1
|
De La Torre-Tarazona E, Ayala-Suárez R, Díez-Fuertes F, Alcamí J. Omic Technologies in HIV: Searching Transcriptional Signatures Involved in Long-Term Non-Progressor and HIV Controller Phenotypes. Front Immunol 2022; 13:926499. [PMID: 35844607 PMCID: PMC9284212 DOI: 10.3389/fimmu.2022.926499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
This article reviews the main discoveries achieved by transcriptomic approaches on HIV controller (HIC) and long-term non-progressor (LTNP) individuals, who are able to suppress HIV replication and maintain high CD4+ T cell levels, respectively, in the absence of antiretroviral therapy. Different studies using high throughput techniques have elucidated multifactorial causes implied in natural control of HIV infection. Genes related to IFN response, calcium metabolism, ribosome biogenesis, among others, are commonly differentially expressed in LTNP/HIC individuals. Additionally, pathways related with activation, survival, proliferation, apoptosis and inflammation, can be deregulated in these individuals. Likewise, recent transcriptomic studies include high-throughput sequencing in specific immune cell subpopulations, finding additional gene expression patterns associated to viral control and/or non-progression in immune cell subsets. Herein, we provide an overview of the main differentially expressed genes and biological routes commonly observed on immune cells involved in HIV infection from HIC and LTNP individuals, analyzing also different technical aspects that could affect the data analysis and the future perspectives and gaps to be addressed in this field.
Collapse
Affiliation(s)
- Erick De La Torre-Tarazona
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rubén Ayala-Suárez
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Francisco Díez-Fuertes
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Francisco Díez-Fuertes,
| | - José Alcamí
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Human Immunodeficiency Virus (HIV) Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Judge M, Parker E, Naniche D, Le Souëf P. Gene Expression: the Key to Understanding HIV-1 Infection? Microbiol Mol Biol Rev 2020; 84:e00080-19. [PMID: 32404327 PMCID: PMC7233484 DOI: 10.1128/mmbr.00080-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression profiling of the host response to HIV infection has promised to fill the gaps in our knowledge and provide new insights toward vaccine and cure. However, despite 20 years of research, the biggest questions remained unanswered. A literature review identified 62 studies examining gene expression dysregulation in samples from individuals living with HIV. Changes in gene expression were dependent on cell/tissue type, stage of infection, viremia, and treatment status. Some cell types, notably CD4+ T cells, exhibit upregulation of cell cycle, interferon-related, and apoptosis genes consistent with depletion. Others, including CD8+ T cells and natural killer cells, exhibit perturbed function in the absence of direct infection with HIV. Dysregulation is greatest during acute infection. Differences in study design and data reporting limit comparability of existing research and do not as yet provide a coherent overview of gene expression in HIV. This review outlines the extraordinarily complex host response to HIV and offers recommendations to realize the full potential of HIV host transcriptomics.
Collapse
Affiliation(s)
- Melinda Judge
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Erica Parker
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Denise Naniche
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação de Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Peter Le Souëf
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Sun J, Shi Q, Chen X, Liu R. Decoding the similarities and specific differences between latent and active tuberculosis infections based on consistently differential expression networks. Brief Bioinform 2019; 21:2084-2098. [PMID: 31724702 DOI: 10.1093/bib/bbz127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/21/2019] [Accepted: 09/06/2019] [Indexed: 11/14/2022] Open
Abstract
Although intensive efforts have been devoted to investigating latent tuberculosis (LTB) and active tuberculosis (PTB) infections, the similarities and differences in the host responses to these two closely associated stages remain elusive, probably due to the difficulty in identifying informative genes related to LTB using traditional methods. Herein, we developed a framework known as the consistently differential expression network to identify tuberculosis (TB)-related gene pairs by combining microarray profiles and protein-protein interactions. We thus obtained 774 and 693 pairs corresponding to the PTB and LTB stages, respectively. The PTB-specific genes showed higher expression values and fold-changes than the LTB-specific genes. Furthermore, the PTB-related pairs generally had higher expression correlations and would be more activated compared to their LTB-related counterparts. The module analysis implied that the detected gene pairs tended to cluster in the topological and functional modules. Functional analysis indicated that the LTB- and PTB-specific genes were enriched in different pathways and had remarkably different locations in the NF-κB signaling pathway. Finally, we showed that the identified genes and gene pairs had the potential to distinguish TB patients in different disease stages and could be considered as drug targets for the specific treatment of patients with LTB or PTB.
Collapse
Affiliation(s)
- Jun Sun
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Shi
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Wang Z, Arat S, Magid-Slav M, Brown JR. Meta-analysis of human gene expression in response to Mycobacterium tuberculosis infection reveals potential therapeutic targets. BMC SYSTEMS BIOLOGY 2018; 12:3. [PMID: 29321020 PMCID: PMC5763539 DOI: 10.1186/s12918-017-0524-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/22/2017] [Indexed: 01/24/2023]
Abstract
Background With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors. Results Here we performed a statistical meta-analysis of human gene expression in response to both latent and active pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson’s disease, and PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for development as combination therapeutics with anti-mycobacterial agents. Conclusions Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis and brings forth potential drug repurposing opportunities for host-directed therapies. Electronic supplementary material The online version of this article (doi: 10.1186/s12918-017-0524-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhang Wang
- Computational Biology, Target Sciences, GlaxoSmithKline (GSK) R & D, Collegeville, PA, 19426, USA
| | - Seda Arat
- Computational Biology, Target Sciences, GlaxoSmithKline (GSK) R & D, Collegeville, PA, 19426, USA.,Current address: The Jackson Laboratory, Farmington, CT, 06032, USA
| | - Michal Magid-Slav
- Computational Biology, Target Sciences, GlaxoSmithKline (GSK) R & D, Collegeville, PA, 19426, USA.
| | - James R Brown
- Computational Biology, Target Sciences, GlaxoSmithKline (GSK) R & D, Collegeville, PA, 19426, USA.
| |
Collapse
|
5
|
Corkum CP, Ings DP, Burgess C, Karwowska S, Kroll W, Michalak TI. Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT™) and standard density gradient. BMC Immunol 2015; 16:48. [PMID: 26307036 PMCID: PMC4549105 DOI: 10.1186/s12865-015-0113-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/17/2015] [Indexed: 01/25/2023] Open
Abstract
Background High quality genetic material is an essential pre-requisite when analyzing gene expression using microarray technology. Peripheral blood mononuclear cells (PBMC) are frequently used for genomic analyses, but several factors can affect the integrity of nucleic acids prior to their extraction, including the methods of PBMC collection and isolation. Due to the lack of the relevant data published, we compared the Ficoll-Paque density gradient centrifugation and BD Vacutainer cell preparation tube (CPT) protocols to determine if either method offered a distinct advantage in preparation of PBMC-derived immune cell subsets for their use in gene expression analysis. We evaluated the yield and purity of immune cell subpopulations isolated from PBMC derived by both methods, the quantity and quality of extracted nucleic acids, and compared gene expression in PBMC and individual immune cell types from Ficoll and CPT isolation protocols using Affymetrix microarrays. Results The mean yield and viability of fresh PBMC acquired by the CPT method (1.16 × 106 cells/ml, 93.3 %) were compatible to those obtained with Ficoll (1.34 × 106 cells/ml, 97.2 %). No differences in the mean purity, recovery, and viability of CD19+ (B cells), CD8+ (cytotoxic T cells), CD4+ (helper T cell) and CD14+ (monocytes) positively selected from CPT- or Ficoll-isolated PBMC were found. Similar quantities of high quality RNA and DNA were extracted from PBMC and immune cells obtained by both methods. Finally, the PBMC isolation methods tested did not impact subsequent recovery and purity of individual immune cell subsets and, importantly, their gene expression profiles. Conclusions Our findings demonstrate that the CPT and Ficoll PBMC isolation protocols do not differ in their ability to purify high quality immune cell subpopulations. Since there was no difference in the gene expression profiles between immune cells obtained by these two methods, the Ficoll isolation can be substituted by the CPT protocol without conceding phenotypic changes of immune cells and compromising the gene expression studies. Given that the CPT protocol is less elaborate, minimizes cells’ handling and processing time, this method offers a significant operating advantage, especially in large-scale clinical studies aiming at dissecting gene expression in PBMC and PBMC-derived immune cell subpopulations. Electronic supplementary material The online version of this article (doi:10.1186/s12865-015-0113-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher P Corkum
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University, St. John's, NL, A1B3V6, Canada.
| | - Danielle P Ings
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University, St. John's, NL, A1B3V6, Canada.
| | | | - Sylwia Karwowska
- Novartis Oncology Companion Diagnostics, Cambridge, MA, 02139, USA.
| | - Werner Kroll
- Novartis Oncology Companion Diagnostics, Cambridge, MA, 02139, USA. .,Present address: Quidel Corporation, San Diego, CA, 92130, USA.
| | - Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University, St. John's, NL, A1B3V6, Canada.
| |
Collapse
|
6
|
Distinct gene-expression profiles associated with the susceptibility of pathogen-specific CD4 T cells to HIV-1 infection. Blood 2012; 121:1136-44. [PMID: 23258923 DOI: 10.1182/blood-2012-07-446278] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In HIV infection, CD4 responses to opportunistic pathogens such as Candida albicans are lost early, but CMV-specific CD4 response persists. Little is currently known about HIV infection of CD4 T cells of different pathogen/antigen specificities. CFSE-labeled PBMCs were stimulated with CMV, tetanus toxoid (TT), and C albicans antigens and subsequently exposed to HIV. HIV infection was monitored by intracellular p24 in CFSE(low) population. We found that although TT- and C albicans-specific CD4 T cells were permissive, CMV-specific CD4 T cells were highly resistant to both R5 and X4 HIV. Quantification of HIV DNA in CFSE(low) cells showed a reduction of strong-stop and full-length DNA in CMV-specific cells compared with TT- and C albicans-specific cells. β-Chemokine neutralization enhanced HIV infection in TT- and C albicans-specific cells, whereas HIV infection in CMV-specific cells remained low despite increased entry by β-chemokine neutralization, suggesting postentry HIV restriction by CMV-specific cells. Microarray analysis (Gene Expression Omnibus accession number: GSE42853) revealed distinct transcriptional profiles that involved selective up-regulation of comprehensive innate antiviral genes in CMV-specific cells, whereas TT- and C albicans-specific cells mainly up-regulated Th17 inflammatory response. Our data suggest a mechanism for the persistence of CMV-specific CD4 response and earlier loss of mucosal Th17-associated TT- and C albicans-specific CD4 response in AIDS.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Several unique HIV-infected or HIV-resistant cohorts have been studied over the years to try and delineate the correlates of protection. Although several mechanisms have been put forward, studies aiming to integrate the different mechanisms into a comprehensive model are still lacking. Current systems biology approaches emphasize the importance of unifying independent datasets, provide tools that facilitate hypothesis formulation and testing, and direct us toward uncovering novel therapeutic targets by defining molecular networks perturbed during disease. This review will focus on the current findings that utilized systems biology techniques in order to identify correlates of protection from HIV disease progression and resistance to infection in unique cohorts of individuals as well as in nonhuman primate models of SIV infection. RECENT FINDINGS Using systems biology technologies and data analysis tools, the studies described herein have found that pathways implicated in survival, cell cycling, inflammation, and oxidative stress work in unison to limit pathology caused by chronic immune activation. This situation favors the survival of effector lymphocytes and limits the dissemination of viral particles in HIV elite controllers, exposed-uninfected individuals, and natural hosts of SIV infection. SUMMARY Systems and computational biology tools have clearly expanded our understanding of HIV pathogenesis by unifying independent observations and by giving us novel molecular targets to pursue. These molecular signatures have the potential to uncover correlates of protection in HIV disease and, in the era of personalized medicine, to determine predictive signatures of treatment efficacy and/or failure.
Collapse
|
8
|
Abstract
HIV-1-infected individuals exhibit remarkable variation in the onset of disease. Virus replication and disease progression depend on host cellular transcription and gene regulation in virus-specific target cells. Both viral and host factors are implicated in this differential regulation. Gene arrays and transcriptome analyses might shed light on why some infected individuals remain asymptomatic while others progress rapidly to AIDS. Here we review developments in HIV research using gene array technologies and the unifying concepts that have emerged from these studies. Gene set enrichment analysis has revealed gene signatures linked to disease progression involving pathways related to metabolism, apoptosis, cell-cycle dysregulation, and T-cell signaling. Macrophages contain anti-apoptotic signatures. Also, HIV-1 regulates previously under-emphasized cholesterol biosynthesis and energy production pathways. Notably, cellular pathways linked to a subset of HIV-infected individuals known as non-progressors contribute to survival and anti-viral responses.
Collapse
Affiliation(s)
- Rajeev Mehla
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
9
|
Mesko B, Poliska S, Nagy L. Gene expression profiles in peripheral blood for the diagnosis of autoimmune diseases. Trends Mol Med 2011; 17:223-33. [PMID: 21388884 DOI: 10.1016/j.molmed.2010.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/11/2010] [Accepted: 12/13/2010] [Indexed: 11/28/2022]
Abstract
Gene expression profiling in clinical genomics has yet to deliver robust and reliable approaches for developing diagnostics and contributing to personalized medicine. Owing to technological developments and the recent accumulation of expression profiles, it is a timely and relevant question whether peripheral blood gene expression profiling can be used routinely in clinical decision making. Here, we review the available gene expression profiling data of peripheral blood in autoimmune and chronic inflammatory diseases and suggest that peripheral blood mononuclear cells are suitable for descriptive and comparative gene expression analyses. A gene-disease interaction network in chronic inflammatory diseases, a general protocol for future studies and a decision tree for researchers are presented to facilitate standardization and adoption of this approach.
Collapse
Affiliation(s)
- Bertalan Mesko
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Mediicne, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | |
Collapse
|
10
|
Gow JW, Hagan S, Herzyk P, Cannon C, Behan PO, Chaudhuri A. A gene signature for post-infectious chronic fatigue syndrome. BMC Med Genomics 2009; 2:38. [PMID: 19555476 PMCID: PMC2716361 DOI: 10.1186/1755-8794-2-38] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 06/25/2009] [Indexed: 11/28/2022] Open
Abstract
Background At present, there are no clinically reliable disease markers for chronic fatigue syndrome. DNA chip microarray technology provides a method for examining the differential expression of mRNA from a large number of genes. Our hypothesis was that a gene expression signature, generated by microarray assays, could help identify genes which are dysregulated in patients with post-infectious CFS and so help identify biomarkers for the condition. Methods Human genome-wide Affymetrix GeneChip arrays (39,000 transcripts derived from 33,000 gene sequences) were used to compare the levels of gene expression in the peripheral blood mononuclear cells of male patients with post-infectious chronic fatigue (n = 8) and male healthy control subjects (n = 7). Results Patients and healthy subjects differed significantly in the level of expression of 366 genes. Analysis of the differentially expressed genes indicated functional implications in immune modulation, oxidative stress and apoptosis. Prototype biomarkers were identified on the basis of differential levels of gene expression and possible biological significance Conclusion Differential expression of key genes identified in this study offer an insight into the possible mechanism of chronic fatigue following infection. The representative biomarkers identified in this research appear promising as potential biomarkers for diagnosis and treatment.
Collapse
Affiliation(s)
- John W Gow
- Dept. of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, G4 0BA, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Giri MS, Nebozhyn M, Showe L, Montaner LJ. Microarray data on gene modulation by HIV-1 in immune cells: 2000-2006. J Leukoc Biol 2006; 80:1031-43. [PMID: 16940334 DOI: 10.1189/jlb.0306157] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here, we review 34 HIV microarray studies in human immune cells over the period of 2000-March 2006 with emphasis on analytical approaches used and conceptual advances on HIV modulation of target cells (CD4 T cell, macrophage) and nontargets such as NK cell, B cell, and dendritic cell subsets. Results to date address advances on gene modulation associated with immune dysregulation, susceptibility to apoptosis, virus replication, and viral persistence following in vitro or in vivo infection/exposure to HIV-1 virus or HIV-1 accessory proteins. In addition to gene modulation associated with known functional correlates of HIV infection and replication (e.g., T cell apoptosis), microarray data have yielded novel, potential mechanisms of HIV-mediated pathogenesis such as modulation of cholesterol biosynthetic genes in CD4 T cells (relevant to virus replication and infectivity) and modulation of proteasomes and histone deacetylases in chronically infected cell lines (relevant to virus latency). Intrinsic challenges in summarizing gene modulation studies remain in development of sound approaches for comparing data obtained using different platforms and analytical tools, deriving unifying concepts to distil the large volumes of data collected, and the necessity to impose a focus for validation on a small fraction of genes. Notwithstanding these challenges, the field overall continues to demonstrate progress in expanding the pool of target genes validated to date in in vitro and in vivo datasets and understanding the functional correlates of gene modulation to HIV-1 pathogenesis in vivo.
Collapse
Affiliation(s)
- Malavika S Giri
- HIV Immunopathogenesis Laboratory, Wistar Institute, 3601 Spruce St., Room 480, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
12
|
Liu M, Popper SJ, Rubins KH, Relman DA. Early days: genomics and human responses to infection. Curr Opin Microbiol 2006; 9:312-9. [PMID: 16679048 PMCID: PMC7108404 DOI: 10.1016/j.mib.2006.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/24/2006] [Indexed: 10/26/2022]
Abstract
DNA microarray-based gene transcript-profiling of the responses of primates to infection has begun to yield new insights into host-pathogen interactions; this approach, however, remains plagued by challenges and complexities that have yet to be adequately addressed. The rapidly changing nature over time of acute infectious diseases in a host, and the genetic diversity of microbial pathogens present unique problems for the design and interpretation of functional-genomic studies in this field. In addition, there are the more common problems related to heterogeneity within clinical samples, the complex, non-standardized confounding variables associated with human subjects and the complexities posed by the analysis and validation of highly parallel data. Whereas various approaches have been developed to address each of these issues, there are significant limitations that remain to be overcome. The resolution of these problems should lead to a better understanding of the dialogue between the host and pathogen.
Collapse
Affiliation(s)
- Minghsun Liu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Grant S-169, Stanford, CA 94305, USA
| | - Stephen J Popper
- Department of Microbiology and Immunology, Stanford University School of Medicine, 279 Campus Drive, Beckman B403, Stanford, CA 94305, USA
| | - Kathleen H Rubins
- Department of Microbiology and Immunology, Stanford University School of Medicine, 279 Campus Drive, Beckman B403, Stanford, CA 94305, USA
| | - David A Relman
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Grant S-169, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 279 Campus Drive, Beckman B403, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
13
|
Bosco A, McKenna KL, Devitt CJ, Firth MJ, Sly PD, Holt PG. Identification of Novel Th2-Associated Genes in T Memory Responses to Allergens. THE JOURNAL OF IMMUNOLOGY 2006; 176:4766-77. [PMID: 16585570 DOI: 10.4049/jimmunol.176.8.4766] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Atopic diseases are associated with hyperexpression of Th2 cytokines by allergen-specific T memory cells. However, clinical trials with recently developed Th2 inhibitors in atopics have proven disappointing, suggesting underlying complexities in atopy pathogenesis which are not satisfactorily explained via the classical Th1/Th2 paradigm. One likely possibility is that additional Th2-associated genes which are central to disease pathogenesis remain unidentified. The aim of the present study was to identify such novel Th2-associated genes in recall responses to the inhalant allergen house dust mite. In contrast to earlier human microarray studies in atopy which focused on mitogen-activated T cell lines and clones, we concentrated on PBMC-derived primary T cells stimulated under more physiological conditions of low dose allergen exposure. We screened initially for allergen-induced gene activation by microarray, and validated novel genes in independent panels of subjects by quantitative RT-PCR. Kinetic analysis of allergen responses in PBMC revealed an early wave of novel atopy-associated genes involved in signaling which were coexpressed with IL-4 and IL-4R, followed by a later wave of genes encoding the classical Th2 effector cytokines. We further demonstrate that these novel activation-associated Th2 genes up-regulate in response to another atopy-associated physiological stimulus bacterial superantigen, but remain quiescent in nonphysiological responses in primary T cells or cell lines driven by potent mitogens, which may account for their failure to be detected in earlier microarray studies.
Collapse
Affiliation(s)
- Anthony Bosco
- Telethon Institute for Child Health Research, and Centre for Child Health Research, Faculty of Medicine and Dentistry, University of Western Australia, Perth, Western Australia
| | | | | | | | | | | |
Collapse
|