Hill C, Gahan C. A five-gene stress survival islet (SSI-1) that contributes to the growth of Listeria monocytogenes in suboptimal conditions. J Appl Microbiol 2010; 109:984-95. [DOI: 10.1111/j.1365-2672.2010.04726.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
A targeted multilocus genotyping assay for lineage, serogroup, and epidemic clone typing of Listeria monocytogenes. Appl Environ Microbiol 2010; 76:6680-4. [PMID: 20709839 DOI: 10.1128/aem.01008-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A 30-probe assay was developed for simultaneous classification of Listeria monocytogenes isolates by lineage (I to IV), major serogroup (4b, 1/2b, 1/2a, and 1/2c), and epidemic clone (EC) type (ECI, ECIa, ECII, and ECIII). The assay was designed to facilitate rapid strain characterization and the integration of subtype data into risk-based inspection programs.
Collapse
|
27
|
DNA probes for unambiguous identification of Listeria monocytogenes epidemic clone II strains. Appl Environ Microbiol 2010; 76:3061-8. [PMID: 20305032 DOI: 10.1128/aem.03064-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes epidemic clone II (ECII) strains have been responsible for two major multistate outbreaks of food-borne listeriosis in the United States, but their prevalence and ecology remain poorly understood. In this study, we describe DNA probes that unambiguously identify this clonal group. These probes were able to differentiate ECII strains of outbreak, sporadic, or environmental origin from other L. monocytogenes strains of the same serotype (4b).
Collapse
|
28
|
Differential Listeria monocytogenes strain survival and growth in Katiki, a traditional Greek soft cheese, at different storage temperatures. Appl Environ Microbiol 2009; 75:3621-6. [PMID: 19376914 DOI: 10.1128/aem.01571-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Katiki Domokou is a traditional Greek cheese, which has received the Protected Designation of Origin recognition since 1994. Its microfloras have not been studied although its structure and composition may enable (or even favor) the survival and growth of several pathogens, including Listeria monocytogenes. The persistence of L. monocytogenes during storage at different temperatures has been the subject of many studies since temperature abuse of food products is often encountered. In the present study, five strains of L. monocytogenes were aseptically inoculated individually and as a cocktail in Katiki Domokou cheese, which was then stored at 5, 10, 15, and 20 degrees C. Pulsed-field gel electrophoresis was used to monitor strain evolution or persistence during storage at different temperatures in the case of the cocktail inoculum. The results suggested that strain survival of L. monocytogenes was temperature dependent since different strains predominated at different temperatures. Such information is of great importance in risk assessment studies, which typically consider only the presence or absence of the pathogen.
Collapse
|
29
|
Bosilevac JM, Guerini MN, Koohmaraie M. Increased detection of Listeria species and Listeria monocytogenes in raw beef, using the Assurance GDS molecular detection system with culture isolation. J Food Prot 2009; 72:674-9. [PMID: 19343963 DOI: 10.4315/0362-028x-72.3.674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Testing for Listeria is challenging because of its slow growth rate. Recently, we described a rapid Listeria culture isolation method. This method can be improved by utilizing a rapid molecular detection test such as the Assurance GDS tests for Listeria and Listeria monocytogenes. These two methods (culture isolation and Assurance GDS) use different enrichment strategies that may affect the number of Listeria and L. monocytogenes cells detected. Therefore, after first determining that the Assurance GDS accurately identified common Listeria strains isolated from raw beef, the two methods were compared by using paired ground beef samples (n = 256) that had been gathered from commercial sources. The agreement of the two methods was > 76% for the culture and GDS Listeria method and > 77% for the culture and GDS L. monocytogenes method. The molecular tests then were evaluated as endpoint tests in selected culture isolation enrichments. In this comparison, culture isolation and the molecular Listeria test agreed 100 and 84.4% of the time for Listeria-positive and -negative enrichments, respectively. An analysis of the discrepant samples in both experiments revealed that approximately 50% of the samples identified as positive by the molecular method but not by the culture method could be confirmed by subsequent testing, indicating that the immunomagnetic concentration step of the GDS test likely provides a more sensitive level of detection than does culture alone. The culture results were available 2 days earlier when the molecular tests were used instead of plating media. However, because the Assurance GDS Listeria test cannot distinguish L. monocytogenes from other Listeria species such as Listeria innocua, samples containing both species could not be distinguished.
Collapse
Affiliation(s)
- Joseph M Bosilevac
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933-0166, USA.
| | | | | |
Collapse
|
30
|
Temperature-dependent phage resistance of Listeria monocytogenes epidemic clone II. Appl Environ Microbiol 2009; 75:2433-8. [PMID: 19251898 DOI: 10.1128/aem.02480-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes epidemic clone II (ECII) has been responsible for two multistate outbreaks in the United States in 1998-1999 and in 2002, in which contaminated ready-to-eat meat products (hot dogs and turkey deli meats, respectively) were implicated. However, ecological adaptations of ECII strains in the food-processing plant environment remain unidentified. In this study, we found that broad-host-range phages, including phages isolated from the processing plant environment, produced plaques on ECII strains grown at 37 degrees C but not when the bacteria were grown at lower temperatures (30 degrees C or below). ECII strains grown at lower temperatures were resistant to phage regardless of the temperature during infection and subsequent incubation. In contrast, the phage susceptibility of all other tested strains of serotype 4b (including epidemic clone I) and of strains of other serotypes and Listeria species was independent of the growth temperature of the bacteria. This temperature-dependent phage susceptibility of ECII bacteria was consistently observed with all surveyed ECII strains from outbreaks or from processing plants, regardless of the presence or absence of cadmium resistance plasmids. Phages adsorbed similarly on ECII bacteria grown at 25 degrees C and at 37 degrees C, suggesting that resistance of ECII strains grown at 25 degrees C was not due to failure of the phage to adsorb. Even though the underlying mechanisms remain to be elucidated, temperature-dependent phage resistance may represent an important ecological adaptation of L. monocytogenes ECII in processed, cold-stored foods and in the processing plant environment, where relatively low temperatures prevail.
Collapse
|
31
|
Esteban JI, Oporto B, Aduriz G, Juste RA, Hurtado A. Faecal shedding and strain diversity of Listeria monocytogenes in healthy ruminants and swine in Northern Spain. BMC Vet Res 2009; 5:2. [PMID: 19133125 PMCID: PMC2651128 DOI: 10.1186/1746-6148-5-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 01/08/2009] [Indexed: 11/10/2022] Open
Abstract
Background Listeria monocytogenes is among the most important foodborne bacterial pathogens due to the high mortality rate and severity of the infection. L. monocytogenes is a ubiquitous organism occasionally present in the intestinal tract of various animal species and faecal shedding by asymptomatically infected livestock poses a risk for contamination of farm environments and raw food at the pre-harvest stages. The aim of this study was to determine the prevalence and strain diversity of L. monocytogenes in healthy ruminants and swine herds. Results Faecal samples from 30 animals per herd were collected from 343 herds (120 sheep, 124 beef cattle, 82 dairy cattle and 17 swine) in the Basque Country and screened in pools by an automated enzyme-linked fluorescent immunoassay (VIDAS®) to estimate the prevalence of positive herds. Positive samples were subcultured onto the selective and differential agar ALOA and biochemically confirmed. L. monocytogenes was isolated from 46.3% of dairy cattle, 30.6% beef cattle and 14.2% sheep herds, but not from swine. Within-herd prevalence investigated by individually analysing 197 sheep and 221 cattle detected 1.5% of faecal shedders in sheep and 21.3% in cattle. Serotyping of 114 isolates identified complex 4b as the most prevalent (84.2%), followed by 1/2a (13.2%), and PFGE analysis of 68 isolates showed a highly diverse L. monocytogenes population in ruminant herds. Conclusion These results suggested that cattle represent a potentially important reservoir for L. monocytogenes in the Basque Country, and highlighted the complexity of pathogen control at the farm level.
Collapse
Affiliation(s)
- Jon I Esteban
- Department of Animal Health, NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario, Berreaga 1, 48160 Derio, Bizkaia, Spain.
| | | | | | | | | |
Collapse
|
32
|
Lomonaco S, Chen Y, Knabel SJ. Analysis of additional virulence genes and virulence gene regions in Listeria monocytogenes confirms the epidemiologic relevance of multi-virulence-locus sequence typing. J Food Prot 2008; 71:2559-66. [PMID: 19244915 DOI: 10.4315/0362-028x-71.12.2559] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous molecular subtyping studies have defined four epidemic clones (ECs) of Listeria monocytogenes (ECI, ECII, ECIII, and ECIV). Partial sequences of eight virulence genes were previously shown to be identical within individual ECs of L. monocytogenes. The present study was conducted to determine if the sequences of other virulence genes and virulence gene regions are also conserved within these ECs. Six additional virulence genes--bsh, hly, inlJ, IplA1, pgdA, and srtA--and three additional virulence gene regions of actA, inlA, and inlB were selected based on their role in L. monocytogenes virulence, and intragenic regions of each gene were sequenced. Sequencing was performed on a diverse set of 44 to 48 L. monocytogenes strains. Results demonstrated that the sequenced regions of the nine virulence genes were identical within each of the ECs, and 257 new single nucleotide polymorphism (SNPs) were identified. ECIII (lineage II) was easily distinguishable from the other ECs, as 238 SNPs were observed in ECIII due to its significant evolutionary divergence from lineage I. With regard to the other ECs, there were 5 SNPs that represented an informative set, since these SNPs were able to differentiate specific ECs from all other unrelated strains used in this study. This study confirms our previous finding that virulence gene sequences are highly conserved within individual ECs and contain stable SNPs that can be used to very accurately differentiate ECs of L. monocytogenes from each other and from other diverse strains.
Collapse
Affiliation(s)
- Sara Lomonaco
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
33
|
Pal A, Labuza TP, Diez-Gonzalez F. Evaluating the growth of Listeria monocytogenes in refrigerated ready-to-eat frankfurters: influence of strain, temperature, packaging, lactate and diacetate, and background microflora. J Food Prot 2008; 71:1806-16. [PMID: 18810864 DOI: 10.4315/0362-028x-71.9.1806] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This research was conducted to study the growth of Listeria monocytogenes inoculated on frankfurters stored at different conditions as a basis for a safety-based consume by shelf life date label. Three L. monocytogenes strains were separately inoculated at 10 to 20 CFU/cm2 onto frankfurters that were previously formulated with or without high pressure and with or without added 2% potassium lactate (PL) and 0.2% sodium diacetate (SD). Inoculated frankfurters were air or vacuum packaged; stored at 4, 8, or 12 degrees C; and L. monocytogenes and psychrotrophic plate counts were determined for 90, 60, and 45 days, respectively, or until the stationary phase was reached. The data (log CFU per square centimeter versus time) were fitted using the Baranyi-Roberts model to determine maximum growth rates and lag-phase time. The maximum growth rates and the lag time under each growth condition were used to calculate the time to reach 100-fold the initial Listeria population. In frankfurters lacking PL and SD, the count of all strains increased by 2 log after 18 to 50 days at 4 degrees C and 4 to 13 days at 8 degrees C. The growth was inhibited at 4 and 8 degrees C in frankfurters containing PL and SD, but one ribotype was capable of growing, with the time to reach 100-fold the initial Listeria population ranging from 19 to 35 days at 12 degrees C. In most cases, the time to reach 100-fold the initial Listeria population of L. monocytogenes was significantly longer in vacuum-packaged frankfurters as compared with air-packaged samples. Inclusion of PL and SD also inhibited the growth of psychrotrophs, but at all temperatures the psychrotrophic plate counts were greater than 4 log CFU/cm2 at the end of the experiments. These results indicated that despite the use of antimicrobials, certain L. monocytogenes strains could be capable of growing under storage-abuse conditions. Growth kinetics data could be useful for establishing a shelf life date label protocol under different handling scenarios.
Collapse
Affiliation(s)
- Amit Pal
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
34
|
Sperry KEV, Kathariou S, Edwards JS, Wolf LA. Multiple-locus variable-number tandem-repeat analysis as a tool for subtyping Listeria monocytogenes strains. J Clin Microbiol 2008; 46:1435-50. [PMID: 18256218 PMCID: PMC2292909 DOI: 10.1128/jcm.02207-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/18/2008] [Accepted: 01/28/2008] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes, like many other food-borne bacteria, has certain strains that are commonly linked to outbreaks. Due to the relatively low numbers of affected individuals, outbreaks of L. monocytogenes can be difficult to detect. The current technique of molecular subtyping in PulseNet laboratories to identify genetically similar strains is pulsed-field gel electrophoresis (PFGE). While PFGE is state-of-the-art, interlaboratory comparisons are difficult because the results are highly susceptible to discrepancies due to even minor variations in experimental conditions and the subjectivity of band marking. This research was aimed at the development of a multiple-locus variable-number tandem-repeat analysis (MLVA) that can be implemented in PulseNet laboratories to replace or complement existing protocols. MLVA has proven to be a rapid and highly discriminatory tool for subtyping many bacteria. In this study, a novel MLVA method for L. monocytogenes strains was developed utilizing eight loci multiplexed into two PCRs. The PCR products were separated by capillary gel electrophoresis for high throughput and accurate sizing, and the fragment sizes were analyzed and clustered based on the number of repeats. When tested against a panel of 193 epidemiologically linked and nonlinked isolates, this MLVA for L. monocytogenes strains demonstrates strong epidemiological concordance. Since MLVA is a high-throughput screening method that is fairly inexpensive, easy to perform, rapid, and reliable, it is well suited to interlaboratory comparisons during epidemiological investigations of food-borne illness.
Collapse
|
35
|
Miya S, Kimura B, Sato M, Takahashi H, Ishikawa T, Suda T, Takakura C, Fujii T, Wiedmann M. Development of a multilocus variable-number of tandem repeat typing method for Listeria monocytogenes serotype 4b strains. Int J Food Microbiol 2008; 124:239-49. [PMID: 18457891 DOI: 10.1016/j.ijfoodmicro.2008.03.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 03/17/2008] [Accepted: 03/24/2008] [Indexed: 11/20/2022]
Abstract
Listeria monocytogenes serotype 4b strains have been identified as the causative agent in many human listeriosis epidemics as well as in a considerable number of sporadic cases. Due to the genetic homogeneity of serotype 4b isolates, development of rapid subtyping methods with high discriminatory power for serotype 4b isolates is required to allow for improved outbreak detection and source tracking. In this study, multilocus variable-number tandem repeat analysis (MLVA) was developed and used to characterize 60 serotype 4b isolates from various sources. All isolates were also characterized by automated EcoRI ribotyping, single enzyme pulsed-field gel electrophoresis (PFGE) with ApaI, and a multilocus sequence typing (MLST) scheme targeting six virulence and virulence-associated genes. Discriminatory power of MLVA (as determined by Simpson Index of Discrimination) was higher than the discriminatory power of any of the other three methods. MLVA markers targeted were found to be stable and did not change when three isolates were passaged daily for 70 days. Cluster analyses of MLVA, PFGE and MLST consistently grouped the same isolates into three major clusters, each of which includes one of the three major L. monocytogenes epidemic clones (i.e., ECI, ECIa and ECII). We conclude that the MLVA method described here (i) provides for more discriminatory subtyping of L. monocytogenes serotype 4b strains than the other three methods, (ii) identifies three major groups within the serotype 4b, which are consistent with the groups identified by other subtyping methods, and (iii) is easy to interpret. Use of MLVA may thus be recommended for subtyping of serotype 4b isolates, including as a secondary more discriminatory subtyping method that could be used after initial isolate characterization by PFGE or ribotyping.
Collapse
Affiliation(s)
- Satoko Miya
- Department of Food Science and Technology, Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
A survey of food-borne pathogens in free-range poultry farms. Int J Food Microbiol 2008; 123:177-82. [PMID: 18234386 DOI: 10.1016/j.ijfoodmicro.2007.12.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 11/22/2007] [Accepted: 12/18/2007] [Indexed: 11/23/2022]
|
37
|
Guerini MN, Brichta-Harhay DM, Shackelford TSD, Arthur TM, Bosilevac JM, Kalchayanand N, Wheeler TL, Koohmaraie M. Listeria prevalence and Listeria monocytogenes serovar diversity at cull cow and bull processing plants in the United States. J Food Prot 2007; 70:2578-82. [PMID: 18044437 DOI: 10.4315/0362-028x-70.11.2578] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Listeria monocytogenes, the causative agent of epidemic and sporadic listeriosis, is routinely isolated from many sources, including cattle, yet information on the prevalence of Listeria in beef processing plants in the United States is minimal. From July 2005 through April 2006, four commercial cow and bull processing plants were sampled in the United States to determine the prevalence of Listeria and the serovar diversity of L. monocytogenes. Samples were collected during the summer, fall, winter, and spring. Listeria prevalence on hides was consistently higher during cooler weather (28 to 92% of samples) than during warmer weather (6 and 77% of samples). The Listeria prevalence data collected from preevisceration carcass ranged from undetectable in some warm season samples to as high as 71% during cooler weather. Listeria on postintervention carcasses in the chill cooler was normally undetectable, with the exception of summer and spring samples from one plant where > 19% of the carcasses were positive for Listeria. On hides, L. monocytogenes serovar 1/2a was the predominant serovar observed, with serovars 1/2b and 4b present 2.5 times less often and serovar 1/2c not detected on any hides sampled. L. monocytogenes serovars 1/2a, 1/2c, and 4b were found on postintervention carcasses. This prevalence study demonstrates that Listeria species are more prevalent on hides during the winter and spring and that interventions being used in cow and bull processing plants appear to be effective in reducing or eliminating Listeria contamination on carcasses.
Collapse
Affiliation(s)
- Michael N Guerini
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933-0166, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen Y, Knabel SJ. Multiplex PCR for simultaneous detection of bacteria of the genus Listeria, Listeria monocytogenes, and major serotypes and epidemic clones of L. monocytogenes. Appl Environ Microbiol 2007; 73:6299-304. [PMID: 17693562 PMCID: PMC2075000 DOI: 10.1128/aem.00961-07] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A multiplex PCR assay which combines detection of bacteria of the genus Listeria, Listeria monocytogenes serotypes 1/2a and 4b, and epidemic clones I, II, and III of L. monocytogenes was developed. The assay provides a rapid, reliable, and inexpensive method for screening and subgrouping this important food-borne pathogen.
Collapse
Affiliation(s)
- Yi Chen
- The Pennsylvania State University, Food Science Department, 436 Food Science Building, University Park, PA 16802, USA.
| | | |
Collapse
|
39
|
Cheng Y, Yue L, Elhanafi D, Kathariou S. Absence of serotype-specific surface antigen in laboratory variants of epidemic-associated Listeria monocytogenes strains. Appl Environ Microbiol 2007; 73:6313-6. [PMID: 17675434 PMCID: PMC2075017 DOI: 10.1128/aem.00473-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Variants that lacked reactivity with the serotype 4b-specific monoclonal antibody c74.22 and that lost susceptibility to certain Listeria- or serotype 4b-specific phages were identified in the course of genetic studies with serotype 4b Listeria monocytogenes strains H7550 and F2381L (epidemic clones I and II, respectively). Our findings suggest that such variants can become inadvertently established under laboratory conditions and suggest caution in work involving serotype 4b strains and genetic constructs thereof.
Collapse
Affiliation(s)
- Ying Cheng
- North Carolina State University, Department of Food Science, Campus Box 2764, Raleigh, NC 27695-2764, USA
| | | | | | | |
Collapse
|
40
|
De Santis EPL, Pilo AL, Cosseddu AM, Canu NA, Scarano C, Marongiu P. Multiplex PCR for the Identification and Serotyping of L. monocytogenes Isolated from Sheep Cheese-Processing Plants. Vet Res Commun 2007; 31 Suppl 1:359-63. [PMID: 17682914 DOI: 10.1007/s11259-007-0037-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- E P L De Santis
- Department of Animal Biology, Faculty of Veterinary Medicine, University of Sassari, Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
López V, Ortiz S, Corujo A, López P, Navas J, Moreno R, Martínez-Suárez JV. Traceback identification of an ingredient (pork dewlap) as the possible source of Listeria monocytogenes serotype 4b contamination in raw chicken products. J Food Prot 2007; 70:1513-7. [PMID: 17612086 DOI: 10.4315/0362-028x-70.6.1513] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In surveys conducted on finished product samples from a single poultry processing plant in Spain, Listeria monocytogenes was found in 14 different uncooked products. To track contamination patterns, 77 L. monocytogenes isolates were characterized by PCR-based serotyping, pulsed-field gel electrophoresis (PFGE) restriction analysis, and PCR-based allelic analysis of the virulence gene actA. Serotyping revealed that 12 isolates (15.6%) were of the L. monocytogenes serotype 4b complex (serotype 4b or the closely related serotypes 4d and 4e). A combination of endonucleases AscI and ApaI PFGE patterns yielded 15 different pulsotypes among all 77 tested isolates. All the serotype 4b isolates belonged to one pulsotype. Sequencing of the actA gene confirmed that all serotype 4b isolates corresponded to the same allelic subtype. The subtype was recovered from five product types, but its presence was not correlated with the production line or the date of isolation, suggesting a possible association of this strain with a common ingredient. This traceback investigation established that pork dewlap, an ingredient common to all the products contaminated with this strain, was the most probable source of L. monocytogenes 4b. The same 4b strain was isolated from four samples of pork dewlap from one specific supplier. After replacement of this contaminated ingredient in the fresh products, this strain of L. monocytogenes serotype 4b was not detected. This study confirms the effectiveness of molecular subtyping to control contamination by specific strains of L. monocytogenes and the importance of testing the different ingredients added to the food products.
Collapse
Affiliation(s)
- Victoria López
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Carretera de La Coruña, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
This review describes the Listeria monocytogenes genome sequences available today and their comparison with that of Listeria innocua and Listeria welshimeri by highlighting their characteristic features and common traits. The diversity present among them is analysed with emphasis on putative virulence and host-pathogen interaction related functions. Then large-scale studies comparing gene content of Listeria and how these studies contributed to typing applications will be discussed. Finally, evolutionary conclusions and future perspectives in Listeria genomics are presented.
Collapse
Affiliation(s)
- Carmen Buchrieser
- Unité de Génomique des Microorganismes Pathogènes and CNRS URA 2171, Institut Pasteur, 28 Rue du Dr Roux, 75724 Paris, France.
| |
Collapse
|
43
|
Franciosa G, Scalfaro C, Maugliani A, Floridi F, Gattuso A, Hodzic S, Aureli P. Distribution of epidemic clonal genetic markers among Listeria monocytogenes 4b isolates. J Food Prot 2007; 70:574-81. [PMID: 17388044 DOI: 10.4315/0362-028x-70.3.574] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent genome sequencing of isolates of Listeria monocytogenes serotype 4b implicated in some major outbreaks of foodborne listeriosis has revealed unique genetic markers in these isolates. The isolates were grouped into two distinct epidemic clones, ECI and ECII. In the present study, selected ECI- and ECII-specific genetic markers were detected in 16 and 15 of 89 L. monocytogenes 4b isolates, respectively. The ECI markers were found in 6 of 34 clinical isolates, 9 of 50 food isolates, and 1 of 5 environmental isolates, and the ECII markers were detected in 7 of 34 clinical isolates, 7 of 50 food isolates, and 1 of 5 environmental isolates. Hence, of the isolates with the epidemic clonal genetic markers, 38% (13 of 34) were of clinical origin, 32% (16 of 50) were of food origin, and 40% (2 of 5) were of environmental origin. The predominance of the epidemic clonal markers among the clinical and environmental isolates supports the hypothesis that these markers are correlated with the pathogenic potential of strains and with their environmental persistence. Several isolates had only one epidemic clonal marker, either the ECI-specific marker 133 or the ECII-specific marker 4bSF18. Pulsed-field gel electrophoresis analysis revealed higher genomic diversity among the strains with ECII-like characteristics than among those strains carrying the ECI-specific genetic markers.
Collapse
Affiliation(s)
- Giovanna Franciosa
- Laboratory of Food Microbial Hazards, National Center for Food Quality and Risk Assessment, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Chen Y, Zhang W, Knabel SJ. Multi-virulence-locus sequence typing identifies single nucleotide polymorphisms which differentiate epidemic clones and outbreak strains of Listeria monocytogenes. J Clin Microbiol 2007; 45:835-46. [PMID: 17215339 PMCID: PMC1829094 DOI: 10.1128/jcm.01575-06] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recently developed multi-virulence-locus sequence typing (MVLST) method showed improved discriminatory power for subtyping genetically diverse Listeria monocytogenes isolates and identified epidemic clone II isolates associated with two recent U.S. multistate listeriosis outbreaks. To evaluate the ability of MVLST to distinguish other epidemic clones and outbreak strains of L. monocytogenes, 58 outbreak-related isolates from 14 outbreaks and 49 unrelated isolates were analyzed. Results showed that MVLST provided very high discriminatory power (0.99), epidemiological concordance (1.0), stability, and typeability. MVLST accurately identified three previously known epidemic clones (epidemic clones I, II, and III) and redefined another epidemic clone (epidemic clone IV) in serotype 4b of L. monocytogenes. A set of 28 single nucleotide polymorphisms (SNPs) differentiated all epidemiologically unrelated isolates. A subset of 16 SNPs differentiated all epidemic clones and outbreak strains. Phylogenetic analysis showed congruence between MVLST clusters, serotypes, and previously defined genetic lineages of L. monocytogenes. SNPs in virulence genes appear to be excellent molecular markers for the epidemiological investigation of epidemics and outbreaks caused by L. monocytogenes.
Collapse
Affiliation(s)
- Yi Chen
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
45
|
Ducey TF, Page B, Usgaard T, Borucki MK, Pupedis K, Ward TJ. A single-nucleotide-polymorphism-based multilocus genotyping assay for subtyping lineage I isolates of Listeria monocytogenes. Appl Environ Microbiol 2006; 73:133-47. [PMID: 17085705 PMCID: PMC1797101 DOI: 10.1128/aem.01453-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a facultative intracellular pathogen responsible for food-borne disease with high mortality rates in humans and is the leading microbiological cause of food recalls. Lineage I isolates of L. monocytogenes are a particular public health concern because they are responsible for most sporadic cases of listeriosis and the vast majority of epidemic outbreaks. Rapid, reproducible, and sensitive methods for differentiating pathogens below the species level are required for effective pathogen control programs, and the CDC PulseNet Task Force has called for the development and validation of DNA sequence-based methods for subtyping food-borne pathogens. Therefore, we developed a multilocus genotyping (MLGT) assay for L. monocytogenes lineage I isolates based on nucleotide variation identified by sequencing 23,251 bp of DNA from 22 genes distributed across seven genomic regions in 65 L. monocytogenes isolates. This single-well assay of 60 allele-specific probes captured 100% of the haplotype information contained in approximately 1.5 Mb of comparative DNA sequence and was used to reproducibly type a total of 241 lineage I isolates. The MLGT assay provided high discriminatory power (Simpson's index value, 0.91), uniquely identified isolates from the eight listeriosis outbreaks examined, and differentiated serotypes 1/2b and 4b as well as epidemic clone I (ECI), ECIa, and ECII. In addition, the assay included probes for a previously characterized truncation mutation in inlA, providing for the identification of a specific virulence-attenuated subtype. These results demonstrate that MLGT represents a significant new tool for use in pathogen surveillance, outbreak detection, risk assessment, population analyses, and epidemiological investigations. DNA sequences were deposited in the GenBank database under accession numbers DQ 812146 to DQ 812517, DQ 843664 to DQ 844598, and AY 512391 to AY 512502.
Collapse
Affiliation(s)
- Thomas F Ducey
- Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kathariou S, Graves L, Buchrieser C, Glaser P, Siletzky RM, Swaminathan B. Involvement of closely related strains of a new clonal group of Listeria monocytogenes in the 1998-99 and 2002 multistate outbreaks of foodborne listeriosis in the United States. Foodborne Pathog Dis 2006; 3:292-302. [PMID: 16972778 DOI: 10.1089/fpd.2006.3.292] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In 1998-99, a multistate outbreak of listeriosis in the United States was associated with contaminated hot dogs and was caused by a strain of Listeria monocytogenes serotype 4b that had been only rarely encountered before in the national PulseNet database. Upon further characterization, the strains from this outbreak were designated as Epidemic Clone II (ECII). ECII isolates exhibited diversification in a genomic region ("region 18") that was otherwise conserved among L. monocytogenes of serotype 4b. Additional unique genetic markers were identified through genome sequencing of one of the isolates from the 1998-99 outbreak. In 2002, another multistate outbreak of listeriosis also involved bacteria of serotype 4b and was attributed to contaminated turkey deli meats. Molecular subtyping data revealed that the macrorestriction patterns of the isolates from the 1998-99 and 2002 outbreaks were closely related. In addition, the 2002 outbreak isolates harbored chromosomal genetic markers found to be unique to, and typical of, the 1998-99 outbreak isolates, including diversification in genomic region 18. Macroarray- based subtyping using chromosomal sequences confirmed the close genetic relatedness between the isolates from the two outbreaks. Genomic content was highly conserved among isolates from each outbreak, with differences detected only in prophage and internalin-like gene sequences. However, since these differences were observed among isolates from each of the outbreaks, they did not differentiate the 1998-99 isolates as a group from those of the 2002 outbreak. Two of 15 randomly chosen serotype 4b clinical isolates from a non-outbreak period (calendar year 2003) appeared to be closely related to the 1998-99 and 2002 outbreak isolates. These findings suggest that both multistate outbreaks of listeriosis in the United States involved closely related members of a single clonal group (ECII) that had not been identified in outbreaks prior to 1998. Since the outbreaks involved different food vehicles and processing plants, the findings suggest establishment of ECII in a still unidentified reservoir in the United States, from which the organisms were introduced to different processing plants.
Collapse
Affiliation(s)
- S Kathariou
- Department of Food Science, North Carolina State University, Raleigh, North Carolina 27695-7624, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Chatterjee SS, Otten S, Hain T, Lingnau A, Carl UD, Wehland J, Domann E, Chakraborty T. Invasiveness is a variable and heterogeneous phenotype in Listeria monocytogenes serotype strains. Int J Med Microbiol 2006; 296:277-86. [PMID: 16527541 DOI: 10.1016/j.ijmm.2005.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 10/31/2005] [Accepted: 10/31/2005] [Indexed: 11/20/2022] Open
Abstract
The ability of Listeria monocytogenes to breach mucosal and endothelial barriers of the host during infection is a hallmark property mediated by the internalins (Inl) A and B. We examined the invasive property of several L. monocytogenes strains representing 13 serotypes. We found that invasiveness is a heterogeneous phenotype amongst L. monocytogenes serotype strains. Despite this, many of the poorly invasive and non-invasive strains of L. monocytogenes express internalins at levels comparable to those of invasive isolates. Introduction of the inlAB locus from EGD-e into several poorly invasive strains had no effect on their invasive properties. A strain from serotype 4b that exhibits highly invasive properties was further examined. Deletion of the inlAB locus abrogated invasion of this strain while reintroduction of the inlAB locus into this strain restored invasiveness. An analysis of regions flanking the inlAB locus revealed considerable differences in the strains studied. Our results suggest that efficacious entry of L. monocytogenes into eukaryotic cells is complex and requires additional factors apart from internalins. Data presented here also suggest that the inlAB locus was introduced into L. monocytogenes by horizontal gene transfer with subsequent deletion and rearrangements occurring during evolution of this species.
Collapse
Affiliation(s)
- Som S Chatterjee
- Institute for Medical Microbiology, Justus-Liebig-University, Frankfurter Str. 107, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang C, Nietfeldt J, Zhang M, Benson AK. Functional consequences of genome evolution in Listeria monocytogenes: the lmo0423 and lmo0422 genes encode sigmaC and LstR, a lineage II-specific heat shock system. J Bacteriol 2005; 187:7243-53. [PMID: 16237008 PMCID: PMC1272999 DOI: 10.1128/jb.187.21.7243-7253.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes strains belonging to phylogenetic lineage II (serotypes 1/2a, 1/2c, and 3a) carry a lineage-specific genome segment encoding a putative sigma subunit of RNA polymerase (lmo0423, herein referred to as sigC), a gene of unknown function (lmo0422) similar to the padR family of regulators, and a gene that is similar to the rodA-ftsW family of cell wall morphology genes (lmo0421). To understand the function of this set of genes, their expression patterns and the effects of null mutations in the lineage II L. monocytogenes strain 10403S were examined. The data are consistent with the three genes comprising an operon (the sigC operon) that is highly induced by temperature upshift. The operon is transcribed from three different promoters, the proximal of which (P1) depends upon sigC itself. Null mutations in sigC or lmo0422 increase the death rate at lethal temperatures and cause loss of thermal adaptive response, whereas the lmo0421 mutation causes only a loss of the adaptive response component. Only the sigC mutation affects transcription from the P1 promoter, whereas ectopic expression of lmo0422 from the P(SPAC) promoter complements the individual lmo0422 and sigC null mutations, showing that lmo0422 is the actual thermal resistance regulator or effector while sigC provides a mechanism for temperature-dependent transcription of lmo0422 from P1. Our genetic and phylogenetic analyses are consistent with lmo0422-renamed lstR (for lineage-specific thermal regulator)-and sigC comprising a system of thermal resistance that was ancestral to the genus Listeria and was subsequently lost during divergence of the lineage I L. monocytogenes population.
Collapse
MESH Headings
- Adaptation, Physiological
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Biological Evolution
- Colony Count, Microbial
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Evolution, Molecular
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Genome, Bacterial
- Hot Temperature
- Listeria monocytogenes/genetics
- Listeria monocytogenes/physiology
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Multigene Family
- Operon
- Phylogeny
- Promoter Regions, Genetic
- RNA, Bacterial/analysis
- RNA, Messenger/analysis
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Sequence Homology
- Sigma Factor/genetics
- Sigma Factor/physiology
- Synteny
- Transcription, Genetic
Collapse
Affiliation(s)
- Chaomei Zhang
- Department of Food Science and Technology, University of Nebraska, 330 Food Industry Complex, Lincoln, NE 68583-0919, USA
| | | | | | | |
Collapse
|
49
|
Chen Y, Zhang W, Knabel SJ. Multi-virulence-locus sequence typing clarifies epidemiology of recent listeriosis outbreaks in the United States. J Clin Microbiol 2005; 43:5291-4. [PMID: 16208000 PMCID: PMC1248515 DOI: 10.1128/jcm.43.10.5291-5294.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multi-virulence-locus sequence typing (MVLST) was used to analyze isolates from two major listeriosis outbreaks in the United States in 1998 and 2002 that were due to consumption of contaminated hot dogs and turkey deli meat, respectively. MVLST demonstrated high epidemiological relevance and indicated that the two outbreaks were the result of one epidemic.
Collapse
Affiliation(s)
- Yi Chen
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
50
|
Eifert JD, Curtis PA, Bazaco MC, Meinersmann RJ, Berrang ME, Kernodle S, Stam C, Jaykus LA, Kathariou S. Molecular Characterization ofListeria monocytogenesof the Serotype 4b Complex (4b, 4d, 4e) from Two Turkey Processing Plants. Foodborne Pathog Dis 2005; 2:192-200. [PMID: 16156700 DOI: 10.1089/fpd.2005.2.192] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most foodborne outbreaks of listeriosis have been found to involve a small number of closely related strains of Listeria monocytogenes serotype 4b. The ecology of these organisms and their reservoirs in nature or in the processing plant environment, however, remain poorly understood. Surveys of environmental samples from two turkey processing plants in the United States indicated presence of L. monocytogenes of the serotype 4b complex (serotype 4b and the closely related serotypes 4d and 4e). In addition, environmental and raw product samples from one plant repeatedly yielded isolates with genetic markers typical of two major serotype 4b epidemic clonal groups, ECI and ECII. The pulsed field gel electrophoresis (PFGE) profiles of these isolates, however, were clearly distinct from those of confirmed epidemic-associated strains. Furthermore, we observed minor but consistent differences in PFGE profiles of isolates that harbored ECI- or ECII-specific genetic markers, and that were obtained at different sampling times from the same plant. The findings suggest processing plant persistence (or repeated introductions) and genomic diversification of L. monocytogenes serotype 4b isolates that harbor ECI- or ECII-specific genetic markers. Such diversification would need to be taken into consideration in further efforts to elucidate the evolution and epidemiology of these organisms.
Collapse
Affiliation(s)
- J D Eifert
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|