1
|
Abstract
Here we review the application of molecular biological approaches to mineral precipitation in modern marine microbialites. The review focuses on the nearly two decades of nucleotide sequencing studies of the microbialites of Shark Bay, Australia; and The Bahamas. Molecular methods have successfully characterized the overall community composition of mats, pinpointed microbes involved in key metabolisms, and revealed patterns in the distributions of microbial groups and functional genes. Molecular tools have become widely accessible, and we can now aim to establish firmer links between microbes and mineralization. Two promising future directions include “zooming in” to assess the roles of specific organisms, microbial groups, and surfaces in carbonate biomineralization and “zooming out” to consider broader spans of space and time. A middle ground between the two can include model systems that contain representatives of important microbial groups, processes, and metabolisms in mats and simplify hypothesis testing. These directions will benefit from expanding reference datasets of marine microbes and enzymes and enrichments of representative microbes from mats. Such applications of molecular tools should improve our ability to interpret ancient and modern microbialites and increase the utility of these rocks as long-term recorders of microbial processes and environmental chemistry.
Collapse
|
2
|
Huang IS, Pinnell LJ, Turner JW, Abdulla H, Boyd L, Linton EW, Zimba PV. Preliminary Assessment of Microbial Community Structure of Wind-Tidal Flats in the Laguna Madre, Texas, USA. BIOLOGY 2020; 9:E183. [PMID: 32707990 PMCID: PMC7464120 DOI: 10.3390/biology9080183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Aside from two samples collected nearly 50 years ago, little is known about the microbial composition of wind tidal flats in the hypersaline Laguna Madre, Texas. These mats account for ~42% of the lagoon's area. These microbial communities were sampled at four locations that historically had mats in the Laguna Madre, including Laguna Madre Field Station (LMFS), Nighthawk Bay (NH), and two locations in Kenedy Ranch (KRN and KRS). Amplicon sequencing of 16S genes determined the presence of 51 prokaryotic phyla dominated by Bacteroidota, Chloroflexi, Cyanobacteria, Desulfobacteria, Firmicutes, Halobacteria, and Proteobacteria. The microbial community structure of NH and KR is significantly different to LMFS, in which Bacteroidota and Proteobacteria were most abundant. Twenty-three cyanobacterial taxa were identified via genomic analysis, whereas 45 cyanobacterial taxa were identified using morphological analysis, containing large filamentous forms on the surface, and smaller, motile filamentous and coccoid forms in subsurface mat layers. Sample sites were dominated by species in Oscillatoriaceae (i.e., Lyngbya) and Coleofasciculaceae (i.e., Coleofasciculus). Most cyanobacterial sequences (~35%) could not be assigned to any established taxa at the family/genus level, given the limited knowledge of hypersaline cyanobacteria. A total of 73 cyanobacterial bioactive metabolites were identified using ultra performance liquid chromatography-Orbitrap MS analysis from these commu nities. Laguna Madre seems unique compared to other sabkhas in terms of its microbiology.
Collapse
Affiliation(s)
- I.-Shuo Huang
- Center for Coastal Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA;
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Lee J. Pinnell
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA; (L.J.P.); (J.W.T.)
- A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, Chicago, IL 60605, USA
| | - Jeffrey W. Turner
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA; (L.J.P.); (J.W.T.)
| | - Hussain Abdulla
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA;
| | - Lauren Boyd
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA; (L.B.); (E.W.L.)
| | - Eric W. Linton
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA; (L.B.); (E.W.L.)
| | - Paul V. Zimba
- Center for Coastal Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA;
| |
Collapse
|
3
|
Phylogenetic Diversity of Diazotrophs along an Experimental Nutrient Gradient in Mangrove Sediments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2015. [DOI: 10.3390/jmse3030699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Singh P, Singh SS, Aboal M, Mishra AK. Decoding cyanobacterial phylogeny and molecular evolution using an evonumeric approach. PROTOPLASMA 2015; 252:519-535. [PMID: 25226829 DOI: 10.1007/s00709-014-0699-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
Forty-one heterocystous cyanobacteria strains representing 12 cyanobacterial genera collected from all across India were assessed in phylogenetic and evolutionary perspectives. The structural gene 16S ribosomal RNA (rRNA) and the functional genes nifD and psbA were selected as molecular chronometers in this study. The phylogenetic analyses demonstrated the monophyly of heterocystous cyanobacteria with significant intermixing, along with establishing the polyphyly of Stigonematales, strongly supporting the need for re-amendments in cyanobacterial taxonomy and systematics. Molecular trends obtained did not clearly reflect the phenotypic affiliations, thus advocating for genetic characterizations using more molecular markers. Large-scale evonumeric extrapolations of gene sequence data of all the three molecular markers was performed to assess the evolutionary pace of heterocystous cyanobacteria on the basis of nucleotide diversity, recombination frequencies, and the DNA divergence between the sampled taxa. The obtained results tilted the evolutionary pace in favor of the less complex Nostocales thus indicating that possibly the simple non-branched forms are more flexible and adaptive for evolutionary diversifications as compared to the more complex and branched ones. This study hence represents a unique blend of molecular phylogeny with evogenomic sequence analyses for understanding the genetic diversity, phylogeny, and evolutionary pace within the heterocystous cyanobacteria.
Collapse
Affiliation(s)
- Prashant Singh
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | | | |
Collapse
|
5
|
Echenique-Subiabre I, Villeneuve A, Golubic S, Turquet J, Humbert JF, Gugger M. Influence of local and global environmental parameters on the composition of cyanobacterial mats in a tropical lagoon. MICROBIAL ECOLOGY 2015; 69:234-244. [PMID: 25260923 DOI: 10.1007/s00248-014-0496-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/08/2014] [Indexed: 06/03/2023]
Abstract
Cyanobacteria-dominated microbial mat communities thrive widely and year round in coral reefs and tropical lagoons, with periodic massive development of benthic blooms. We studied the diversity and spatiotemporal variation of the cyanobacterial dominance in mats of the shallow lagoon of La Réunion Island in the Indian Ocean by means of denaturing gradient gel electrophoresis and cloning-sequencing approaches targeting the 16S rRNA gene, combined with macromorphological and micromorphological characterization of corresponding phenotypes. The mat-forming cyanobacteria were highly diversified with at least 67 distinct operational taxonomic units identified in the lagoon, encompassing the entire morphological spectrum of the phylum Cyanobacteria, but with striking dominance of Oscillatoriales and Nostocales. It appeared also that selective pressures acting at different geographical scales have an influence on the structure and composition of these mats dominated by cyanobacteria. First, large changes were observed in their diversity and composition in relation to local changes occurring in their environment. Second, from the data obtained on the richness and composition of the mats and from the comparison with similar studies in the world, tropical mats seem to display wider cyanobacterial richness than in temperate and cold areas. Moreover, these tropical mats share more species with mats in other tropical regions than with those in temperate and cold climatic regions, suggesting that marine cyanobacteria in biofilms and mats display a biogeographic structure.
Collapse
Affiliation(s)
- Isidora Echenique-Subiabre
- The Institut Pasteur, Collection des Cyanobactéries, Department of Microbiology, 28 rue du Docteur Roux, 75724, Paris CEDEX 15, France
| | | | | | | | | | | |
Collapse
|
6
|
Tourova TP, Slobodova NV, Bumazhkin BK, Sukhacheva MV, Sorokin DY. Diversity of diazotrophs in the sediments of saline and soda lakes analyzed with the use of the nifH gene as a molecular marker. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171404016x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Cole JK, Hutchison JR, Renslow RS, Kim YM, Chrisler WB, Engelmann HE, Dohnalkova AC, Hu D, Metz TO, Fredrickson JK, Lindemann SR. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions. Front Microbiol 2014; 5:109. [PMID: 24778628 PMCID: PMC3985010 DOI: 10.3389/fmicb.2014.00109] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/04/2014] [Indexed: 11/24/2022] Open
Abstract
Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity over time. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in Hot Lake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gammaproteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural microbial communities.
Collapse
Affiliation(s)
- Jessica K Cole
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Janine R Hutchison
- Chemical, Biological, and Physical Sciences Division, National Security Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Ryan S Renslow
- Scientific Resources Division, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Young-Mo Kim
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - William B Chrisler
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Heather E Engelmann
- Chemical, Biological, and Physical Sciences Division, National Security Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Alice C Dohnalkova
- Scientific Resources Division, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Dehong Hu
- Scientific Resources Division, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Thomas O Metz
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Jim K Fredrickson
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Stephen R Lindemann
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|
8
|
Lindemann SR, Moran JJ, Stegen JC, Renslow RS, Hutchison JR, Cole JK, Dohnalkova AC, Tremblay J, Singh K, Malfatti SA, Chen F, Tringe SG, Beyenal H, Fredrickson JK. The epsomitic phototrophic microbial mat of Hot Lake, Washington: community structural responses to seasonal cycling. Front Microbiol 2013; 4:323. [PMID: 24312082 PMCID: PMC3826063 DOI: 10.3389/fmicb.2013.00323] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/14/2013] [Indexed: 11/13/2022] Open
Abstract
Phototrophic microbial mats are compact ecosystems composed of highly interactive organisms in which energy and element cycling take place over millimeter-to-centimeter-scale distances. Although microbial mats are common in hypersaline environments, they have not been extensively characterized in systems dominated by divalent ions. Hot Lake is a meromictic, epsomitic lake that occupies a small, endorheic basin in north-central Washington. The lake harbors a benthic, phototrophic mat that assembles each spring, disassembles each fall, and is subject to greater than tenfold variation in salinity (primarily Mg(2+) and SO(2-) 4) and irradiation over the annual cycle. We examined spatiotemporal variation in the mat community at five time points throughout the annual cycle with respect to prevailing physicochemical parameters by amplicon sequencing of the V4 region of the 16S rRNA gene coupled to near-full-length 16S RNA clone sequences. The composition of these microbial communities was relatively stable over the seasonal cycle and included dominant populations of Cyanobacteria, primarily a group IV cyanobacterium (Leptolyngbya), and Alphaproteobacteria (specifically, members of Rhodobacteraceae and Geminicoccus). Members of Gammaproteobacteria (e.g., Thioalkalivibrio and Halochromatium) and Deltaproteobacteria (e.g., Desulfofustis) that are likely to be involved in sulfur cycling peaked in summer and declined significantly by mid-fall, mirroring larger trends in mat community richness and evenness. Phylogenetic turnover analysis of abundant phylotypes employing environmental metadata suggests that seasonal shifts in light variability exert a dominant influence on the composition of Hot Lake microbial mat communities. The seasonal development and organization of these structured microbial mats provide opportunities for analysis of the temporal and physical dynamics that feed back to community function.
Collapse
Affiliation(s)
- Stephen R Lindemann
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Singh P, Singh SS, Elster J, Mishra AK. Molecular phylogeny, population genetics, and evolution of heterocystous cyanobacteria using nifH gene sequences. PROTOPLASMA 2013; 250:751-764. [PMID: 23090238 DOI: 10.1007/s00709-012-0460-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/26/2012] [Indexed: 06/01/2023]
Abstract
In order to assess phylogeny, population genetics, and approximation of future course of cyanobacterial evolution based on nifH gene sequences, 41 heterocystous cyanobacterial strains collected from all over India have been used in the present study. NifH gene sequence analysis data confirm that the heterocystous cyanobacteria are monophyletic while the stigonematales show polyphyletic origin with grave intermixing. Further, analysis of nifH gene sequence data using intricate mathematical extrapolations revealed that the nucleotide diversity and recombination frequency is much greater in Nostocales than the Stigonematales. Similarly, DNA divergence studies showed significant values of divergence with greater gene conversion tracts in the unbranched (Nostocales) than the branched (Stigonematales) strains. Our data strongly support the origin of true branching cyanobacterial strains from the unbranched strains.
Collapse
Affiliation(s)
- Prashant Singh
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | | | | | | |
Collapse
|
10
|
Long RA, Eveillard D, Franco SLM, Reeves E, Pinckney JL. Antagonistic interactions between heterotrophic bacteria as a potential regulator of community structure of hypersaline microbial mats. FEMS Microbiol Ecol 2012; 83:74-81. [PMID: 22809069 DOI: 10.1111/j.1574-6941.2012.01457.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/02/2012] [Accepted: 07/08/2012] [Indexed: 11/28/2022] Open
Abstract
Microbial mats are laminae of self-sustaining microbial communities with a high level of competition for resources. We tested the hypothesis that chemically mediated antagonism is a potential mechanism for structuring the bacterial community. In the co-culturing assay, 57% of the isolates expressed antagonistic behavior toward one or more isolates and 5% of the isolates inhibited more than 80% of the isolates. We observed greater levels of antagonism between isolates from adjacent laminae than within. The bacterial isolate library derived from the mat was predominately Gram-positive, and inhibition within this group was greater than against the few Gram-negative isolates. Microdiversity of 16S rRNA gene was observed for Bacillus marisflavi isolates, which represented 23 of the 75 isolates in the library. Within this and other groups, the patterns of inhibition and sensitivity varied greatly, suggesting rapid gain and loss of the ability to produce antagonistic secondary metabolites and resistance toward such molecules. Our observations are consistent with the hypothesis that antagonistic interactions are a potential mechanism in addition to physiochemical properties that regulate the vertical distribution of aerobic heterotrophic bacteria in hypersaline microbial mats.
Collapse
Affiliation(s)
- Richard A Long
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
11
|
Rigonato J, Kent AD, Alvarenga DO, Andreote FD, Beirigo RM, Vidal-Torrado P, Fiore MF. Drivers of cyanobacterial diversity and community composition in mangrove soils in south-east Brazil. Environ Microbiol 2012; 15:1103-14. [DOI: 10.1111/j.1462-2920.2012.02830.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Rigonato J, Alvarenga DO, Andreote FD, Dias ACF, Melo IS, Kent A, Fiore MF. Cyanobacterial diversity in the phyllosphere of a mangrove forest. FEMS Microbiol Ecol 2012; 80:312-22. [DOI: 10.1111/j.1574-6941.2012.01299.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Janaina Rigonato
- Center for Nuclear Energy in Agriculture; University of São Paulo; CENA/USP; Piracicaba; SP; Brazil
| | | | | | | | - Itamar Soares Melo
- Laboratory of Environmental Microbiology; EMBRAPA Environment; Jaguariúna; SP; Brazil
| | - Angela Kent
- Department of Natural Resources and Environmental Sciences; University of Illinois; Urbana; IL; USA
| | - Marli Fátima Fiore
- Center for Nuclear Energy in Agriculture; University of São Paulo; CENA/USP; Piracicaba; SP; Brazil
| |
Collapse
|
13
|
Severin I, Confurius-Guns V, Stal LJ. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats. Arch Microbiol 2012; 194:483-91. [PMID: 22228487 PMCID: PMC3354318 DOI: 10.1007/s00203-011-0787-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 12/09/2011] [Accepted: 12/16/2011] [Indexed: 01/05/2023]
Abstract
Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community (nifH transcript libraries) of three types of microbial mats situated along a littoral gradient. All three mat types exhibited highest nitrogenase activity at salinities close to ambient seawater or lower. The response to lower or higher salinity was strongest in mats higher up in the littoral zone. Changes in nitrogenase activity as the result of exposure to different salinities were accompanied by changes in the active diazotrophic community. The two stations higher up in the littoral zone showed nifH expression by Cyanobacteria (Oscillatoriales and Chroococcales) and Proteobacteria (Gammaproteobacteria and Deltaproteobacteria). At these stations, a decrease in the relative contribution of Cyanobacteria to the nifH transcript libraries was observed at increasing salinity coinciding with a decrease in nitrogenase activity. The station at the low water mark showed low cyanobacterial contribution to nifH transcript libraries at all salinities but an increase in deltaproteobacterial nifH transcripts under hypersaline conditions. In conclusion, increased salinities caused decreased nitrogenase activity and were accompanied by a lower proportion of cyanobacterial nifH transcripts.
Collapse
Affiliation(s)
- Ina Severin
- Department of Marine Microbiology, Royal Netherlands Institute of Sea Research (NIOZ), PO Box 140, 4400 AC Yerseke, The Netherlands.
| | | | | |
Collapse
|
14
|
Ininbergs K, Bay G, Rasmussen U, Wardle DA, Nilsson MC. Composition and diversity of nifH genes of nitrogen-fixing cyanobacteria associated with boreal forest feather mosses. THE NEW PHYTOLOGIST 2011; 192:507-517. [PMID: 21714790 DOI: 10.1111/j.1469-8137.2011.03809.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent studies have revealed that nitrogen fixation by cyanobacteria living in association with feather mosses is a major input of nitrogen to boreal forests. We characterized the community composition and diversity of cyanobacterial nifH phylotypes associated with each of two feather moss species (Pleurozium schreberi and Hylocomium splendens) on each of 30 lake islands varying in ecosystem properties in northern Sweden. Nitrogen fixation was measured using acetylene reduction, and nifH sequences were amplified using general and cyanobacterial selective primers, separated and analyzed using density gradient gel electrophoresis (DGGE) or cloning, and further sequenced for phylogenetic analyses. Analyses of DGGE fingerprinting patterns revealed two host-specific clusters (one for each moss species), and sequence analysis showed five clusters of nifH phylotypes originating from heterocystous cyanobacteria. For H. splendens only, N(2) fixation was related to both nifH composition and diversity among islands. We demonstrated that the cyanobacterial communities associated with feather mosses show a high degree of host specificity. However, phylotype composition and diversity, and nitrogen fixation, did not differ among groups of islands that varied greatly in their availability of resources. These results suggest that moss species identity, but not extrinsic environmental conditions, serves as the primary determinant of nitrogen-fixing cyanobacterial communities that inhabit mosses.
Collapse
|
15
|
Abstract
Due to the presence of inhibitors such as extracellular polymeric substances (EPSs) and salts, most microbial mat studies have relied on harsh methods of direct DNA extraction that result in DNA fragments too small for large-insert vector cloning. High molecular weight (HMW) DNA is crucial in functional metagenomic studies, because large fragments present greater access to genes of interest. Here we report improved methodologies for extracting HMW DNA from EPS-rich hypersaline microbial mats. The protocol uses a combination of microbial cell separation with mechanical and chemical methods for DNA extraction and purification followed by precipitation with polyethylene glycol (PEG). The protocol yields >2 µg HMW DNA (>48 kb) per gram of mat sample, with A260:280 ratios >1.7. In addition, 16S rRNA gene analysis using denaturing gradient gel electrophoresis and pyrosequencing showed that this protocol extracts representative DNA from microbial mat communities and results in higher overall calculated diversity indices compared with three other standard methods of DNA extraction. Our results show the importance of validating the DNA extraction methods used in metagenomic studies to ensure optimal recovery of microbial richness.
Collapse
|
16
|
Environmental Dynamics, Community Structure and Function in a Hypersaline Microbial Mat. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-90-481-3799-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
17
|
Comparative characterization of the microbial diversities of an artificial microbialite model and a natural stromatolite. Appl Environ Microbiol 2008; 74:7410-21. [PMID: 18836014 DOI: 10.1128/aem.01710-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Microbialites are organosedimentary structures that result from the trapping, binding, and lithification of sediments by microbial mat communities. In this study we developed a model artificial microbialite system derived from natural stromatolites, a type of microbialite, collected from Exuma Sound, Bahamas. We demonstrated that the morphology of the artificial microbialite was consistent with that of the natural system in that there was a multilayer community with a pronounced biofilm on the surface, a concentrated layer of filamentous cyanobacteria in the top 5 mm, and a lithified layer of fused oolitic sand grains in the subsurface. The fused grain layer was comprised predominantly of the calcium carbonate polymorph aragonite, which corresponded to the composition of the Bahamian stromatolites. The microbial diversity of the artificial microbialites and that of natural stromatolites were also compared using automated ribosomal intergenic spacer analysis (ARISA) and 16S rRNA gene sequencing. The ARISA profiling indicated that the Shannon indices of the two communities were comparable and that the overall diversity was not significantly lower in the artificial microbialite model. Bacterial clone libraries generated from each of the three artificial microbialite layers and natural stromatolites indicated that the cyanobacterial and crust layers most closely resembled the ecotypes detected in the natural stromatolites and were dominated by Proteobacteria and Cyanobacteria. We propose that such model artificial microbialites can serve as experimental analogues for natural stromatolites.
Collapse
|
18
|
Genetic and functional variation in denitrifier populations along a short-term restoration chronosequence. Appl Environ Microbiol 2008; 74:5615-20. [PMID: 18641159 DOI: 10.1128/aem.00349-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complete removal of plants and soil to exposed bedrock, in order to eradicate the Hole-in-the-Donut (HID) region of the Everglades National Park, FL, of exotic invasive plants, presented the opportunity to monitor the redevelopment of soil and the associated microbial communities along a short-term restoration chronosequence. Sampling plots were established for sites restored in 1989, 1997, 2000, 2001, and 2003. The goal of this study was to characterize the activity and diversity of denitrifying bacterial populations in developing HID soils in an effort to understand changes in nitrogen (N) cycling during short-term primary succession. Denitrifying enzyme activity (DEA) was detected in soils from all sites, indicating a potential for N loss via denitrification. However, no correlation between DEA and time since disturbance was observed. Diversity of bacterial denitrifiers in soils was characterized by sequence analysis of nitrite reductase genes (nirK and nirS) in DNA extracts from soils ranging in nitrate concentrations from 1.8 to 7.8 mg kg(-1). High levels of diversity were observed in both nirK and nirS clone libraries. Statistical analyses of clone libraries suggest a different response of nirS- and nirK-type denitrifiers to factors associated with soil redevelopment. nirS populations demonstrated a linear pattern of succession, with individual lineages represented at each site, while multiple levels of analysis suggest nirK populations respond in a grouped pattern. These findings suggest that nirK communities are more sensitive than nirS communities to environmental gradients in these soils.
Collapse
|
19
|
Morphological and genetic evidence that the cyanobacterium Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck encompasses at least two species. Appl Environ Microbiol 2008; 74:3710-7. [PMID: 18441114 DOI: 10.1128/aem.02645-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dense blooms of the cyanobacterium Lyngbya wollei are increasingly responsible for declining water quality and habitat degradation in numerous springs, rivers, and reservoirs. This research represents the first molecular phylogenetic analysis of L. wollei in comparison with the traditional morphological characterization of this species. Specimens were collected from several springs in Florida and a reservoir in North Carolina. Segments of the small-subunit (SSU) rRNA and nifH genes were PCR amplified, cloned, and sequenced. The phylogenetic analysis of the SSU rRNA gene revealed sequences that fell into three distinct subclusters, each with >97% sequence similarity. These were designated operational taxonomic unit 1 (OTU1), OTU2, and OTU3. Similarly, the nifH sequences fell into three distinct subclusters named S1, S2, and S3. When either bulk samples or individual filaments were analyzed, we recovered OTU1 with S1, OTU2 with S2, and OTU3 with S3. The coherence between the three SSU rRNA gene and nifH subclusters was consistent with genetically distinct strains or species. Cells associated with subclusters OTU3 and S3 were significantly wider and longer than those associated with other subclusters. The combined molecular and morphological data indicate that the species commonly identified as L. wollei in the literature represents two or possibly more species. Springs containing OTU3 and S3 demonstrated lower ion concentrations than other collection sites. Geographical locations of Lyngbya subclusters did not correlate with residual dissolved inorganic nitrogen or phosphorus concentrations. This study emphasizes the need to complement traditional identification with molecular characterization to more definitively detect and characterize harmful cyanobacterial species or strains.
Collapse
|
20
|
Basile LA, Erijman L. Quantitative assessment of phenol hydroxylase diversity in bioreactors using a functional gene analysis. Appl Microbiol Biotechnol 2008; 78:863-72. [DOI: 10.1007/s00253-008-1351-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 12/25/2007] [Accepted: 01/03/2008] [Indexed: 11/30/2022]
|
21
|
A salinity and sulfate manipulation of hypersaline microbial mats reveals stasis in the cyanobacterial community structure. ISME JOURNAL 2008; 2:457-70. [DOI: 10.1038/ismej.2008.6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Bauer K, DÃez B, Lugomela C, Seppälä S, Borg AJ, Bergman B. Variability in benthic diazotrophy and cyanobacterial diversity in a tropical intertidal lagoon. FEMS Microbiol Ecol 2008; 63:205-21. [DOI: 10.1111/j.1574-6941.2007.00423.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Yannarell AC, Paerl HW. Effects of salinity and light on organic carbon and nitrogen uptake in a hypersaline microbial mat. FEMS Microbiol Ecol 2007; 62:345-53. [PMID: 17916075 DOI: 10.1111/j.1574-6941.2007.00384.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Utilization of dissolved organic matter (DOM) is thought to be the purview of heterotrophic microorganisms, but photoautotrophs can take up dissolved organic nitrogen (DON) and dissolved organic carbon (DOC). This study investigated DOC and DON uptake in a laminated cyanobacterial mat community from hypersaline Salt Pond (San Salvador, Bahamas). The total community uptake of (3)H-labeled substrates was measured in the light and in the dark and under conditions of high and low salinity. Salinity was the primary control of DOM uptake, with increased uptake occurring under low-salinity, 'freshened' conditions. DOC uptake was also enhanced in the light as compared with the dark and in samples incubated with the photosystem II inhibitor 3(3,4-dichlorophenyl)-1, 1-dimethylurea, suggesting a positive association between photosynthetic activity and DOC uptake. Microautoradiography revealed that some DOM uptake was attributed to cyanobacteria. Cyanobacteria DOM uptake was negatively correlated with that of smaller filamentous microorganisms, and DOM uptake by individual coccoid cells was negatively correlated with uptake by colonial coccoids. These patterns of activity suggest that Salt Pond microorganisms are engaged in resource partitioning, and DOM utilization may provide a metabolic boost to both heterotrophs and photoautrophs during periods of lowered salinity.
Collapse
Affiliation(s)
- Anthony C Yannarell
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA.
| | | |
Collapse
|
24
|
Díez B, Bauer K, Bergman B. Epilithic cyanobacterial communities of a marine tropical beach rock (Heron Island, Great Barrier Reef): diversity and diazotrophy. Appl Environ Microbiol 2007; 73:3656-68. [PMID: 17416688 PMCID: PMC1932695 DOI: 10.1128/aem.02067-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity and nitrogenase activity of epilithic marine microbes in a Holocene beach rock (Heron Island, Great Barrier Reef, Australia) with a proposed biological calcification "microbialite" origin were examined. Partial 16S rRNA gene sequences from the dominant mat (a coherent and layered pink-pigmented community spread over the beach rock) and biofilms (nonstratified, differently pigmented microbial communities of small shallow depressions) were retrieved using denaturing gradient gel electrophoresis (DGGE), and a clone library was retrieved from the dominant mat. The 16S rRNA gene sequences and morphological analyses revealed heterogeneity in the cyanobacterial distribution patterns. The nonheterocystous filamentous genus Blennothrix sp., phylogenetically related to Lyngbya, dominated the mat together with unidentified nonheterocystous filaments of members of the Pseudanabaenaceae and the unicellular genus Chroococcidiopsis. The dominance and three-dimensional intertwined distribution of these organisms were confirmed by nonintrusive scanning microscopy. In contrast, the less pronounced biofilms were dominated by the heterocystous cyanobacterial genus Calothrix, two unicellular Entophysalis morphotypes, Lyngbya spp., and members of the Pseudanabaenaceae family. Cytophaga-Flavobacterium-Bacteroides and Alphaproteobacteria phylotypes were also retrieved from the beach rock. The microbial diversity of the dominant mat was accompanied by high nocturnal nitrogenase activities (as determined by in situ acetylene reduction assays). A new DGGE nifH gene optimization approach for cyanobacterial nitrogen fixers showed that the sequences retrieved from the dominant mat were related to nonheterocystous uncultured cyanobacterial phylotypes, only distantly related to sequences of nitrogen-fixing cultured cyanobacteria. These data stress the occurrence and importance of nonheterocystous epilithic cyanobacteria, and it is hypothesized that such epilithic cyanobacteria are the principal nitrogen fixers of the Heron Island beach rock.
Collapse
MESH Headings
- Acetylene/metabolism
- Australia
- Biodiversity
- Cluster Analysis
- Cyanobacteria/classification
- Cyanobacteria/cytology
- Cyanobacteria/isolation & purification
- Cyanobacteria/physiology
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Electrophoresis, Polyacrylamide Gel
- Gene Library
- Genes, rRNA
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Nitrogen Fixation
- Nitrogenase/metabolism
- Nucleic Acid Denaturation
- Oxidoreductases/genetics
- Pacific Ocean
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Soil Microbiology
Collapse
Affiliation(s)
- Beatriz Díez
- Department of Botany, Stockholm University, S-10691 Stockholm, Sweden.
| | | | | |
Collapse
|
25
|
Yannarell AC, Steppe TF, Paerl HW. Disturbance and recovery of microbial community structure and function following Hurricane Frances. Environ Microbiol 2007; 9:576-83. [PMID: 17298358 DOI: 10.1111/j.1462-2920.2006.01173.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Disturbance and recovery influence microbial community structure and ecosystem functions in most natural environments. This study from a hypersaline Bahamian lagoon details the response of a benthic cyanobacterial mat to disturbance by Hurricane Frances, a category-4 storm. Clone libraries of cyanobacterial small subunit r-RNA genes and nitrogenase genes revealed significant shifts in cyanobacterial and diazotroph community composition following the hurricane. Post-hurricane clone libraries were dominated by sequences that had been rare in pre-hurricane communities. In spite of this dominance shift, re-colonizing mat communities performed nitrogen fixation and photosynthesis at rates within the normal range of variation measured in the mat at similar salinities. There was a tendency for nitrogen fixation rates from mats re-colonizing sites with hurricane-related sand deposition to be higher than those from mats re-colonizing sites without significant sand deposition. This suggests that the altered communities responded to a carbon : nitrogen imbalance that was particularly pronounced in areas subjected to disturbance by sand burial. The post-hurricane dominance of organisms that had been previously rare suggests that pre-hurricane diversity and functional redundancy contributed to the rapid recovery of ecosystem function in the post-disturbance environment.
Collapse
Affiliation(s)
- Anthony C Yannarell
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA.
| | | | | |
Collapse
|
26
|
Yeager CM, Kornosky JL, Morgan RE, Cain EC, Garcia-Pichel F, Housman DC, Belnap J, Kuske CR. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol Ecol 2007; 60:85-97. [PMID: 17381526 DOI: 10.1111/j.1574-6941.2006.00265.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The identity of the numerically dominant N(2)-fixing bacteria in biological soil crusts of the Colorado Plateau region and two outlying areas was determined using multiple approaches, to link the environmental diversity of nifH gene sequences to cultured bacterial isolates from the regions. Of the nifH sequence-types detected in soil crusts of the Colorado Plateau, 89% (421/473) were most closely related to nifH signature sequences from cyanobacteria of the order Nostocales. N(2)-fixing cyanobacterial strains were cultured from crusts and their morphotypes, 16S rRNA gene and nifH gene sequences were characterized. The numerically dominant diazotrophs in the Colorado Plateau crusts fell within three clades of heterocystous cyanobacteria. Two clades are well-represented by phylogenetically and morphologically coherent strains, corresponding to the descriptions of Nostoc commune and Scytonema hyalinum, which are widely recognized as important N(2)-fixing components of soil crusts. A third, previously-overlooked clade was represented by a phylogenetically coherent but morphologically diverse group of strains that encompass the morphogenera Tolypothrix and Spirirestis. Many of the strains in each of these groups contained at least two nifH copies that represent different clusters in the nifH environmental survey.
Collapse
Affiliation(s)
- Chris M Yeager
- Biosciences Division M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jenkins TM, Jones SC, Lee CY, Forschler BT, Chen Z, Lopez-Martinez G, Gallagher NT, Brown G, Neal M, Thistleton B, Kleinschmidt S. Phylogeography illuminates maternal origins of exotic Coptotermes gestroi (Isoptera: Rhinotermitidae). Mol Phylogenet Evol 2007; 42:612-21. [PMID: 17254806 DOI: 10.1016/j.ympev.2006.11.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 10/23/2006] [Accepted: 11/28/2006] [Indexed: 11/21/2022]
Abstract
Coptotermes gestroi, the Asian subterranean termite (AST), is an economically important structural and agricultural pest that has become established in many areas of the world. For the first time, phylogeography was used to illuminate the origins of new found C. gestroi in the US Commonwealth of Puerto Rico; Ohio, USA; Florida, USA; and Brisbane, Australia. Phylogenetic relationships of C. gestroi collected in indigenous locations within Malaysia, Thailand, and Singapore as well as from the four areas of introduction were investigated using three genes (16S rRNA, COII, and ITS) under three optimality criteria encompassing phenetic and cladistic assumptions (maximum parsimony, maximum likelihood, and neighbor-joining). All three genes showed consistent support for a close genetic relationship between C. gestroi samples from Singapore and Ohio, whereas termite samples from Australia, Puerto Rico, and Key West, FL were more closely related to those from Malaysia. Shipping records further substantiated that Singapore and Malaysia were the likely origin of the Ohio and Australia C. gestroi, respectively. These data provide support for using phylogeography to understand the dispersal history of exotic termites. Serendipitously, we also gained insights into concerted evolution in an ITS cluster from rhinotermitid species in two genera.
Collapse
Affiliation(s)
- Tracie M Jenkins
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Beman JM, Francis CA. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahía del Tóbari, Mexico. Appl Environ Microbiol 2006; 72:7767-77. [PMID: 17012598 PMCID: PMC1694203 DOI: 10.1128/aem.00946-06] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrification within estuarine sediments plays an important role in the nitrogen cycle, both at the global scale and in individual estuaries. Although bacteria were once thought to be solely responsible for catalyzing the first and rate-limiting step of this process, several recent studies have suggested that mesophilic Crenarchaeota are capable of performing ammonia oxidation. Here we examine the diversity (richness and community composition) of ammonia-oxidizing archaea (AOA) and bacteria (AOB) within sediments of Bahía del Tóbari, a hypernutrified estuary receiving substantial amounts of ammonium in agricultural runoff. Using PCR primers designed to specifically target the archaeal ammonia monooxygenase alpha-subunit (amoA) gene, we found AOA to be present at five sampling sites within this estuary and at two sampling time points (January and October 2004). In contrast, the bacterial amoA gene was PCR amplifiable from only 40% of samples. Bacterial amoA libraries were dominated by a few widely distributed Nitrosomonas-like sequence types, whereas AOA diversity showed significant variation in both richness and community composition. AOA communities nevertheless exhibited consistent spatial structuring, with two distinct end member assemblages recovered from the interior and the mouths of the estuary and a mixed assemblage from an intermediate site. These findings represent the first detailed examination of archaeal amoA diversity in estuarine sediments and demonstrate that diverse communities of Crenarchaeota capable of ammonia oxidation are present within estuaries, where they may be actively involved in nitrification.
Collapse
Affiliation(s)
- J Michael Beman
- Department of Geological and Environmental Sciences, Building 320, Room 118, Stanford University, Stanford, CA 94305-2115, USA.
| | | |
Collapse
|